一种抗静电/导电复合材料及其制备方法和应用

文档序号:10714256阅读:331来源:国知局
一种抗静电/导电复合材料及其制备方法和应用
【专利摘要】本发明涉及一种抗静电/导电复合材料,所述复合材料由以下重量份的原料制成:高聚物树脂50?90份;长链星型结构导电物质1?30份;助剂0?10份。本发明通过导电物质结构的设计以及特定传导电荷物质的选择,提供了一种星型结构导电物质,相对于传统的高分子导电物质(如线性结构),本发明的星型结导电物质构带有更多支链,提高了与其他物质结合形成导电通路的几率,从而导电/抗静电性能更好,同时本发明的导电材料力学性能较好且外观颜色较浅,克服了现有技术大量添加炭黑、碳纳米管等物质造成的力学性能及外观差的缺点。
【专利说明】
一种抗静电/导电复合材料及其制备方法和应用
技术领域
[0001] 本发明涉及高分子材料技术领域,具体地说,是一种抗静电/导电复合材料及其制 备方法和应用。
【背景技术】
[0002] 随着高分子材料在电子电器方面的应用不短增加,对其抗静电以及导电性能的要 求不断提高。越来越多的市场应用领域,要求高分材料本身具有很好的抗静电效果,或者导 电效果,以便材料可以运用在电磁屏蔽领域或要求抗静电的场合。
[0003]尚分子材料广生静电的原因在于电荷在尚聚物基体内的积累以及不完善的电荷 导路,因此解决高分子的抗静电主要有两个思路:减少同一类型电荷的生成或建立完善的 内部或表面导路促进电荷的耗散开消失。提高高分子材料的导电则要建立电子转移的通 路,无论是内部或外部都需要完善的导电通路。基于以上的技术背景,国内外实现抗静电/ 导电的路径主要为以下几种方法,加入高导电性物质如炭黑、碳纳米管、碳纤维或半导电的 物质如TI〇2、SN〇2、SrTi〇3就能实现抗静电功能,如欧洲专利EP0219088A2(A fibrous white electrically conductive material and a white electrically conductive coating composition containing the same),EP075508B1(Electrically and thermically conductive plastics material and the application thereof)京尤是加入Ti〇2,Sn〇2, BaTi03,SrTi03等半导体类物质实现纤维,薄膜等的抗静电,其基体可以是橡胶,塑料等。中 国专利CN20 1 1 10298092.2公开了一种抗静电尼龙材料及其制备方法。中国专利 C N 2 0 1 1 1 0 1 1 4 6 8 4 . 4公开了 一种导电尼龙6 6复合材料的制备方法。中国专利 CN201210437378.9-种电磁高分子尼龙66材料及其制作工艺。上述专利技术都是通过添加 导电炭黑或导电石墨或碳纤维等其他导电材料混合使用,构建内部网络实现抗静电功能。 另外一种方案为加入高分子的金属盐类物质,通过迀移到物质表面形成通路,如专利 CN201110377519.8-种永久抗静电PP复合材料及制备方法及专利CN201110376995.8-种 永久抗静电ΡΒΤ/ΡΡ0合金及制备方法。中国专利2014100409761,公开了一种导电??02/ΡΑ复 合材料及其制备方法,该复合材料具有良好的导电性能和良好的力学性能。
[0004] 上述方法最成功的应用为薄膜和纤维的抗静电,但都没有达到导电的级别,而对 于实际使用中的注塑材料来说,其如果做到导电效果(1〇 4Ω*πι)必须添加大量的炭黑、碳纳 米管等物质(图2),这样不仅造成材料的力学性能下降,同时这类高填充导电材料其颜色只 能为黑色,降低了电子电气材料的设计自由度。

【发明内容】

[0005] 本发明的目的是针对现有技术中的不足,提供一种抗静电/导电复合材料。
[0006] 本发明的再一的目的是,提供如上所述抗静电/导电复合材料的制备方法。
[0007] 为实现上述目的,本发明采取的技术方案是:
[0008] -种抗静电/导电复合材料,所述复合材料由以下重量份的原料制成:高聚物树脂 50-90份;长链星型结构导电物质1-30份;助剂0-10份。
[0009] 作为一种优选实施方式,所述复合材料由以下重量份的原料制成:高聚物树脂50-90份;长链星型结构导电物质20-30份;助剂0.1-10份。
[0010] 作为一种优选实施方式,所述复合材料组分为:
[0011] a)均聚PP 78份,长链星型结构导电物质20份,抗氧剂1680.5份,抗氧剂10100.5 份,抗氧剂PS8021份;所述均聚PP分子量范围为2.8-3.5*10 5;
[0012]13)册/^6(6/4)合金84份,长链星型结构导电物质15份,抗氧剂1680.5份,抗氧剂 10100.5 份;
[0013] c)尼龙689份,长链星型结构导电物质30份,抗氧剂1680.5份,抗氧剂10980.5份; [0014] d)ABS 69份,长链星型结构导电物质30份,抗氧剂1680.5份,抗氧剂10760.5份。
[0015] 所述长链星型结构导电物质是由无机导电粉体经过预处理后形成具有传导电子 特性的长链分子结构物质。
[0016] 所述长链星型结构导电物质的结构如图1B所示,其结构分为内层、中层和外层三 个部分,所述内层为无机导电物质,所述中层为预处理物质,所述外层为电子传导高分子类 物质;
[0017]所述无机导电物质为经过表面包覆处理的,具有导电功能的纳米或微米TI〇2、ZnO 中的一种或多种,其包覆层为Sn02掺杂Sb2〇5导电层;或通过离子注射方法生产以及其他方 法生产制备的导电粉体。
[0018] 所述预处理物质为具有界面耦合作用的大分子类处理剂;分子的一端可与无机粉 体作用,大分子的另一端可与电子传导物进行缠结,同时处理剂具有提供必要的离子传导 特性。
[0019] 所述电子传导高分子类物质为具有共辄结构或可传导电子结构的高分子类物质, 外层的电子传导高分子类物质环绕无机导电物质形成星状结构。
[0020] 作为一种优选实施方式,所述预处理物质为螯合型磷酸酯钛偶联剂季胺盐或其分 子结构变式。
[0021] 作为一种优选实施方式,所述电子传导高分子类物质为聚氧化乙烯类共聚物、聚 乙二醇类共聚物、聚钛菁铜类、聚吡咯类或具有类似结构的物质。
[0022] 作为一种优选实施方式,所述高聚物树脂为 一种。
[0023] 作为一种优选实施方式,所述助剂为抗氧剂、热稳定剂、润滑剂、抗紫外线剂或颜 料。
[0024] 为实现上述第二个目的,本发明采取的技术方案是:
[0025]如上所述抗静电/导电复合材料的制备方法,包括如下步骤:
[0026] (1)按照比例称取原料;
[0027] (2)将原料放入低速混合机中搅拌混匀,设定螺杆温度,主机转速设定为35Hz,挤 出造粒。
[0028]本发明优点在于:
[0029] 1、本发明通过导电物质结构的设计以及特定传导电荷物质的选择,提供了一种星 型结构导电物质,相对于传统的高分子导电物质(如线性结构),本发明的星型结导电物质 构带有更多支链,提高了与其他物质结合形成导电通路的几率从而导电/抗静电性能更好, 同时本发明的导电材料力学性能较好且外观颜色较浅,克服了现有技术大量添加炭黑、碳 纳米管等物质造成的力学性能及外观差的缺点。
[0030] 2、本发明的产品具有良好的抗静电/导电性能和良好的力学性能,并且克服常用 导电材料不可配色的缺点,同时具有更好的流动性和加工稳定性。本发明的产品适合应用 于高端电子产品和电子屏蔽材料。
[0031] 3、本发明的基材高聚物树脂是通过试验筛选的,所述的高聚物树脂为PP、PP/PA、 ABS、PS、PC、PA、PA/ABS中的一种,该基材树脂能与长链星型结构导电物质配合,在保持基材 树脂的力学性能的情况下,大幅降低基材树脂的体积电阻率,达到导电级别的要求。
【附图说明】
[0032] 附图1为本发明的长链星型结构导电物质的结构示意图(A)及其在合金材料中导 电原理图(B)。
[0033]附图2为现有技术中添加炭黑、碳纳米管填充抗静电原理示意图。
【具体实施方式】
[0034]下面结合【具体实施方式】,进一步阐述本发明。应理解,这些实施例仅用于说明本发 明而不用于限制本发明的范围。此外应理解,在阅读了本发明记载的内容之后,本领域技术 人员可以对本发明作各种改动或修改,这些等价形式同样落于本申请所附权利要求书所限 定的范围。
[0035]需要说明的是,本发明中,所述的长链星型结构导电物质为具有图1A所示的星型 带有传导电子长链分子的,具有传导电子特性的长链分子结构物质,其由无机导电粉体经 过预处理后形成具有传导电子特性的长链分子结构物质。所述长链星型结构导电物质的结 构(图1B)分为内层、中层和外层三个部分,所述内层为无机导电物质,所述中层为预处理物 质,所述外层为电子传导高分子类物质;所述无机导电物质为经过表面包覆处理的,具有导 电功能的纳米或微米ΤΙ0 2、Ζη0中的一种或多种,其包覆层为Sn02掺杂Sb2〇5导电层;所述预 处理物质为具有界面耦合作用的大分子类处理剂;所述电子传导高分子类物质为具有共辄 结构或可传导电子结构的高分子类物质。所述预处理物质为螯合型磷酸酯钛偶联剂季胺盐 或其分子结构变式;所述电子传导高分子类物质为聚氧化乙烯类、聚乙二醇类共聚物、聚钛 菁铜类、聚吡咯类或具有类似结构的物质。
[0036]实施例1本发明的抗静电/导电复合材料的制备(一)
[0037] 按以下配方:PP/PA6(6/4)合金84份,长链星型结构导电物质15份,抗氧剂1680.5 份,抗氧剂10100.5份。所述长链星型结构导电物质为星型结构的Ti〇2导电物质,其结构份 为内层、中层和外层三个部分,所述内层为无机导电物质,所述中层为预处理物质,所述外 层为电子传导高分子类物质;所述无机导电物质为经过表面包覆处理的,具有导电功能的 纳米或微米TI〇2,其包覆层为Sn〇2掺杂Sb2〇5导电层;所述预处理物质为螯合型磷酸酯钛偶 联剂季胺盐;所述电子传导高分子类物质为聚乙二醇类共聚物。
[0038]称取样品,然后将原料放入低速混合机中搅拌5分钟。各组分混合均匀,按下表温 度设定螺杆温度,主机转速设定35Hz,经挤出造粒,然后注塑样条测试其导电性和力学性 能。
[0039]
[0040] 实施例2本发明的抗静电/导电复合材料的制备(二)
[00411按以下配方:PP(均聚)78份,长链星型结构导电物质20份,抗氧剂1680.5份,抗氧 剂10100.5份,抗氧剂PS8021份。所述长链星型结构导电物质为星型结构的ZnO导电物质,其 结构份为内层、中层和外层三个部分,所述内层为无机导电物质,所述中层为预处理物质, 所述外层为电子传导高分子类物质;所述无机导电物质为经过表面包覆处理的,具有导电 功能的纳米或微米ZnO,其包覆层为Sn02掺杂Sb205导电层;所述预处理物质为螯合型磷酸酯 钛偶联剂季胺盐;所述电子传导高分子类物质为聚钛菁铜。
[0042] 称取样品,然后将原料放入低速混合机中搅拌5分钟。各组分混合均匀,按下表温 度设定螺杆温度,主机转速设定35Hz,经挤出造粒,然后注塑样条测试其导电性和力学性 能。
[0043]
[0044] 实施例3本发明的抗静电/导电复合材料的制备(三)
[0045]按以下配方:尼龙689份,长链星型结构导电物质10份,抗氧剂1680.5份,抗氧剂 10980.5份。所述长链星型结构导电物质为星型结构的Ti02导电物质,其结构份为内层、中 层和外层三个部分,所述内层为无机导电物质,所述中层为预处理物质,所述外层为电子传 导高分子类物质;所述无机导电物质为经过表面包覆处理的,具有导电功能的纳米或微米 ΤΙ02,其包覆层为Sn02掺杂Sb205导电层;所述预处理物质为螯合型磷酸酯钛偶联剂季胺盐; 所述电子传导高分子类物质为聚氧化乙烯类共聚物。
[0046] 称取样品,然后将原料放入低速混合机中搅拌5分钟。各组分混合均匀,按下表温 度设定螺杆温度,主机转速设定35Hz,经挤出造粒,然后注塑样条测试其导电性和力学性 能。
[0047]
[0048] 实施例4本发明的抗静电/导电复合材料的制备(四)
[0049]按以下配方:尼龙689份,长链星型结构导电物质30份,抗氧剂1680.5份,抗氧剂 10980.5份。所述长链星型结构导电物质为星型结构的Ti02导电物质,其结构份为内层、中 层和外层三个部分,所述内层为无机导电物质,所述中层为预处理物质,所述外层为电子传 导高分子类物质;所述无机导电物质为经过表面包覆处理的,具有导电功能的纳米或微米 ΤΙ〇2,其包覆层为Sn02掺杂Sb2〇5导电层;所述预处理物质为螯合型磷酸酯钛偶联剂季胺盐; 所述电子传导高分子类物质为聚氧化乙烯类共聚物。
[0050] 称取样品,然后将原料放入低速混合机中搅拌5分钟。各组分混合均匀,按下表温 度设定螺杆温度,主机转速设定35Hz,经挤出造粒,然后注塑样条测试其导电性和力学性 能。
[0051]
[0052]实施例5本发明的抗静电/导电复合材料的制备(五)
[0053]按以下配方:ABS 69份,长链星型结构导电物质30份,抗氧剂1680.5份,抗氧剂 10760.5份。所述长链星型结构导电物质为星型结构的Ti02导电物质,其结构份为内层、中 层和外层三个部分,所述内层为无机导电物质,所述中层为预处理物质,所述外层为电子传 导高分子类物质;所述无机导电物质为经过表面包覆处理的,具有导电功能的纳米或微米 ΤΙ02,其包覆层为Sn02掺杂Sb2〇5导电层;所述预处理物质为螯合型磷酸酯钛偶联剂季胺盐; 所述电子传导高分子类物质为聚吡咯。
[0054]称取样品,然后将原料放入低速混合机中搅拌5分钟。各组分混合均匀,按下表温 度设定螺杆温度,主机转速设定35Hz,经挤出造粒,然后注塑样条测试其导电性和力学性 能。
[0055]
[0056] 实施例1-5的性能数据见下表:
[0057]
[0058] 本发明通过导电物质结构的设计以及特定传导电荷物质的选择,提供了一种星型 结构导电物质,相对于传统的高分子导电物质(如线性结构),本发明的星型结导电物质构 带有更多支链,提高了与其他物质结合形成导电通路的几率从而导电/抗静电性能更好,同 时本发明的导电材料力学性能较好且外观颜色较浅,克服了现有技术大量添加炭黑、碳纳 米管等物质造成的力学性能及外观差的缺点。
[0059] 对比例1
[0060] 按以下配方:尼龙689份,抗氧剂1680.5份,抗氧剂10980.5份。
[0061]称取样品,然后将原料放入低速混合机中搅拌5分钟。各组分混合均匀,按下表温 度设定螺杆温度,主机转速设定35Hz,经挤出造粒,然后注塑样条测试其导电性和力学性 能。
[0062]
[0063] 对比例2
[0064] 按以下配方:尼龙689份,导电Ti0225份,聚氧化乙烯类共聚物5份,抗氧剂1680.5 份,抗氧剂1〇980.5份。所述导电110 2为经过表面包覆处理的,其包覆层为以311〇2掺杂3132〇5 制备的导电层。所述导电Ti02为具有导电功能的纳米Ti02粉体或微米Ti02粉体。
[0065] 称取样品,然后将原料放入低速混合机中搅拌5分钟。各组分混合均匀,按下表温 度设定螺杆温度,主机转速设定35Hz,经挤出造粒,然后注塑样条测试其导电性和力学性 能。
[0066]
[0067]测试条件与实施例4相同,对比例1-2的性能数据见下表:
[0068]
?〇〇69?~以上所述仅是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人_ 员,在不脱离本发明方法的前提下,还可以做出若干改进和补充,这些改进和补充也应视为 本发明的保护范围。
【主权项】
1. 一种抗静电/导电复合材料,其特征在于,所述复合材料由以下重量份的原料制成: 高聚物树脂50-90份;长链星型结构导电物质1-30份;助剂0-10份。2. 根据权利要求1所述的抗静电/导电复合材料,其特征在于,所述复合材料由以下重 量份的原料制成:高聚物树脂50-90份;长链星型结构导电物质20-30份;助剂0.1-10份。3. 根据权利要求1所述的抗静电/导电复合材料,其特征在于,所述复合材料组分为: a) 均聚PP 78份,长链星型结构导电物质20份,抗氧剂168 0.5份,抗氧剂1010 0.5份, 抗氧剂PS802 1份;所述均聚PP分子量范围为2.8-3.5*105; b) : PP/PA6(6/4)合金84份,长链星型结构导电物质15份,抗氧剂168 0.5份,抗氧剂 1010 0.5份; c) 尼龙6 89份,长链星型结构导电物质30份,抗氧剂168 0.5份,抗氧剂1098 0.5份; d) ABS 69份,长链星型结构导电物质30份,抗氧剂168 0.5份,抗氧剂1076 0.5份。4. 根据权利要求1-2所述抗静电/导电复合材料,其特征在于,所述长链星型结构导电 物质是由无机导电粉体经过预处理后形成具有传导电子特性的长链分子结构物质。5. 根据权利要求1-2所述抗静电/导电复合材料,其特征在于,所述长链星型结构导电 物质的结构分为内层、中层和外层三个部分,所述内层为无机导电物质,所述中层为预处理 物质,所述外层为电子传导高分子类物质;所述无机导电物质为经过表面包覆处理的,具有 导电功能的纳米或微米TI0 2、Zn0中的一种或多种,其包覆层为Sn02掺杂Sb2〇5导电层;所述 预处理物质为具有界面耦合作用的大分子类处理剂;所述电子传导高分子类物质为具有共 辄结构或可传导电子结构的高分子类物质,外层的电子传导高分子类物质环绕无机导电物 质形成星状结构。6. 根据权利要求5所述抗静电/导电复合材料,其特征在于,所述预处理物质为螯合型 磷酸酯钛偶联剂季胺盐或其分子结构变式。7. 根据权利要求5所述抗静电/导电复合材料,其特征在于,所述电子传导高分子类物 质为聚氧化乙烯类共聚物、聚乙二醇类共聚物、聚钛菁铜类、聚吡咯类或具有类似结构的物 质。8. 根据权利要求1-2所述抗静电/导电复合材料,其特征在于,所述高聚物树脂为PP、 PP/PA、ABS、PS、PC、PA、PA/ABS 中的一种。9. 根据权利要求1-2所述抗静电/导电复合材料,其特征在于,所述助剂为抗氧剂、热稳 定剂、润滑剂、抗紫外线剂或颜料。10. 权利要求1-9所述抗静电/导电复合材料的制备方法,其特征在于,包括如下步骤: (1) 按照比例称取原料; (2) 将原料放入低速混合机中搅拌混匀,设定螺杆温度180-275°C,主机转速设定为30-40Hz,挤出造粒。
【文档编号】C08K9/10GK106084467SQ201610520096
【公开日】2016年11月9日
【申请日】2016年7月5日
【发明人】陈超, 陈晓东, 郭建鹏, 孟成铭
【申请人】上海日之升科技有限公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1