以聚乙二醇二丙烯酸酯为基体的导热绝缘弹性体及制备方法

文档序号:10606536阅读:744来源:国知局
以聚乙二醇二丙烯酸酯为基体的导热绝缘弹性体及制备方法
【专利摘要】本发明涉及以聚乙二醇二丙烯酸酯为基体的导热绝缘弹性体及制备方法;将聚乙二醇二丙烯酸酯溶于水中,加入氟化碳纳米管,其中聚乙二醇二丙烯酸酯:氟化碳纳米管质量比=2.5~10:1;超声分散均匀,得到分散液;向分散液中加入光引发剂,搅拌后倒入模具中,并在紫外光下幅照100~3000s得到导热绝缘弹性体,其中光引发剂为聚乙二醇二丙烯酸酯质量的1%~5%。氟化碳纳米管与交联聚乙二醇二丙烯酸酯复合;氟化碳纳米管分散在弹性体中;导热绝缘特性的弹性体的导热系数≧8W/(m·K)。本发明的所用到的氟化碳纳米管容易制备,可宏量生产,且具有形变能力和较好的力学强度。可用于电子元器件界面的热疏导材料。
【专利说明】
以聚乙二醇二丙烯酸酯为基体的导热绝缘弹性体及制备方法
技术领域
[0001]本发明涉及一种以聚乙二醇二丙烯酸酯为基体的导热绝缘弹性体及制备方法,具体地说是一种将氟化碳纳米管与交联聚乙二醇二丙烯酸酯复合的方法。【背景技术】
[0002]随着科学技术的快速发展,高效的导热和散热成为热管理领域的关键问题。随着计算机、手机、卫星等电器装置电子元件集成度和精密度的不断提高,其单位面积电子器件不断提高的发热量使系统产生的热量骤增。这些热量如果不能实现快速疏导,就会与局部材料之间形成较大的温度差,影响器件的正常运转。研究显示电子元器件的稳定性对温度极为敏感,当工作温度升高2°C,可靠性下降10%。
[0003]近年来,一系列高导热的金属材料(如铝、铜等)、碳材料(如膨胀石墨、石墨烯、碳纳米管等)被用于制造高性能的散热器件,如铜箱、石墨膜等。随着各种电子元器件的不断小型化、复杂化,其散热面的形状不规则并且有一定的粗糙度,传统的硬质金属箱、石墨膜柔弹性差,导致散热面不能与散热材料很好的贴合,产生巨大的接触热阻,难以发挥散热材料的预期散热性能(Yee Kan Koh,Myung_Ho Bae, David G.Cahill, Eric Pop.Heat conduct1n across monolayer and few-layer graphenes.Nano Letters 10(2010): 4363-4368)。同时上述导热材料都可以导电,容易造成小型电子元器件之间的短路。
[0004]为了防止导热材料造成小型电子元器件之间的短路,要求导热材料需要具备良好的绝缘性能。因此,通过氧化铝、碳化硅等陶瓷绝缘高导热材料与工程塑料的混合制备聚合物基导热绝缘材料得到了报道(CN103172973B)。然而,由于聚碳酸酯、聚对苯二甲酸乙二醇酯等材料的玻璃化转变温度较高,质地坚硬,无法做到与小型电子元器件的完全贴合,另外陶瓷材料密度较大,与聚合物基体相容性差。
[0005]综上所述,针对现有电子元器件的散热特点,开发一种绝缘导热的弹性体,使之能够与电子器件的界面紧密贴合,进而能够将器件发热面的热量高效地疏导到散热器显得尤为重要。
【发明内容】

[0006]充分利用氟化碳材料的高导热能力与绝缘性,将其与弹性聚合物进行复合,在复合材料中构建了高效的导热通道,同时具有绝缘和柔弹性,如图2所示。复合材料的导热系数3 8W/(m ? K)。
[0007]本发明采用以下技术方案:
[0008]以聚乙二醇二丙烯酸酯为基体的导热绝缘弹性体;氟化碳纳米管与交联聚乙二醇二丙烯酸酯复合;氟化碳纳米管分散在弹性体中;导热绝缘特性的弹性体的导热系数28W/ (m ? K) 〇
[0009]本发明的以聚乙二醇二丙烯酸酯为基体的导热绝缘弹性体制备方法,步骤如下如图1所示:
[0010](1)将聚乙二醇二丙烯酸酯溶于水中,加入氟化碳纳米管,其中聚乙二醇二丙烯酸酯:氟化碳纳米管质量比=2.5?10:1;超声分散均匀,得到分散液;
[0011](2)向分散液中加入光引发剂,搅拌后倒入模具中,并在紫外光下幅照100?3000s 得到导热绝缘弹性体,其中光引发剂为聚乙二醇二丙烯酸酯质量的1%?5%。
[0012]所述步骤(1)中,聚乙二醇二丙烯酸酯范围是2000?10000。
[0013]所述步骤(1)中,氟化碳纳米管的氟碳比范围为0.8?1:1。[〇〇14] 所述步骤(2)中,光引发剂为2-羟基-2-甲基-1-苯基-1-丙酮、1-羟基环己基苯基甲酮、2-甲基-1-[4-(甲基硫代)苯基]-2-(4-吗啉基)-1-丙酮或2-苯基苄-2-二甲基胺-1-(4-吗啉苄苯基)、丁酮等。[〇〇15]本发明的聚乙二醇二丙烯酸酯可以采用现有商品,但考虑到成本问题,聚乙二醇二丙烯酸酯可以用本发明合成的聚乙二醇二丙烯酸酯粗品代替;合成方法如下:
[0016]聚乙二醇二丙烯酸酯合成方法是:将分子量为1500?8000的聚乙二醇溶于溶剂中,加入缚酸剂、丙烯酰氯或酸酐在〇°C下反应1?24h,将得到的产物旋蒸、抽滤,将滤液加入乙醚中沉降、抽滤得到沉淀,将沉淀干燥得到聚乙二醇二丙烯酸酯粗品。
[0017]所述缚酸剂是三乙胺,吡啶或4-二甲氨基吡啶。[〇〇18] 所述聚乙二醇与缚酸剂摩尔比=1?5:12。
[0019]所述缚酸剂与酰氯或酸酐的摩尔比=1?2:1。
[0020]具体说明如下:[0021 ](1)氟化碳纳米管通常由碳纳米管氟化制备,具备导热与绝缘性能,将其与聚合物复合,具有各向异性的碳纳米管能够很好地增强聚合物材料,制备的弹性体如图3所示。
[0022](2)选择光交联使绝缘导热弹性体的制备更方便,可以直接在模具里交联制得;
[0023](3)通过以上步骤的氟化碳纳米管与聚合物的复合,充分利用了氟化碳材料的高导热能力与绝缘性,在复合材料中构建了高效的导热通道,获得了具有导热绝缘特性的弹性体,其导热系数3 8W/(m ? K)。
[0024]本发明的有益效果:本发明的所用到的氟化碳纳米管容易制备,可宏量生产,获得的导热绝缘弹性体具有较好的绝缘性能与优良的导热性能,且具有形变能力和较好的力学强度。可用于电子元器件界面的热疏导材料。【附图说明】
[0025]图1导热绝缘特性的弹性体制备流程图;
[0026]图2氟化碳纳米管扫描电镜图;[〇〇27]图3氟化碳纳米管/聚乙二醇二丙烯酸酯复合膜。【具体实施方式】 [〇〇28] 实施例1[〇〇29]称量经干燥的分子量为2000的聚乙二醇二丙烯酸酯10g,并将其溶于水中,加入 0.lg光引发剂2-羟基-2-甲基-1-苯基-1-丙酮,加入4g氟碳比为0.8:1的氟化碳纳米管,超声分散均匀。将混合液倒入模具中,并在紫外光下幅照100s后得到交联聚乙二醇二丙烯酸酯与氟化碳纳米管的复合材料。测试其导热系数为llWAm ? K),拉伸强度1.08MPa,压缩10%后,回弹率为95%。
[0030] 实施例2[〇〇31]称量经干燥的分子量为2000的聚乙二醇二丙烯酸酯10g,并将其溶于水中,加入 〇.2g光引发剂1-羟基环己基苯基甲酮,加入4g氟碳比为0.9:1的氟化碳纳米管,超声分散均匀。将混合液倒入模具中,并在紫外光下幅照600s后得到交联聚乙二醇二丙烯酸酯与氟化碳纳米管的复合材料。测试其导热系数为l〇W/(n^K),拉伸强度1.32MPa,压缩10%后,回弹率为95%。[〇〇32] 实施例3[〇〇33]称量经干燥的分子量为4000的聚乙二醇二丙烯酸酯10g,并将其溶于水中,加入 〇.4g光引发剂2-甲基-1-[4-(甲基硫代)苯基]-2-(4-吗啉基)-1-丙酮,加入4g氟碳比为1:1 的氟化碳纳米管,超声分散均匀。将混合液倒入模具中,并在紫外光下幅照800s后得到交联聚乙二醇二丙烯酸酯与氟化碳纳米管的复合材料。测试其导热系数为9W/(m ? K),拉伸强度 1.45Mpa,压缩10%后,回弹率为95%。
[0034] 实施例4[〇〇35]称量经干燥的分子量为6000的聚乙二醇二丙烯酸酯10g,并将其溶于水中,加入 〇.5g光引发剂2-苯基苄-2-二甲基胺-1-(4-吗啉苄苯基)丁酮,加入2g氟碳比为0.8:1的氟化碳纳米管,超声分散均匀。将混合液倒入模具中,并在紫外光下幅照1200s后得到交联聚乙二醇二丙烯酸酯与氟化碳纳米管的复合材料。测试其导热系数为9W/(m ? K),拉伸强度 1.66MPa,压缩10%后,回弹率为96%。
[0036] 实施例5[〇〇37]称量经干燥的分子量为8000的聚乙二醇二丙烯酸酯10g,并将其溶于水中,加入 〇.5g光引发剂2-羟基-2-甲基-1-苯基-1-丙酮,加入lg氟碳比为0.8:1的氟化碳纳米管,超声分散均匀。将混合液倒入模具中,并在紫外光下幅照1800s后得到交联聚乙二醇二丙烯酸酯与氟化碳纳米管的复合材料。测试其导热系数为8W/(m ? K),拉伸强度1.86MPa,压缩10% 后,回弹率为96 %。
[0038] 实施例6[〇〇39]称量经干燥的分子量为10000的聚乙二醇二丙烯酸酯10g,并将其溶于水中,加入 〇.5g光引发剂2-羟基-2-甲基-1-苯基-1-丙酮,加入lg氟碳比为0.9:1的氟化碳纳米管,超声分散均匀。将混合液倒入模具中,并在紫外光下幅照2400s后得到交联聚乙二醇二丙烯酸酯与氟化碳纳米管的复合材料。测试其导热系数为8W/(m ? K),拉伸强度2.10MPa,压缩10% 后,回弹率为97 %。
[0040] 实施例7[〇〇411 称量经干燥的分子量为1500的聚乙二醇10g溶解于50mL的二氯甲烷中,在0°C下缓慢加入2.085ml的三乙胺,向12.6ml的二氯甲烷中加入1.26ml的丙烯酰氯,在0°C下滴加丙烯酰氯,反应lh,将得到的产物旋蒸、抽滤,将滤液加入乙醚中沉降、抽滤得到沉淀,将沉淀干燥得到聚乙二醇二丙烯酸酯粗品。将聚乙二醇二丙烯酸酯粗品溶于水中,加入〇.lg光引发剂2-羟基-2-甲基-1-苯基-1-丙酮,加入lg氟碳比为0.9:1的氟化碳纳米管,超声分散均匀。将混合液倒入模具中,并在紫外光下幅照100s后得到聚丙烯酸乙二醇酯与氟化碳纳米管的复合材料。测试其导热系数为8W/ (m ? K),拉伸强度1.0OMPa,压缩10%后,回弹率为95%〇
[0042] 实施例8[〇〇43] 称量经干燥的分子量为4000的聚乙二醇10g溶解于50mL的二氯甲烷中,在0°C下缓慢加入1.83g的4-二甲氨基吡啶,向8.6ml的二氯甲烷中加入0.86ml的丙烯酸酐,在0 °C下滴加丙烯酰氯,反应8h,将得到的产物旋蒸、抽滤,将滤液加入乙醚中沉降、抽滤得到沉淀,将沉淀干燥得到聚乙二醇二丙烯酸酯粗品。将聚乙二醇二丙烯酸酯粗品溶于水中,加入〇.2g 光引发剂2-羟基-2-甲基-1-苯基-1-丙酮,加入lg氟碳比为0.9:1的氟化碳纳米管,超声分散均匀。将混合液倒入模具中,并在紫外光下幅照100s后得到聚丙烯酸乙二醇酯与氟化碳纳米管的复合材料。测试其导热系数为8W/(m ? K),拉伸强度1.34MPa,压缩10%后,回弹率为 95%。
[0044] 实施例9[〇〇45] 称量经干燥的分子量为8000的聚乙二醇10g溶解于50mL的四氢呋喃中,在0°C下缓慢加入1.20ml的吡啶,向8.6ml的二氯甲烷中加入0.86ml的丙烯酰氯,在0°C下滴加丙烯酰氯,反应24h,将得到的产物旋蒸、抽滤,将滤液加入乙醚中沉降、抽滤得到沉淀,将沉淀干燥得到聚乙二醇二丙烯酸酯粗品。将聚乙二醇二丙烯酸酯粗品溶于水中,加入〇.5g光引发剂 2-羟基-2-甲基-1-苯基-1-丙酮,加入4g氟碳比为0.9:1的氟化碳纳米管,超声分散均匀。将混合液倒入模具中,并在紫外光下幅照100s后得到聚丙烯酸乙二醇酯与氟化碳纳米管的复合材料。测试其导热系数为llW/(m*K),拉伸强度1.62MPa,压缩10%后,回弹率为95%。
[0046]本发明公开和提出的基于聚乙二醇的导热绝缘弹性体及制备方法,本领域技术人员可通过借鉴本文内容,适当改变原料和工艺路线等环节实现,尽管本发明的方法和制备技术已通过较佳实施例子进行了描述,相关技术人员明显能在不脱离本
【发明内容】
、精神和范围内对本文所述的方法和技术路线进行改动或重新组合,来实现最终的制备技术。特别需要指出的是,所有相类似的替换和改动对本领域技术人员来说是显而易见的,他们都被视为包括在本发明精神、范围和内容中。
【主权项】
1.以聚乙二醇二丙烯酸酯为基体的导热绝缘弹性体;其特征是氟化碳纳米管与交联聚 乙二醇二丙烯酸酯复合;氟化碳纳米管分散在弹性体中;导热绝缘特性的弹性体的导热系 数3 8W/(m ? K)。2.权利要求1的以聚乙二醇二丙烯酸酯为基体的导热绝缘弹性体制备方法,步骤如下:(1)将聚乙二醇二丙烯酸酯溶于水中,加入氟化碳纳米管,其中聚乙二醇二丙烯酸酯: 氟化碳纳米管质量比=2.5?10:1;超声分散均匀,得到分散液;(2)向分散液中加入光引发剂,搅拌后倒入模具中,并在紫外光下幅照100?3000s得到 导热绝缘弹性体,其中光引发剂为聚乙二醇二丙烯酸酯质量的1%?5%。3.如权利要求2所述的方法,其特征是所述步骤(1)中,聚乙二醇二丙烯酸酯范围是 2000?10000。4.如权利要求2所述的方法,其特征是所述步骤(1)中,氟化碳纳米管的氟碳比范围为 0.8 ?1:1〇5.如权利要求2所述的方法,其特征是所述步骤⑵中,光引发剂为2-羟基-2-甲基-1-苯基-1-丙酮、1-羟基环己基苯基甲酮、2-甲基-1-[4-(甲基硫代)苯基]-2-(4-吗啉基)-1-丙酮或2-苯基苄-2-二甲基胺-1-(4-吗啉苄苯基)、丁酮等。6.如权利要求2所述的方法,其特征是聚乙二醇二丙烯酸酯合成方法是:将分子量为 1500?8000的聚乙二醇溶于溶剂中,加入缚酸剂、丙烯酰氯或酸酐在0°C下反应1?24h,将 得到的产物旋蒸、抽滤,将滤液加入乙醚中沉降、抽滤得到沉淀,将沉淀干燥得到聚乙二醇 二丙烯酸酯粗品。7.如权利要求6所述的方法,其特征是缚酸剂是三乙胺,吡啶或4-二甲氨基吡啶。8.如权利要求6所述的方法,其特征是聚乙二醇与缚酸剂摩尔比=1?5:12。9.如权利要求6所述的方法,其特征是缚酸剂与酰氯或酸酐的摩尔比=1?2:1。
【文档编号】C08L71/02GK105968772SQ201610375821
【公开日】2016年9月28日
【申请日】2016年5月30日
【发明人】封伟, 杨洪宇, 冯奕钰, 李瑀
【申请人】天津大学
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1