用于降低聚酯的熔体粘度并改善热封接性能以及用于制造经热封接的容器或包装物的方法
【专利摘要】本发明涉及用于降低聚酯的熔体粘度并从而改善热封接性能的方法。本发明还涉及用于从覆盖有聚酯的基于纤维质的包装材料制造经热封接的容器或包装物的方法、以及用于使聚酯热封接的方法。本发明的解决方案是使聚酯经受电子束(EB)辐射。降低的熔体粘度允许较低的热封接温度,并容许聚酯封接至未经覆盖的纤维质表面。用于本发明的优选的聚酯是聚交酯,其原样使用或者将其与其它聚酯共混。
【专利说明】
用于降低聚酯的熔体粘度并改善热封接性能以及用于制造经热封接的容器或包装物的方法
技术领域
[0001]本发明涉及用于降低聚酯的熔体粘度并从而改善热封接性能的方法。本发明还涉及用于从覆盖有聚酯的基于纤维质的包装材料制造经热封接的容器或包装物的方法。本发明更进一步地涉及用于使聚交酯(聚丙交酯,poly Iactide)或其它聚酯热封接的方法。
【背景技术】
[0002]在包装技术中,热封接是用于制造或封闭由聚合物膜或覆盖有聚合物的包装材料(例如纸张、纸板或卡纸(cardboard))制成的容器或包装物的常规方法。由于低密度聚乙烯(LDPE)的易于热封接的性能,其成为包装物中普通使用的材料。此外,很多其它聚合物用于包装物中,例如聚酯,它们不同于LDPE且是可生物降解的或具有比LDPE更好的水蒸汽和/或氧气阻挡性质。但是,与LDPE相比,这些其它聚合物通常更难以热封接,这就是它们不容易被设置成多层包装材料的表面层而是作为内层的原因。
[0003]聚对苯二甲酸乙二醇酯(PET)是这样的聚酯,其常常用于包装物和容器中、具有良好的阻挡性质、且非常耐热,这就是其适合用于例如可烘烤的食物容器或包装物的覆盖物或者烘焙卡纸的覆盖物的原因。缺点在于PET难以热封接。而且,常规的PET不是可生物降解的。
[0004]在由聚合物膜或覆盖有聚合物的纸张或板材组成的可生物降解的包装物中普通使用的可生物降解的聚合物是聚交酯(PLA)。聚交酯具有相对良好的水蒸汽和气体阻挡性质,但具有与纤维质基材的粘附弱以及熔融温度高的问题,导致差的热封接性能。
[0005]为了改善聚交酯的热封接性能,US2002-0065345A1描述了聚交酯与由二醇和二羧酸制成的可生物降解的脂族聚酯(例如,聚己内酯(PLC)或聚(丁二酸丁二醇酯-己二酸丁二醇酯)(PBSA))的共混,所述可生物降解的脂族聚酯在混合物中的份额为至少9%。
[0006]根据US2005-0192410A1,通过向聚交酯中共混入聚己内酯和矿物颗粒来改善聚交酯的可加工性。US2007-0259195A1进一步描述了基于聚交酯的膜和聚合物覆盖物,它们被挤出到纤维质基材上并且其中使聚(己二酸丁二醇酯-对苯二甲酸丁二醇酯)(PBAT)与聚交酯共混以改善其耐热性。
[0007]W02011/110750描述了基于聚交酯的双层覆盖物,其被挤出到纤维质基材上并且其中外层具有与内层相比更大份额的与其共混的(不同于聚交酯的)可生物降解的聚酯,目的在于使聚交酯和纤维质基材之间的粘附以及聚交酯的热封接性能最优化。
[0008]当通过与聚交酯共混的另一种聚酯或类似添加物来改善聚交酯的热封接性能时,存在这样的缺点一一这些添加物比聚交酯更为昂贵。此外,聚合物的共混构成了复杂工艺中的额外的加工步骤。
[0009]W02011/135182描述了不同的方法,其教导:对聚酯层进行紫外(UV)辐射以改善其热封接性能。根据试验,热封接温度降低,但对于其发生的原因未给出任何解释。此外,看起来,该有利的效果对于仅聚交酯而言是相当有限的。
[0010]W098/04461教导了电子束(EB)辐射在改善纸板基材上的聚烯烃(例如低密度聚乙烯(LDPE))的热封接中的用途。据称,EB诱发了聚合物的交联且因此提高了其分子量。聚烯烃的熔融指数显著降低,引起熔体粘度和熔点的升高。这样的升高实际上不利于通过提高所需的热封接温度来使热封接易于进行,尽管封接的强度可得到改善(其为这些现有技术教导的目标)。
[0011]由公开0附018242114、0附017354094和0附012252214知晓,通过使聚交酯经受产生交联且同时保持材料的生物降解能力的电子束(EB)辐射改善了聚交酯的耐热性。通过加入催化剂例如三烯丙基异氰脲酸酯(TAIC)来确保交联。该现有技术的教导涉及模制物品或颗粒,但不涉及位于纤维质基材上的其中要求热封接性能以及与该基材的粘附性的覆盖物。由于交联提高了聚合物的分子量和熔体粘度,因此,预期对于热封接性能具有不利影响。
【发明内容】
[0012]因此,仍然需要用于改善聚酯的热封接性能(特别是关于热封接温度)的替代性的解决方案。同样地,需要提供通过将能够热封接的聚酯用作包装材料中的覆盖物来制造经热封接的容器或包装物的经改善的方法。
[0013]概括地说,本发明的解决方案是使聚酯经受电子束(EB)辐射。因此,提供了降低聚酯的恪体粘度的新方法、以及改善聚酯的热封接性能的新方法,它们均特征在于所述特点。
[0014]此外,提供了经热封接的容器或包装物的新的制造方法,其中:(i)向纤维质基材提供包括聚酯的聚合物覆盖物(coating),(ii)使所述覆盖物经受EB辐射,和(iii)通过使覆盖物聚合物热封接来对容器或包装物进行封接。更进一步地,提供了使聚酯封接的新方法,其中:(i)将EB辐射引导至包含聚酯的表面,和(ii)此后,使所述经辐射的表面热封接至相反的表面。
[0015]根据本发明,已经令人惊讶地发现:通过降低熔体粘度(熔体的剪切粘度)并从而降低所需的热封接温度,引导至膜或覆盖物层(其包含单独的或者与其它聚酯共混的聚酯(例如聚交酯))的EB辐射(β-射线)显著地改善了聚酯的热封接性能。该发现与针对聚烯烃时所发生的情况(即,熔体粘度提高,如W098/04461中所述的)相反。此外,该发现是与聚烯烃相反的指示,EB辐射没有使聚酯发生交联而是使它们的聚合物链断裂并从而使熔融聚酯变得不太粘且更易于热封接。考虑到聚酯的通常高的熔融温度以及随之而来的热封接的困难性,因而,这是重要的。
[0016]为了保证降低的熔体粘度和较低的热封接温度,适当的是:在聚酯中,避免可促进聚酯在EB处理中发生交联的任何催化剂或其它成分。
[0017]根据本发明的另一个发现是:通过将聚酯作为EB辐射的目标,改善了经挤出的单层聚酯(例如PLA)与纤维质基材的粘附。此前,已经通过在PLA层和基材之间加入单独的粘附层来解决PLA的差的粘附。借助于改善的粘附性,纤维质基材上的聚酯层的重量可降低,这带来了成本节约。
[0018]EB辐射对聚合物覆盖物层具有穿透和电离作用,尽管其被聚合物吸收并逐渐变弱。与UV辐射(其仅通过对聚合物层的表面进行加热而起作用、不穿透该层至任何更大的深度)相反,通过调节操作加速电压以具有EB辐射扩大到聚合物层的整个深度的效果是可行的,同时,避免了基于纤维质的包装材料的下面的纸张或板材基材的燃烧或变色。适宜地,加速电压保持相对低,在I OOkeV或更低下。
[0019]所述材料可为单或多层的聚合物型包装膜、或者包装用的纸张、纸板或卡纸,其中,通过层压或挤出,在纤维质基材上产生单或多层的聚合物覆盖物,对所述材料的包含聚酯的顶层进行EB照射。EB辐射的适宜的吸收剂量为至少20kGy、优选为20-200kGy。
[0020]用于本发明的适宜的聚酯为聚交酯(PLA)。当PLA构成基于纤维的包装材料(例如纸张或板材)的覆盖物聚合物时,可将其直接挤出到板材基体上,而无需中间的聚合物型粘合层。PLA可原样使用或者将其与其它可生物降解的聚酯(例如聚丁二酸丁二醇酯(PBS))共混。可选择地,可将内部的粘合层与PLA或其共混物的外部热封接层共挤出,这允许为了最佳的热封接性能而仅对将要EB照射的外部热封接层进行设计。本发明允许PLA或其它聚酯向未经覆盖的纤维质基材的热封接,这与常见的聚合物-聚合物封接相比通常更具有挑战性。
[0021]本发明中可用的其它聚酯包括聚对苯二甲酸乙二醇酯(PET)和聚(己二酸丁二醇酯-对苯二甲酸丁二醇酯)(PBAT)。
[0022]所述容器和包装物(其根据本发明可由如前所述地制造并经EB照射的基于纤维的覆盖有聚合物的包装材料热封接)包括纸板杯(例如一次性饮用杯)、以及纸板或卡纸的盒和箱式包装物,例如,甜食、饼干、薄片(flake)、谷物、化妆品和瓶子的包装物,以及牛奶和汁液的箱子。所述饮用杯可在内侧上覆盖有聚合物且在外侧上未经覆盖,由此,在本发明中,通过将内侧表面的覆盖物封接至外部表面的未经覆盖的纸板来形成杯的纵向接缝。替代地,在盒状包装物中,包装物的外部表面可为覆盖有聚合物的且内部表面未经覆盖,由此,在封接中,将外部表面的覆盖物热封接至包装物的内部的未经覆盖的板材表面。然而,在杯(例如饮用杯)中以及在盒状包装物中,板材经常是在两侧上均覆盖有聚合物的,由此,根据本发明,可对一侧或两侧上的覆盖物进行EB照射,而且,在热封接中,使覆盖物层彼此封接。此外,在该情况下,根据本发明的EB辐射改善了聚酯的热封接性能。
[0023]在关于本发明的试验中,已经观察到:EB辐射改善了PLA或含PLA的混合物在以热空气进行的热封接中的封接性能。
[0024]除了覆盖有聚酯的基于纤维的包装材料以外,本发明还涉及基于聚酯的包装膜,特别地,EB辐射改善了其热封接性能。根据本发明,所述膜的表面层可包含PLA(其原样使用或作为与另外的聚酯(例如PBS)的共混物),而且,至于所述膜的热封接性能,前面关于覆盖有聚合物的包含PLA的包装用纸张和板材所示的那些基本上同样适用。
[0025]根据本发明,可通过如下将EB和UV辐照组合起来:使聚酯的膜或覆盖物首先根据TO2011/135182(其在此引入作为参考)的教导经受UV辐射、并然后如本文所述的那样经受EB辐射。相反的步骤顺序(S卩,EB辐照在UV辐照之前)也是可行的。
[0026]发现,增加作为进一步步骤的火焰处理也是有利的。尤其地,当将PET用作聚酯时,在EB辐射之前或之后实施火焰处理步骤显著地降低了热封接温度。
[0027]甚至可预期红外(IR)和等离子体处理作为补充,预期它们增强了热封接性能。
实施例
[0028]在下面,借助于所进行的试验和应用实施例,更详细地描述了本发明。
[0029]本发明的优选实施方式的实例是在由牛皮纸、CTMP或机械纸浆制成的其重量为40-500g/m2的纸张或卡纸上共挤出多层覆盖物,所述多层覆盖物具有:重量为5-20g/m2的最内部的粘附层,其由(不同于PLA的)可生物降解的聚酯组成,所述(不同于PLA的)可生物降解的聚酯例如为PBAT或PBS、或者PLA(40-95重量%)与其它可生物降解的聚酯(例如PBAT或PBS) (5-60重量%)的共混物;以及重量为5-20g/m2的最外部的热封接层,其由PLA或者PLA(40-80重量%)与其它可生物降解的聚酯(例如I3BAT或I3BS) (20-60重量%)的共混物组成。可将重量为5-20g/m2的PLA中间层设置在最内部的聚合物共混物层和最外部的聚合物共混物层之间。所述纸张或卡纸的其它侧面可保持为未经覆盖的。将覆盖有聚合物的网幅(web)以5-600米/分钟、优选200-600米/分钟的速度输送通过EB辐射体,其中,所述覆盖有聚合物的网幅的经覆盖的侧面朝向所述EB辐射体。将经EB照射的网幅切割成坯料,将所述坯料热封接到容器(例如卡纸饮用杯)或包装物(例如包装用的盒或箱)中。所述封接可使用热空气来实施,由此,空气温度可为约360-470°C。对于经过更强烈照射(S卩,在较慢网幅速度下)的材料,完全封接所需的空气温度低于接受较少辐射的材料所需的空气温度。代替热空气,可使用封接夹具,所述封接夹具的温度可为约130-160°C;此外,在该情况下,对于照射最多的材料,所述封接夹具的温度最低。
[0030]此外,优选PLA、PLA与I3BS的共混物、PLA与I3BAT的共混物、以及PET的单层覆盖物。这样的单层覆盖物可具有15_60g/m2、优选25-40g/m2的重量。
[0031]代替移动的网幅,还可将EB辐射引导至相对于辐射体固定不动的网幅或坯料的封接路线,因此,所述路线接受了较大份额的辐射,同时,聚合物表面的其它部分未暴露于辐射。作为实例,可列举由覆盖有PET的烘焙卡纸组成的盘坯。
[0032]对于图1-4的试验,在纸板基体的一侧上挤出单层聚酯覆盖物并使其经受各种处理以确定它们对于热封接温度的影响。所述处理为:21kW的紫外辐照;剂量为10kGy的电子束辐照;3400W的电晕处理;以及利用过量氧气(在150米/分钟的网幅速度下)的火焰处理。在所述图中,这些处理分别标记为“UV”、“EB”、“C”和“F”。在试验中还包括了这些处理的组合。对于每个试样,测量热封接的引发温度,其为在碰到覆盖层表面之前的在电加热空气喷嘴处的热封接空气的温度。在所示的温度下,聚合物已经充分地熔融以用于与板材的未经覆盖的相反侧的完美封接。要求是:对于封接的尝试打开导致在纤维质板材基体内的撕裂。
[0033]图1是示出了针对重量为25g/m2的仅PLA的单层覆盖物的热封接温度(°C)的图。看至IJ:通过将热封接(热空气)温度从500°C降低至410°C,根据本发明的EB处理显著地改善了热封接性能。此外,对于UV处理,可注意到明显的改善。通过相继地实施EB和UV处理,实现了最好的结果——热封接温度降至380°C。对于热封接温度,电晕处理的加入不具有可测量的影响。
[0034]图2的试验对应于图1的那些,除了覆盖物聚合物为55重量%的?1^和45重量%的PBS的共混物以外。相比于100 %的PLA,存在着热封接温度的整体降低,且再一次地,EB处理以及组合的EB和UV处理有利地影响热封接性能,使热封接温度从最初的440°C (无处理)分别降低至380°C或360°C。
[0035]图3的试验对应于图1的那些,除了覆盖物聚合物为45重量%的?1^和55重量%的PBAT的共混物以外。相比于100%的PLA,存在着热封接温度的甚至更大的整体降低,且再一次地,EB处理以及组合的EB和UV处理有利地影响热封接性能,使热封接温度从最初的420 V(无处理)分别降低至380°C或360°C。
[0036]图4示出了来自于使用覆盖物重量为40g/m2的经挤出的单层PET实施的试验的结果。通过将热封接(热空气)温度从550°C降低至540°C,根据本发明的EB处理改善了热封接性能。通过在EB处理之前加入火焰处理,实现了显著的进一步改善一一热封接温度降至500°C。另一方面,证明:在F和EB步骤之间的额外的电晕处理对于结果具有不利的影响。
[0037]在图5中,示出了来自于使用挤出到纸板基体的一侧上的35g/m2的单层PLA实施的另外的试验系列的结果。在此,目的在于检验不同剂量的EB辐射(以kGy为单位测量)的影响。看到:随着辐射剂量从0(参比=无处理)逐渐地提高至最高达200kGy,影响(S卩,热封接(热空气)温度的降低)得到增大。但是,约10kGy的较低剂量水平被认为是优选的,因为提高的聚合物链断裂程度可不利地影响聚合物的性质(例如其机械强度)。
[0038]图6包括来自于与图5的试验系列相对应、但使用40重量%的?1^和60重量%的1^3的单层实施的试验系列的结果。再一次地,随着辐射剂量的提高,热封接温度发生降低。
[0039]图7示出了这样的曲线图,其相对于剪切速率绘出了来自于经挤出的PLA膜(其已经在240°C下再次熔融以用于测量)的所测得的熔体(剪切)粘度。曲线图1代表作为参比的未经处理的膜,且曲线图2-5代表在再次熔融前分别以25kGy、50kGy、10kGy和200kGy的EB辐射剂量进行EB处理的膜。据估计,热封接中的条件对应于约5-50S—1的剪切速率。看到:随着辐射剂量的提高,熔体粘度始终发生降低,这暗示着,不存在聚合物的显著交联,相反地,聚合物链由于EB辐照发生断裂。该发现与所观察到的热封接性能的改善(S卩,热封接所需的热空气温度的降低)很好地相符合。
[0040]图8示出了针对55重量%的?1^\和45重量%的?83的共混物的类似曲线图。曲线图1代表从挤出机的喷嘴采样的所述共混物的未经处理的挤出物,曲线图2代表作为参比的所述共混物的未经处理的膜,其在290°C下再次熔融以用于测量,且曲线图3-5代表分别以50kGy、10kGy和200kGy的EB辐射剂量处理、并然后再次熔融以用于测量的所述共混物的膜。在低于5s—1的较低剪切速率下,随着剂量从50和10kGy增高,粘度似乎向上翻转,据推测,这可解释为提高的EB辐射诱发了 PBS的交联(其为与PLA的链断裂竞争的反应)。但是,在与热封接有关的约5-50S—1的剪切速率下,每当辐射剂量升高,粘度均发生降低,这暗示着,聚合物的任何交联的影响是无关紧要的,而聚合物链断裂控制着粘度行为。
[0041]为了确定EB辐射对于经挤出的覆盖物层与纤维质基材的粘附的影响,使用在纸板网幅上的经挤出的35g/m2的单层PLA来实施试验系列。然后,使所述经挤出的覆盖物层经受不同的EB辐射剂量。通过所述覆盖物的剥离的容易性,将与板材网幅表面的粘附按照以下等级进行划分:
[0042]0 =无粘附
[0043]I =轻微粘贴至网幅
[0044]2 =粘贴至网幅
[0045]3 =牢固地粘贴至网幅
[0046]4 =牢固地粘贴至网幅、撕裂了一些纤维
[0047]5 =牢固地粘贴至网幅、撕裂了许多纤维
[0048]EB辐射剂量为0kGy、25kGy、50kGy、100kGy和200kGy,且按照前述等级的粘附水平分别为2、3、3、5和5。换句话说,10kGy的剂量产生了粘附从充分至优异的改善,因为PLA覆盖物层不再沿着板材与覆盖物之间的分界线从纤维质表面剥离掉,但是,所尝试的剥离导致板材内的构造体的撕裂。这是对于完美粘附的标准要求。
[0049]使用在纸板网幅上的经挤出的40g/m2的单层PET来进行另外的试验系列。EB辐射剂量为OkGy、25kGy、50kGy、10kGy和200kGy,且按照前述等级的粘附水平分别为3、4、4、4、4。因此,相比于未使用EB处理的参比样品,在每个EB辐射剂量下均检测到改善的粘附性。
【主权项】
1.改善聚酯的热封接性能的方法,特征在于,使位于包括纸张、纸板或卡纸的纤维质基材上的聚酯覆盖物层经受电子束(EB)辐射,降低所述聚酯的熔体粘度。2.权利要求1的方法,特征在于,EB辐射的剂量为至少20kGy、优选为20-200kGy。3.权利要求1或2的方法,特征在于,所述聚酯包括聚交酯(PLA)。4.权利要求3的方法,特征在于,所述聚酯为PLA与聚丁二酸丁二醇酯(PBS)的共混物。5.权利要求1或2的方法,特征在于,所述聚酯包括聚对苯二甲酸乙二醇酯(PET)。6.权利要求1或2的方法,特征在于,所述聚酯包括聚(己二酸丁二醇酯-对苯二甲酸丁二醇酯)(PBAT)、优选作为与PLA的共混物。7.前述权利要求中任一项的方法,特征在于,使所述聚酯相继地经受紫外(UV)辐射和电子束(EB)辐射。8.前述权利要求中任一项的方法,特征在于,使所述聚酯甚至经受火焰处理。9.用于提高聚酯与包括纸张、纸板或卡纸的纤维质基材的粘附的方法,特征在于,向所述基材上挤出单层聚酯,并使所述单层聚酯经受电子束(EB)辐射。10.经热封接的容器或包装物的制造方法,特征在于,向包括纸张、纸板或卡纸的纤维质基材提供包括聚酯的聚合物覆盖物,使所述覆盖物经受EB辐射,并且,通过对覆盖物聚合物进行热封接来形成所述容器或包装物。11.权利要求10的方法,特征在于,将位于所述纤维质基材上的所述聚合物覆盖物热封接至未经覆盖的纤维质表面。12.权利要求11的方法,特征在于,所述容器为纸板杯,通过将所述杯的覆盖有聚合物的内表面热封接至所述杯的未经覆盖的外表面形成所述杯的外壳的纵向接缝。13.权利要求11的方法,特征在于,所述包装物为纸板或卡纸的盒状包装物,将所述包装物的覆盖有聚合物的外表面热封接至所述包装物的未经覆盖的内表面。14.权利要求10的方法,特征在于,所述包装物包括纸板或卡纸的杯或盘,其通过将盖子热封接至所述杯或盘的口部而封闭。15.在包括纸张、纸板或卡纸的纤维质基材上封接聚酯覆盖物的方法,特征在于,将电子束(EB)辐射引导至所述聚酯覆盖物的表面,此后,将经过辐射的表面热封接至相反的表面。
【文档编号】B29C35/08GK105934471SQ201580005775
【公开日】2016年9月7日
【申请日】2015年1月22日
【发明人】K.内瓦莱宁, V.里布, J.拉萨宁, O.凯尔利艾宁, A.罗斯林, M.卡耶海安, J.库西帕洛, S.科特卡莫, M.图米宁
【申请人】斯道拉恩索公司