专利名称:用于回收聚亚丁基醚二乙酸酯的改进方法
技术领域:
本发明涉及一种回收纯的聚亚丁基醚二酯的改进方法。更确切地讲,但不作为限定,本发明涉及使用一种固态酸催化剂和有羧酸酐的羧酸作分子量控制剂的四氢呋喃(THF)与一种次级环醚共单体或无共单体的聚合反应,其中聚合反应以后,产物回收包括未反应THF的整体闪蒸(bulkflashing)和用过热THF汽提残留的THF、羧酸和羧酸酐。
工艺背景聚亚丁基醚乙二醇(PTMEG)是化学工业中的一种产品,它被广泛用于形成具有多官能聚氨酯类和聚酯类的嵌段共聚物。通常PTMEG是用四氢呋喃(THF)与氟磺酸相反应,然后用水骤冷产物而制取的。虽然这种方法相当令人满意,但它还不尽人意,因为酸不能回收再利用,而且因废酸有毒性和腐蚀性,废酸处理是一大问题。
美国专利第4,120,903号公开了用含α-氟磺酸基团的聚合物作催化剂和水或1,4-丁二醇作链终止剂的THF聚合反应。催化剂本性决定它能再使用,因而排除了处理问题,同时在反应物料中催化剂没有溶解性使得在聚合反应后容易从产物中分离出催化剂。催化剂这种很低溶解性也减少了它在反应过程中的损失。可是这种方法生产的聚亚丁基醚乙二醇分子量为10,000或更高,而工业产品一般分子量小于4,000,而且其主要部分数均分子量为650到3,000。
美国专利第4,163,115号公开了使用一种含磺酸基团的氟化树脂催化剂进行THF和/或THF共单体的聚合反应制备聚亚丁基醚二酯,在聚合反应中通过在反应介质中加入酰基离子母体来调节分子量。该专利公开了乙酸酐和乙酸与固态酸催化剂的使用。通过汽提未反应的THF和乙酸/乙酸酐使聚合反应产物析离。析离出的产物是聚合的四氢呋喃二乙酸酯(PTMEA),它一定转化成相应的二羟基产物聚亚丁基醚乙二醇(PTME6),它是大多数聚氨酯最终应用领域的一种原料。
美国专利第5,149,862号公开了使用锆基催化剂进行THF聚合反应制取PTMEA的方法。它的分子量可通过加乙酸和乙酸酐任意地调控。通过蒸气或氮等惰性气的蒸馏或汽提除去未反应的THF、乙酸和乙酸酐。然而蒸气汽提需要温度会导致聚合物的降解,同时从聚合物中再分离水需要扩充单元操作和用氮气汽提要较长的作业时间和/或需要不切实际量的氮气。
在PTMEA中残留的乙酸和乙酸酐会产生多种不利影响。如在相继的酯基转移反应中用CaO作催化剂,则与乙酸生成乙酸钙会使酯基转移反应介质产生凝胶化。如用NaOMe/NaOH作催化剂,乙酸和乙酸酐起中和催化剂作用,从而抑止了酯基转移反应。残留的乙酸酐还会与甲醇反应生成乙酸甲酯,而甚至低浓度的乙酸甲醇都会对PTMEA转化成PTMEG的最终水平产生逆向的影响。
尤其在THF和3-甲基四氢呋喃(3-MeTHF)共聚物的二乙酸酯纯化中,遇到的是高浓度的乙酸酐,因此需要有一种有效的方法汽提这些高沸点物。
发明的公开鉴于上述与生产和回收聚亚丁基醚二酯相关的问题,本发明提供了一种用于生产聚亚丁基醚二酯的方法,它通过使用一种固态酸催化剂和有羧酸酐的羧酸作分子量控制剂将THF任选地与一种或多种取代的THF或烯化氧共单体在反应器中进行聚合反应,改进之处包括如下步骤利用过热THF从聚亚丁基醚二酯聚合反应产物中汽提未反应的羧酸和羧酸酐。本发明还提供这样一种方法,其改进之处包括如下步骤a)从反应器中回收一种包括聚亚丁基醚、未反应的THF和有羧酸酐的羧酸的溶液产物流。
b)在减压下从聚亚丁基醚二酯溶液中闪蒸出大部分的未反应THF。
c)使用过热THF汽提残留的THF、羧酸和羧酸酐。
在本发明的一个实施方案中,羧酸是乙酸,羧酸酐是乙酸酐。
本发明的主要目的是提供用过热THF有效地从产物流中汽提高沸点物,从而克服了用高温汽提产生的有关问题。一当完全阅读本说明书和所附权利要求书后,对这个目的和另外目的的实现就会很明白。
附图简述
图1是一张说明按照本发明来制备聚亚丁基醚二乙酸酯整个改进方法特定实施方案的简图。
实施本发明的方式本发明发现的用来生产聚亚丁基醚二酯组合物的整个方法广义地包括如在现有技术中所熟知的、采用含能使环醚类等开环聚合反应的磺酸基团的高酸固态催化剂进行的任何一种聚合反应。作为实例但不作限定,它包括含磺酸基团和任选羧酸基团的聚合物催化剂,特别优选的一类固态酸催化剂是它的聚合物链为四氟乙烯或三氟氯乙烯和一种含磺酸基团母体(再有羧酸基或无羧酸基)的全氟烷基乙基醚共聚物的催化剂,如美国专利4,163,115和5,118,869中公开和说明的,商业上由E.I.duPont公司以Nafion商标供应的催化剂。下面说明和实例中主要涉及到Nafion,因为按照本发明的改进方法的好处和优点用这种高活性催化剂是最佳的。虽然对本发明的目的,如上述的包括有磺酸基团催化部位的其它多相催化剂被认为与Nafion有等同作用,因能得到或实现本方法的一个或多个优点和好处。
用本发明发现的有效方法生产的聚亚丁基醚二酯组合物通常是如现有技术典型生产所熟知的任何一种聚醚,它通过在一种羧酸和羧酸酐存在下酸催化的环醚或混合物的开环聚合反应制取,其中四氢呋喃是主要的和/或占优势反应剂,即许多THF结合成PTMEA产物。更确切地讲,聚醚二酯是由THF与烷基取代的四氢呋喃共单体(优选的为3-MeTHF)或无共单体聚合反应制得的以及由THF与3-MeTHF(或无3-MeTHF)和烯化氧或等效的共单体共聚反应制取的。因而,下面说明和实例主要将论及THF和/或THF与3-MeTHF与其它共单体可任选存在的聚合反应。按本发明的说明书和权利要求书所述的目的,“聚亚丁基醚”术语通常包括均聚反应的THF聚醚骨架以及相应的共聚反应聚合物。
在本发明中所用的THF可以是任何一种能从市场上购到的THF。THF的水含量最好应低于0.001%重,而过氧化物含量应低于0.002%重和任意含有一种如丁基化羟甲苯的氧化抑制剂以防止形成不希望有的副产物和颜色。如有要求,可以与THF一起使用THF重0.1%到约50%的能与THF共聚反应的烷基取代四氢呋喃,特别优选的烷基取代THF是3-MeTHF。
在本发明中所用的固态酸催化剂广义地包括如现有技术中所熟知的能使环醚等开环聚合反应的任何一种高酸固态催化剂。作为实例不作限定,它包括含磺酸基团和任选地有羧酸基团或无羧酸基团的聚合物催化剂,高度酸化的天然粘土(如酸化的蒙脱土)和/或沸石,酸化的硫酸锆/锡化合物等。特别优选的固态酸催化剂是它们的聚合物链为四氟乙烯或三氟氯乙烯和含磺酸基团母体(再有羧酸基团或无羧酸基团)的全氟烷基乙基醚共聚物的催化剂,如美国专利4,163,115和5,118,869中公开和说明的,商业上由E.I.duPont公司以Nafion商标供应的催化剂。下述的说明和实例将主要涉及Nafion,因为按照本发明改进方法的好处和优点用这种高活性催化剂是最佳的。虽然对本发明的目的,上述的其它多相催化剂被认为与Nafion有等同作用,因能得到或实现本发明方法的一个或多个优点和/或好处,特别是催化活性接近Nafion的催化剂。
按照本发明与相应羧酸一起作分子量控制剂使用的羧酸酐通常是羧酸部分含1到36个碳原子的那些羧酸酐。特别优选的是1到4个碳原子的那些羧酸酐。这些羧酸酐的例子如乙酸酐、丙酸酐等。从功效讲最优选使用的酸酐是乙酸酐,因此下述说明和实例中将特别说明的仅仅是最优选的乙酸和乙酸酐的组合。当使用马来酸酐时,PTMEG二马来酸酯转化成PTMEG是通过氢化作用而不是酯基转移/甲醇分解(见美国专利第5,130,470中的实例)。在本发明方法中所用的乙酸酐和乙酸可以是市场上能购到的任何一种产品。
含有羧酸酐的羧酸作用目前认为与美国专利第4,167,115中提出和说明的化学机理基本相一致,其中羧酸酐是一种酰基离子母体,在THF和固态酸催化剂存在下它与THF反应形成酰基氧鎓离子而引发反应并同时生成羧酸分子,随后导致开环聚合反应(即通过氧鎓离子机理增长)和通过与羧酸反应最后终止反应。虽然,本发明不被认为依赖于一种简单的机理性解释,目前感到如Nafion高活性固态酸催化剂在初期引发阶段应看作是可逆的和分子量最后是依赖于引发和链终止的比率(即机理上/数学上与增长速率无关)。这一发现导致产生能通过改变加入反应器的混合物来控制PTMEA产物分子量的特殊优点。更确切地讲,对于一定催化剂量、THF反应剂浓度和操作条件,产物分子量由羧酸对羧酸酐的比例所决定。事实上,按照本发明由于采用THF闪蒸和羧酸汽提的循环,因此加到反应器中的羧酸酐的量或速率变成了决定分子量的主要操作参数。于是本发明提供了一种容易并可靠的方法用来控制产物诸多商业上重要特性之一特性。
反应流程和反应器设计按照本发明一种典型的整个反应流程概要地表示于图1中,其中制取聚亚丁基醚二乙酸酯的特别优选的实施方案为在乙酸(HOAc)和乙酸酐(ACAN)存在下以Nafion作催化剂由四氢呋喃(THF)聚合反应完成的。如图所示,贮存于预混合槽10里的THF、HOAc和ACAN混合物连续地加到含有固态酸Nafion的一个单级反应器体系中,如美国专利4,163,115中所述Nafion起着聚合反应催化剂作用。应意识到在连续工业操作期间,预混合槽10可以省掉或用静态混合器等来替代,只要定量地控制好根据后面说明和实例的标准正确计算出的包括各种循环物流的所加物流。因此,对本发明的目的而言,这些替换方法等应被认为与如图所示的采用预混合器10的特殊实施方案等效的。
通过反应器期间THF环被打开并生成了由乙酸酯基团封端的四氢呋喃聚合物,由调节压力控制单级反应器12的温度以使聚合反应在THF蒸发条件下进行。最好反应器应装有低压(如真空)回流器,从而通过在减压下的顶部回流(图中未表示)从反应器回收伴随THF聚合成PTMEA所释放的反应热。
反应产物是一种由聚亚丁基醚乙二醇二乙酸酯(PTMEA)未反应的THF、乙酸酐和乙酸组成的溶液。THF的反应量是温度、接触时间、加料组成和催化剂决定的函数。PTMEA的分子量主要依赖于进料组成,尤其是进料中的乙酸酐浓度。PTMEA的分子量可随反应器进料中的乙酸酐浓度降低而提高。进料中的乙酸主要作用以防止聚合反应失控,其次清除反应物产生凝胶。
在反应器中观测到典型的转化率为约35%,从而需要汽提的约有60~65%的未转化的THF和乙酸。因此,反应器流出液直接送到THF闪蒸装置14,在THF闪蒸期间该装置最好控制于真空(典型的约为400~约450mmHg)下。由于存在相当量未反应的THF,在这步需要用反应器中聚亚丁基醚二酯溶液的热量来完成THF和乙酸的整体闪蒸。从这一整体闪蒸装置14(还是如图示的特别实施方案中)得到的蒸汽相循环返回到预混合槽10中,然后再加到反应器12中。闪蒸过的PTMEA产物流送到THF汽提装置16中,在这步减压下用热THF以逆向流汽提除去剩余的THF、ACAN和HOAc,从这过热THF汽提步骤得到的蒸汽相也循环返回到预混合槽中。此外,这些循环物流可以相互掺混或与其它进料掺混直接加到搅拌着的反应器12中。
于是,依据本发明的目的,有意地和有益地将聚合反应器在减压下进行操作(即在真空下),因而在THF蒸发冷却条件下生成工业级的PTMEA。在这方法中,通过除去蒸发的THF和因而调节反应器压力提供的温度控制帮助反应混合物的冷却。由于THF固有的有限转化率造成了在反应器流出物中含有大量未反应的THF,所以随聚合反应之后是在约200到600mmHg,最好是在约410mmHg下的THF整体闪蒸。再由于相当量被闪蒸,所以必须给反应器流出液供给大量热能。依据本发明的目的,这种加热步骤可以用现有技术中熟知并实施的任何种方法,作为实例不作限定的,如在实际THF蒸气相闪蒸之前或闪蒸期间温热和/或加热流出物流的方法。然后整体闪蒸的PTMEG产物流进行过热THF汽提操作。典型地是将有向下流动熔融PTMEG的逆向流柱控制于真空(如柱顶为20mmHg)并同时在柱底加入THF(如135℃@90pisa)来进行汽提。在这样方法中,任何剩余的THF和其它高沸点物包括乙酸和乙酸酐全被除去并循环。因此,按照本发明改进的方法既得到了如Nafion超常活性固态催化剂的优点,同时也克服了伴随过剩的反应热和高温汽提PTMEA产物中残留的高沸点物所产生的传统产品质量问题。
这种聚合反应可以间歇方或连续方式进行。然而为获得如Nafion等高活性催化剂的优点并同时利用反应释放的热,觉得在蒸发反应条件下操作的连续搅拌罐式反应器较为优选。因而构制了一台具有标称容积为每小时约100 lbs的PTMEA和基于图1流程简图的连续搅拌反应器并应用于下述实例中(除用夹套反应器除去反应热不是THF蒸发冷却之外)。在这装置中用了一台进料槽以预混用来聚合反应的各种组分,这些组分为(1)含THF、乙酸和小量乙酸酐的循环THF物流,它们是由闪蒸装置和装于聚合反应器下游的过热THF汽提装置返回的,(2)新鲜的THF,主要根据聚合物产率确定加入速度(即约100 lbs/hr),(3)新鲜的乙酸酐,由要求的分子量决定加入流速。在聚合反应期间要大量地消耗乙酸酐,所以要往预混合器连续地加乙酸酐,而反应中并不消耗乙酸因此乙酸与THF一起返回于循环物流中。如上所述,循环物流的产生是由于在聚合反应器中只有有限的THF转化成PTMEA所造成。
按要求组成的预混合THF、乙酸酐和乙酸物流用泵连续地加到玻璃衬里的搅拌槽式反应器中,并设计成使滞留时间约为30到约60分钟。需要使用衬里反应器以排除因催化剂的磺酸功能基团与金属反应使催化剂失活的可能性。此外,这种衬里可以用Teflon或类似材料,但优选的是用玻璃。反应器中含有约进料量2%到40%之间的催化剂,较好的为含约5%到15%,最好为含10%。催化剂通过搅拌使其呈连续地悬浮状态。
THF/ACAN/HOAc的汽提在纯化PTMEA中关键步骤之一是除去乙酸和未反应的乙酸酐。因为这两种组分相对THF而言都是高沸点物,特别在大规模操作中除去乙酸酐和乙酸是个难题。在实验室中操作可以用氮气吹扫持续干燥来除去这些组分,但这种操作并不适用于大规模操作中。此外,以致残留的乙酸和乙酸酐浓度低于100ppm的PTMEA纯化也需要高于140℃的温度,可惜当PTMEA长期暴露于这样高温度将会变色并产生一定程度的降解。
本发明的一个目的涉及使用普通汽提柱从PTMEA中除去乙酸和乙酸酐,即从PTMEA反应产物中用汽化的THF汽提乙酸和乙酸酐。在这种特殊的应用中不能用水,而对纯化PTMEA用THF是理想的。
先将聚合反应器里的反应物在约120psig的背压下加热到90℃到130℃,然后再注入到一个控制于约200mmHg到600mmHg真空度的容器中。在这步大多数THF/乙酸酐/乙酸闪蒸出来被冷却和循环。再将PTMEA和残留的THF/乙酸酐/乙酸送到THF汽提器中,在其中用THF蒸气来汽提残留的乙酸和乙酸酐。THF汽提器是一根柱,最好是一根具有3到10,更好是5个理论塔板的填充柱。用过热的THF蒸气从聚合物溶液中汽提残留的乙酸和乙酸酐。将THF加热到约135℃。THF蒸气被闪蒸到控制于约20mmHg的汽提柱中。汽提出的THF/乙酸/乙酸酐被冷凝并循环。
实例将含33.4%PTMEA、62.9%THF、3.0%乙酸和0.7%乙酸酐的聚合物溶液加热到约120℃并加到控制于450mmHg的THF分离器中。该分离器的顶部含有94.9%THF、4.1%乙酸和1.0%的乙酸酐、而剩余的聚合物溶液含96.6%PTMEA、2.3%THF、1.0%乙酸和0.1%的乙酸酐。将这种聚合物溶液加到一根装填有不锈钢填料,有10个理论塔板数并控制于20mmHg的柱的上部塔板。将在75 psig下加热到135℃的THF加到该柱底部。过热THF从聚合物溶液中汽提出剩余的乙酸和乙酸酐,使柱顶馏出物含94.7%THF、4.7%乙酸和0.6%乙酸酐,而余下的聚合物溶液有99.8%PTMEA、0.2%THF和低于100 PPM的乙酸和乙酸酐。当从管线流出时,产物的颜色低于10 APHA单位,APHA单位是将乙酸和乙酸酐除去没有影响PTMEA质量的一种效果指标。
工业适用性能生产具有低色泽和低乙酸浓度的聚合物是对现有技术的主要改进。特别是产物优异色泽的控制得到确认,即使存在通常认为对THF聚合反应有害的,会使产物变色的不饱和杂质时。
权利要求
1.一种用于生产聚亚丁基醚二酯的方法,它通过使用一种固态酸催化剂和带羧酸酐的羧酸作分子量控制剂将THF任选地与一种或多种取代的THF或烯化氧共单体在反应器中进行聚合反应,其中改进之处包括如下步骤a)从上述反应器中回收一种包括聚亚丁基醚。未反应THF和带羧酸酐的羧酸的溶液的产物流,b)在减压下从聚亚丁基醚二酯溶液中闪蒸出大部分上述的未反应THF,c)用过热的THF汽提残留的THF、羧酸和羧酸酐。
2.如权利要求1的方法,其中所述的羧酸是乙酸和所述的羧酸酐是乙酸酐。
3.一种用于生产聚亚丁基醚二酯的方法,它通过使用一种固态酸催化剂和带羧酸酐的羧酸作分子量控制剂将THF任选地与一种或多种取代的THF或烯化氧共单体在反应器中进行聚合反应,其中改进之处包括步骤为用过热的THF从聚亚丁基醚二酯聚合物中汽提未反应的羧酸和羧酸酐。
4.如权利要求3的方法,其中所述的羧酸是乙酸和所述的羧酸酐是乙酸酐。
全文摘要
一种用于回收纯的聚亚丁基醚二酯的改进方法,它包括使用一种固态酸(如Nafion
文档编号C08G65/00GK1204351SQ96198981
公开日1999年1月6日 申请日期1996年12月5日 优先权日1995年12月14日
发明者S·多赖 申请人:纳幕尔杜邦公司