树脂密封的半导体装置的利记博彩app

文档序号:3669835阅读:253来源:国知局
专利名称:树脂密封的半导体装置的利记博彩app
技术领域
本发明涉及基板不发生翘曲、耐回流焊性优异、树脂密封的半导体装置和适合该树脂密封的环氧树脂组合物。
背景技术
在有机基板上通过球栅阵列(ボ-ルグリツドアレイ)搭载IC,并用树脂密封的封装(BGA型封装)被广泛使用。作为该有机基板,广泛使用采用玻璃纤维的非织造布或将环氧树脂等含浸于织造布中固化得到的基板的单层或多层基板。通过树脂密封,由于在半导体元件搭载侧和相反侧施加不同的树脂量,因此,容易引起基板的翘曲。以往,由于树脂层的热收缩,将半导体元件搭载侧为上侧时,大多翘曲为凹型(凹型)。因此,通过在树脂中大量配合无机填充剂,抑制由于固化导致的热收缩,可以谋求防止翘曲(专利文献1)。
近年来,由于有机基板的薄型化等要求,因此存在降低半导体密封树脂量的发展方向。在这样的半导体装置中,与上述不同,大多成为凸型的翘曲。特别是,由于板上芯片球栅阵列封装(チツプオンボ-ドボ-ルグリツド アレイパツケ-ジ)在基板的背面侧、未搭载半导体元件一侧具有充满了树脂的槽,因此容易翘曲。为了防止这样的凸型的翘曲,考虑减少无机填充剂的量。但是,该填充剂量少时,树脂固化物的吸湿量增加,故不优选。另外,还考虑使用热膨胀率比较大的填充剂。作为这样的填充剂,已知40℃~400℃的平均热膨胀系数为2.0×10-5/℃的球状方英石。另外,还提出了主要使用方英石的组合物(专利文献1和2)。但是,方英石在268℃由α方英石相转变为β方英石,热膨胀率发生变化。因此,在最高温度为265℃左右的回流焊工序中,在基板和密封树脂固化物的界面发生剥离,或者,发生基板的翘曲变大等问题。
特开平5-267371号公报[专利文献2]特开平11-302506号公报 特开2001-172472发明内容发明要解决的问题因此,本发明的目的在于提供基板不发生翘曲,在回流焊工序中不会引起剥离,且被树脂密封的半导体装置和适合制备该装置的树脂组合物。
解决问题的方法即,本发明的内容如下。
一种半导体装置,其包括有机基板、设置在该基板上的至少一个半导体元件、密封该有机基板和该半导体元件的固化的树脂组合物,其中,从该半导体装置的配备半导体元件的基板面的任一顶点,使用激光三维测定机测定的在该面内的对角线方向上的高度的位移差的最大值为-600μm~+600μm,但不包括-600μm和+600μm两点的数值,该半导体元件的总体积相对于该半导体装置的总体积的比例为18~50%,该固化的树脂组合物包含(C)无机填充剂,(C)的质量/固化的树脂组合物的质量为80~90%。
另外,本发明涉及适合制备上述半导体装置的下述的树脂组合物。
一种组合物,其用于半导体密封,该组合物包含(A)环氧树脂、(B)固化剂,相对于(A)环氧树脂中含有的环氧基团1摩尔,其含量为0.5~1.5摩尔、(C)无机填充剂、以及(D)固化促进剂,其中,(C)无机填充剂包含(C1)至少一种40℃~400℃的平均热膨胀系数为1.0×10-5/℃~3.0×10-5/℃的无机填充剂、(C2)至少一种40℃~400℃的平均热膨胀系数低于1.0×10-5/℃的无机填充剂,(C)的质量/树脂组合物固化物的质量为80~90%,并且,(C1)的质量/树脂组合物固化物的质量为5~45%。
发明效果上述本发明的半导体装置基板几乎没有翘曲,另外,在回流焊工序中,即使加热到265℃左右,也不会发生剥离和裂纹。另外,本发明的组合物可以得到这样的基板不发生翘曲的半导体装置。


图1是板上芯片球栅阵列封装的一个例子的剖面图。
图2是示出在本发明的实施例中制作的板上芯片球栅阵列封装和该封装中的半导体元件的体积的求算方法的平面图和剖面图。
图3是示出实施例中使用的IR回流焊的热曲线(プロフイ一ル)图。
符号说明1 环氧树脂组合物2 半导体芯片3 芯片接合层4 有机电路基板5 金属线6 环氧树脂组合物具体实施方式
通过图1说明本发明的半导体装置。图1是板上芯片球栅阵列封装的实施方式的剖面图。如图1所示,该半导体装置具有通过芯片接合(ダイボンド)剂层3设置在有机电路基板4上的IC等半导体元件或芯片2。作为该芯片接合剂,可以是公知的物质,可以举出,环氧树脂类、聚硅氧烷树脂类、聚酰亚胺类材料等。作为该芯片接合剂层3的厚度,从耐回流焊性、温度循环性、操作性、翘曲性的观点来看,优选30μm~80μm的范围。有机电路基板4可以是广泛使用的有机基板、例如,环氧树脂类基板的FR-4基板、双马来酰亚胺三嗪类基板的BT基板。以保护铜箔电路或焊料耐热为目的,可以在基板表面上形成焊锡抗蚀层。基板4的厚度通常为0.1~0.4mm。
本发明的半导体装置中,半导体元件的体积相对于其总体积的比例为18~50%,优选20~45%。如图2所示,半导体装置的总体积可以通过例如J×K×L(mm3)求出,该装置中的半导体元件的体积可以通过F×G×H×半导体元件数目(mm3)求出。半导体元件的体积的比例不足上述下限值的半导体装置容易具有凹状的翘曲,超过上述上限值的半导体装置容易翘曲成为凸状。该半导体装置的总体积虽然存在若干的固化收缩,但还是可以近似于密封树脂成型模具的内部容积。另外,在实际的半导体装置,特别是图1所示的板上芯片球栅阵列型封装的情况下,虽然树脂也会通过基板的穴附着在背侧,但主要给基板的翘曲带来影响的是基板的表面侧、即配备了半导体元件的一侧,因此认为,如果考虑表面侧部分的体积的话,实际上是充分的。
有机基板4和半导体元件2通过固化树脂组合物1、6进行密封。该固化了的树脂组合物(以下,称为树脂固化物)的树脂成分,例如,可以是由酚醛树脂等固化酚醛清漆型环氧树脂、甲酚酚醛清漆型环氧树脂、或者双酚A型环氧树脂等得到的固化物。
树脂固化物的特征在于,含有(C)无机填充剂,并且[(C)的质量/树脂固化物的质量](以下,记作“C的质量%”)为80~90%。(C)的质量%可以通过使用热天平,在空气中将树脂固化物升温至例如600℃左右,将无机残渣成分定量来求出。该质量%低于上述下限值时,树脂固化物的吸湿性高,由该固化物密封的半导体装置有时耐回流焊性差。另一方面,超过上述上限值,有时半导体装置的翘曲大。
优选的是,(C)无机填充剂含有球状填充剂中的至少一种。填充剂的形状可以通过用显微镜观察树脂固化物而判定。更为优选的是,(C)无机填充剂含有含二氧化硅的填充剂中的至少一种。所谓二氧化硅,可以通过对树脂固化物进行元素分析而鉴定。
本发明的半导体装置的特征在于,从配备半导体元件一侧的基板的任一顶点,使用激光三维测定机测定对角线方向上的高度的位移时,对角线上的顶点间的位移差的最大值为-600μm~+600μm,但不包括-600μm和+600μm两点的数值,优选-500μm~+500μm。其中,“-”表示以半导体元件为上侧时为凹的翘曲,“+”表示凸的翘曲。该翘曲量超过上述范围时,容易在自动传送装置中发生传送故障,另外,在将半导体元件单片化的工序中的固定变得困难,然后,向基板附着焊料球的工序中容易发生连接不良。
本发明还涉及适合制作上述半导体装置的密封树脂固化物的树脂组合物。该树脂组合物含有(A)环氧树脂、
(B)固化剂,相对于(A)环氧树脂中含有的环氧基团1摩尔,其含量为0.5~1.5摩尔、(C)无机填充剂、以及(D)固化促进剂。
作为(A)环氧树脂,如上所述,可以使用酚醛清漆型环氧树脂、甲酚酚醛清漆型环氧树脂、三酚链烷型环氧树脂、芳烷型环氧树脂、含联苯骨架的芳烷型环氧树脂、联苯型环氧树脂、二环戊二烯型环氧树脂、杂环型环氧树脂、含萘环的环氧树脂、双酚A型环氧树脂、双酚F型环氧树脂、双酚S型环氧树脂、茋型环氧树脂以及它们的混合物。
优选的是,(A)环氧树脂的水解性氯含量为1000ppm以下,特别优选500ppm以下,以及,钠和钾的含量分别为10ppm以下。上述水解性氯和钠和钾的含量分别超过上述量时,树脂密封后的半导体装置置于高温高湿下时,游离出氯离子、碱金属离子,对半导体装置的性能带来不良影响的危险增高。
(B)固化剂是(A)环氧树脂的固化剂。优选使用酚醛树脂,例如,可以举出,酚醛清漆树脂、含萘环的酚醛树脂、芳烷型酚醛树脂、三酚链烷型酚醛树脂、含有联苯骨架的芳烷型酚醛树脂、联苯型酚醛树脂、脂环式酚醛树脂、杂环型酚醛树脂、含有萘环的酚醛树脂、双酚A型树脂、双酚F型树脂等双酚型酚醛树脂以及它们的混合物。优选的是,由于与(A)成分的环氧树脂的情况相同的理由,该固化剂的钠和钾含量分别为10ppm以下。
在组合物中,(B)成分的含量范围是,相对于(A)成分中所含的环氧基团1摩尔,(B)成分的固化剂中所含的酚性羟基的摩尔比为0.5~1.5,优选0.8~1.2。
(C)无机填充剂包含(C1)至少一种40℃~400℃的平均热膨胀系数为1.0×10-5/℃~3.0×10-5/℃的无机填充剂、(C2)至少一种40℃~400℃的平均热膨胀系数低于1.0×10-5/℃的无机填充剂,(C)的质量/树脂组合物固化物的质量为80~90%,并且,(C1)的质量/树脂组合物固化物的质量为5~45%。C1不足上述下限值时,由组合物得到的固化物的热膨胀系数变小,有时不能抑制半导体装置的翘曲,超过上述上限值时,特别是C1为无定型时,组合物的流动性差,有时引起金属线断线、生成孔隙等成型不良。另外,关于方英石,如上所述,虽然会发生相转变,但只要在上述范围内就没有问题。C的质量%不足上述下限值时,树脂固化物的吸湿性高,用该固化物密封的半导体装置有时耐回流焊性差,另一方面,超过上述上限值时,有时半导体装置的翘曲大,这一点如上所述。
各填充剂的平均热膨胀系数可以通过热膨胀计来测定。(C1)和/或(C2)含有2种以上的填充剂时,上述平均热膨胀系数取各填充剂的平均热膨胀系数乘以其体积比例的值的合计。其中,该体积比例是理论体积比例,是各填充剂的质量除以其比重而求得的理论体积比例。
以上述规定量含有上述具有规定的热膨胀系数的各填充剂的组合物在规定的条件下固化时,可以将树脂固化物体积中的各填充剂的体积%设定为规定的范围,由此,可以得到基板的翘曲少的半导体装置。即,[(无机填充剂(C1)的理论体积)+(无机填充剂(C2)的理论体积)]/(固化物理论体积)为70~80%,优选72~77%,(无机填充剂(C1)的理论体积)/(固化物的理论体积)为6~40%,优选7~30%。其中,无机填充剂(C1)的理论体积通过无机填充剂(C1)的质量除以该填充剂在25℃下的比重c1(g/cm3)求出,无机填充剂(C2)的理论体积通过无机填充剂(C2)的质量除以该填充剂在25℃下的比重c2(g/cm3)求出。固化物的理论体积是如下值将规定量、约10g左右的组合物在175℃×120秒、6.9MPa的条件下成型得到的固化物的质量除以按照JISK 6911的计算求出的该组合物的比重e(g/cm3)而得到的值。
另外,由本发明的组合物得到的固化物在其玻璃化转变温度(Tg)以下的热膨胀系数为1.4~1.8×10-5/℃,优选1.4~1.7×10-5/℃。另外,超过玻璃化转变温度的热膨胀系数为4.2~6.8×10-5/℃。通过具有这些热膨胀系数,不易引起基板的翘曲。对于该热膨胀系数的测定方法,将在后面叙述。
无机填充剂(C1)在40℃~400℃的平均热膨胀系数优选1.4×10-5~2.5×10-5。作为无机填充剂(C1)的例子,可以举出,硅酸锂(1.2~1.3×10-5/℃)、方英石(2.0×10-5/℃)、石英(结晶二氧化硅,1.5×10-5/℃)、鳞石英(1.2×10-5/℃)、钙镁橄榄石(1.1×10-5/℃)以及它们的混合物。在不损害组合物的流动性这一点上,优选方英石,更加优选球状的方英石。
无机填充剂(C2)在40℃~400℃的平均热膨胀系数不足1.0×10-5/℃即可,但其形状极为优选填充性高的球形。作为无机填充剂(C2)可以举出,熔融二氧化硅、滑石、氧化铝、氧化镁等,其中,从成型性的观点来看,优选球状熔融二氧化硅(0.05×10-5/℃)。
覆盖(キヤツプ)填充剂表面的活性基,以便提高对树脂的分散性和湿润性,因此,优选配合预先用硅烷偶合剂、钛酸酯偶合剂等偶合剂进行表面处理的上述无机填充剂(C1)和(C2)。作为这样的偶合剂,优选使用γ-环氧丙氧基丙基三甲氧基硅烷、γ-环氧丙氧基丙基甲基二乙氧基硅烷、β-(3,4-环氧环己基)乙基三甲氧基硅烷等环氧基硅烷、N-β(氨基乙基)-γ-氨基丙基三甲氧基硅烷、咪唑基和γ-环氧丙氧基丙基三甲氧基硅烷的反应物、γ-氨基丙基三乙氧基硅烷、N-苯基-γ-氨基丙基三甲氧基硅烷等氨基硅烷、γ-巯基硅烷、γ-表硫氧基(エピスルフイドキシ(episulfidexy))丙基三甲氧基硅烷等巯基硅烷等硅烷偶合剂。其中,对于表面处理中使用的偶合剂的配合量和表面处理方法,没有特别的限制。
作为(D)固化促进剂,可以使用例如,三苯基膦、三丁基膦、三(对甲基苯基)膦、三(壬基苯基)膦、三苯基膦·三苯基硼烷、四苯基膦·四苯基硼酸酯、三苯基膦和对苯醌的加成物等磷类化合物、三乙基胺、苄基二甲基胺、α-甲基苄基二甲基胺、1,8-二氮杂双环(5.4.0)十一碳烯-7等叔胺化合物、2-乙基-4-甲基咪唑、2-甲基咪唑、2-苯基咪唑、2-苯基-4-甲基咪唑等咪唑化合物等。优选使用三苯基膦、三丁基膦、三(对甲基苯基)膦、三(壬基苯基)膦、三苯基膦·三苯基硼烷、四苯基膦·四苯基硼酸酯、三苯基膦和对苯醌的加成物等磷类化合物。
(D)固化促进剂的配合量只要是固化促进的有效量即可,典型的是相对于(A)、(B)成分的总量100质量份为0.1~5质量份,特别是0.5~2质量份。
在不损害本发明的目的的范围内,视需要,本发明的组合物中还可以添加配合各种添加剂。例如,可以添加配合巴西棕榈蜡、氧化聚乙烯、褐煤酸酯等蜡类、炭黑等着色剂、担载有钼酸锌的滑石、担载有钼酸锌的锌、磷腈化合物、聚硅氧烷化合物等阻燃材料、水滑石类、稀土类氧化物等卤素捕捉剂等添加剂。
本发明的组合物可以按照以下方法制备以规定的比例配合(A)环氧树脂、(B)固化剂、(C)无机填充剂、(D)固化促进剂、其他添加物,通过混合机等将它们充分混合后,采用热辊、捏合机、挤压机等进行熔融混合处理,接着,使之冷却固化。可以根据希望粉碎为适当的大小。
该组合物适合作为获得本发明的半导体装置中的树脂固化物的组合物。作为用于密封半导体装置的最为通常的方法,可以举出,低压传递模压成型法。优选的成型条件是,在温度150~185℃下,进行30~180秒,并希望在温度150~185℃下进行2~20小时后固化。
实施例以下,通过实施例进一步说明本发明,但本发明并不限定于下述实施例。另外,在以下例子中,只要没有特殊说明,份均为质量份。
组合物实施例1~5、组合物比较例1~4按照表1所示的质量份混合表1所示成分后,分别用加热到60℃和90℃的2根辊熔融混合均匀后,冷却,接着,进行粉碎,得到半导体密封用环氧树脂组合物。


表1所示的各成分1~11如下。
(A)环氧树脂(1)邻甲酚型环氧树脂 EOCN-1020-55(日本化药(株)制造)(2)含有联苯基团的酚芳烷基环氧树脂NC-3000(日本化药(株)制造)(B)固化剂(3)酚醛清漆型酚醛树脂H-4(明和化成(株))(4)酚芳烷基型酚醛树脂MEH-7800SS(明和化成(株)制造)(C)无机填充剂(5)球状熔融二氧化硅MSR-25、(株)龙森制造、40~400℃的热膨胀系数为0.05×10-5/℃,25℃时的比重为2.25g/cm3。
(6)球状方英石MSR-2500(C)、(株)龙森制造、40~400℃的热膨胀系数为2.0×10-5/℃,25℃时的比重为2.36g/cm3。
(7)结晶二氧化硅微晶3K(株)龙森制造、40~400℃的热膨胀系数为1.5×10-5/℃,25℃时的比重为2.65g/cm3。
(D)固化促进剂(8)三苯基膦TPP(北兴化学(株)制造)脱模剂(9)巴西棕榈蜡(日兴フアインプロダクツ(株)制造)硅烷偶合剂(10)KBM-403、γ-环氧丙氧基丙基三甲氧基硅烷(信越化学工业(株)制造)着色剂(11)电化炭黑(电气化学工业(株)制造)对各组合物测定以下各特性,结果示于表3。
螺旋流动值使用以EMMI标准为基准的模具,在175℃、6.9N/mm2的条件下测定。
固化物的热膨胀系数使用以EMMI标准为基准的模具,在注塑成型温度175℃、6.9N/mm2,成型时间120秒的条件下得到5×5×15mm的试验片。在室温下,使用游标卡尺测定长度Lmm,精确到0.01mm的单位,固定在热膨胀计上,在升温速度5℃/分,负重19.6mN下测定到300℃。制成尺寸变化和温度的曲线图,分别读取在玻璃化转变温度以下尺寸变化-温度曲线的切线所得到的任意2点温度(A1、A2)、在超过玻璃转变温度下切线所得到的任意2点(B1、B2)、250℃、280℃时的尺寸(μm),通过下式计算膨胀系数。
玻璃化转变温度以下的热膨胀系数(A2时的尺寸-A1时的尺寸)/((A2-A1)×(L×103))超过玻璃化转变温度的热膨胀系数(B2时的尺寸-B1时的尺寸)/((B2-B1)×(L×103))250℃到280℃的热膨胀系数×1000(280℃时的尺寸-250℃时的尺寸)/(30×(L))半导体装置的制作在175℃、6.9N/mm2,成型时间120秒的条件下成型剖面图为图1所示,且具有如表2所示的各尺寸的半导体装置。另外,在图1中,半导体芯片B的数目为3个,但实际上为表2所示的搭载个数。将该半导体装置冷却到室温之后,使用激光三维测定机测定在封装的对角线方向的高度的位移,将位移差的最大值作为基板的翘曲量。在表3中,凸型的翘曲的值用正值表示,凹型的翘曲用负值表示。
半导体装置中的芯片接合剂和基板如下。
芯片接合剂Able6202C,日本Ablestick公司制造,玻璃化转变温度以下的热膨胀系数为7.0×10-5/℃,超过玻璃化转变温度的热膨胀系数为35.0×10-5/℃,玻璃化转变温度为40℃,固化后的厚度为50μm有机电路基板CCL-HL-832,三菱ガス化学制造,玻璃化转变温度以下的热膨胀系数为1.5×10-5/℃,玻璃化转变温度以上的热膨胀系数为1.1×10-5/℃,玻璃化转变温度为180℃[表2]

在表2中,F~L为图2所示的各尺寸。
耐回流焊性将在翘曲量测定中使用的半导体装置2切断为各个芯片,在85℃/60%RH的恒温恒湿器中放置168小时吸湿后,使用IR回流焊装置,在半导体封装的表面温度呈现出图3所示的变化的热曲线IR回流焊中通过3次后,使用超声波探测装置统计产生内部裂纹或剥离的芯片数。


半导体装置1和5中,半导体元件的总体积相对于半导体装置的总体积的比例为18~50%的范围之外,翘曲量大。另外,比较例1、2、4的组合物中不含无机填充剂C1,比较例3的组合物含有比本发明的范围(45%)多的C1,由这些组合物得到的半导体装置的翘曲量为600μm以上。另外,本发明的半导体装置的耐回流焊性是优异的。
从使用实施例组合物1得到的半导体装置2上削取树脂固化物,用重量已知的氧化铝制造的坩埚精确称量,用马弗炉在大气氛围下,于600℃下,燃烧8小时,测定无机填充剂的量为81%,与加入量一致。
工业实用性本发明的半导体装置没有翘曲,且耐回流焊性优异,可以广泛地使用于电子机器。另外,本发明的组合物适合制造半导体装置,特别适合薄型BGA型封装。
权利要求
1.一种半导体装置,其包括有机基板、设置在该基板上的至少一个半导体元件、密封该有机基板和该半导体元件的固化的树脂组合物,其中,从配备了该半导体装置的半导体元件的基板面的任一顶点,使用激光三维测定机测定的、在对角线方向上的高度位移差的最大值为-600μm~+600μm,但不包括-600μm和+600μm两点的数值,该半导体元件的总体积相对于该半导体装置的总体积的比例为18~50%,该固化的树脂组合物包含(C)无机填充剂,(C)的质量/固化的树脂组合物的质量为80~90%。
2.按照权利要求1所述的半导体装置,其中,上述半导体元件的总体积相对于该半导体装置的总体积的比例为20~45%。
3.按照权利要求1或2所述的半导体装置,其中,位移差的最大值为-500μm~+500μm。
4.按照权利要求1~3中任一项所述的半导体装置,其中,上述无机填充剂(C)包含至少一种球形状的填充剂。
5.按照权利要求1~4中任一项所述的半导体装置,其中,上述无机填充剂(C)包含至少一种含有二氧化硅的填充剂。
6.按照权利要求1~5中任一项所述的半导体装置,其中,上述有机基板为双马来酰亚胺三嗪树脂基板。
7.按照权利要求1~6中任一项所述的半导体装置,其中,上述半导体装置为板上芯片球栅阵列封装。
8.一种组合物,其用于半导体密封,该组合物包含(A)环氧树脂、(B)固化剂,相对于(A)环氧树脂中含有的环氧基团1摩尔,其含量为0.5~1.5摩尔、(C)无机填充剂、以及(D)固化促进剂,其中,(C)无机填充剂包含(C1)至少一种40℃~400℃的平均热膨胀系数为1.0×10-5/℃~3.0×10-5/℃的无机填充剂、(C2)至少一种40℃~400℃的平均热膨胀系数低于1.0×10-5/℃的无机填充剂,(C)的质量/树脂固化物的质量为80~90%,并且,(C1)的质量/树脂固化物的质量为5~45%。
9.按照权利要求8所述的组合物,其中,上述无机填充剂(C1)为方英石。
10.按照权利要求8或9所述的组合物,其中,上述无机填充剂(C1)为球状。
11.按照权利要求8~10中任意一项所述的组合物,其中,上述无机填充剂(C2)为熔融二氧化硅。
12.按照权利要求8~11中任意一项所述的组合物,其中,上述无机填充剂(C2)为球状。
13.按照权利要求8~12中任意一项所述的组合物,其中,(B)固化剂为酚醛树脂。
14.按照权利要求1~7所述的半导体装置,其中,固化的树脂组合物是由权利要求8~13中任意一项所述的组合物固化而得到的。
全文摘要
本发明的目的在于提供基板不发生翘曲,回流焊工序中不引起剥离,且被树脂密封的半导体装置和适合制备该装置的树脂组合物。包括有机基板、设置在该基板上的至少一个半导体元件、密封该有机基板和该半导体元件的固化树脂组合物,其中,从配备该半导体装置的半导体元件的基板面的任一顶点,用激光三维测定机测定的在该面内的对角线方向高度的位移差的最大值为-600μm~+600μm,但不包括-600μm和+600μm两点的值,该半导体元件的总体积相对于该半导体装置的总体积的比例为18~50%,该固化树脂组合物包含(C)无机填充剂,(C)的质量/固化树脂组合物的质量为80~90%。
文档编号C08K3/36GK101083233SQ20071010871
公开日2007年12月5日 申请日期2007年5月31日 优先权日2006年5月31日
发明者长田将一 申请人:信越化学工业株式会社
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1