用于气相烯烃聚合的负载型催化剂的利记博彩app

文档序号:3709458阅读:283来源:国知局
专利名称:用于气相烯烃聚合的负载型催化剂的利记博彩app
技术领域
本发明涉及在采用担载于多孔无机载体之上的多相单活性中心催化剂和活化剂的反应器系统中进行的烯烃聚合的改进。
背景技术
有许多方法用于制备聚烯烃。这些方法可分为采用均相(可溶性)催化剂的溶液聚合法和采用负载型(多相)催化剂的方法。后一方法包括淤浆和气相法。这些方法均为本领域技术人员公知。本发明涉及淤浆和气相法。
以前的烯烃聚合法通常利用所谓齐格勒-纳塔催化剂体系。该体系中,许多活性过渡金属化合物(许多基于钛和/或铬化合物)用三烷基铝化合物作为助催化剂。目前仍大量采用这些催化剂体系。
近来已开发了各种各样的有机金属烯烃聚合催化剂。这些催化剂通常称为“单活性中心”催化剂,因为认为所述聚合在络合过渡金属中心的单一部位发生。已证明用烷基铝作助催化剂时这些催化剂的活性较低,但在铝氧烷特别是甲基铝氧烷存在下或与庞大的非配位阴离子如四(五氟苯基)硼酸根阴离子一起时活性很高。这些催化剂大多是双环戊二烯的π-配合物,即“茂金属”,最简单的包括二氯·双(环戊二烯基)合锆。仅包含一个π-键合的环戊二烯基部分或包含三个此部分的配合物也可使用。本文中有时将后面这些称为“茂金属”催化剂,但术语“茂金属”传统上仅用于双(环戊二烯基)配合物。所述环戊二烯可以是取代或未取代的,可通过各种桥连基连接。此类催化剂的例子可在许多参考文献中找到,包括US5 064 802;5 198 401;5 408 017;5 504 049;5 599 761;5 663 249;6 232 630;6 232 260和6 376 629。除上述催化剂之外,已发现各种多齿金属配合物是有效的烯烃聚合催化剂。专利和非专利文献中可找到许多例子,包括US5 637 660中所述喹啉氧基催化剂。术语“有机金属催化剂”在本文中用于此类催化剂。因其独特的催化活性,本领域技术人员认为茂金属催化剂不同于齐格勒-纳塔催化剂,本文所用聚合方法和添加剂通常考虑到其不同性质进行修改。
作为多相催化剂使用的有机金属催化剂在多孔载体材料如多孔氧化铝或氧化硅上供入反应器,多孔氧化硅是非常优选的。已发现使助催化剂或活化剂(某些情况下两术语可互换使用)也沉积至载体之上,可获得高效的负载型催化剂。所述催化剂和活化剂可以许多不同方式沉积,包括添加顺序不同以及添加方式不同。也可沉积单活性中心的催化剂配合物和活化剂的预反应产物。已发现各种不同的沉积方法在某些情况下可导致催化活性意想不到地不同。负载型催化剂制备的例子包括US5006 500;5 468 702;5 863 853;5 240 894;5 554 704;5 635 437;5 416 178;和6 172 168。
特别是在气相聚合中,可能出现结片现象,导致难以维持连续操作。虽然已对此现象提出许多理论,但一般认为聚合物粒子可能粘附于反应器壁,特别是在聚合物粒子速度低的地方。粘附的粒子继续聚合产生热量,还起到使反应器壁绝热的作用,妨碍有效冷却。这些“热点”可升至高于聚烯烃熔融温度的温度,使粒子融合在一起形成块、附聚物和片。这些熔合或部分熔合物可能从反应器壁脱落而趋于堵塞聚合物粒子产品输出管线。通常还须从聚合物粒子产品中除去。已提出的用于防止此结片现象的方法之一是通过添加二醇、二醇醚或失水山梨糖醇单油酸酯使小的催化剂/聚合物粒子钝化,如EP0560035A1中所公开。另一方法是利用沉积在负载型催化剂之上的脂肪族胺,公开在US 6 201 076中。
粘附于反应器壁可能因聚合物粒子的固有粘性所致,或者可能因静电引力所致。基本上不导电的聚烯烃粒子在气相反应器内循环时,积累静电荷,某些情况下可用适合的传感器显示。气相反应器内的静电积累在反应器下部(最多1个床直径)最明显,同时邻近反应器壁的粒子混合强度还较低,因而大多数热点和相伴的结片现象出现在这里。在此方面可参考US4 792 592和US5 283 278,其中在齐格勒-纳塔催化烯烃聚合中向聚合反应器中加入“抗静电剂”如C14-18烷基水杨酸的铬盐。
热点、结片和静电积累的产生一直都是烯烃聚合中许多讨论的主题。但仍未很好地了解这些现象之间的相互关系。此外,在聚合中加入“抗静电剂”产生相当易变的结果,而且通常伴随着催化剂活性的损失和/或损害聚合物的物理化学性质如聚合物粒子形态和堆积密度。例如,US6 140 432公开在负载型催化剂中加入伯、仲或叔羟烷基胺。此类化合物可严重损害催化剂的活性。
在淤浆聚合中,静电积累通常不是问题。此外,采用淤浆环管反应器时,因浆液在反应器内不断地快速循环,粒子速度一般很高。不过因为仍可能出现结片问题,已提出用于此类反应器的抗静电处理过的催化剂。参见例如US6 201 076。但同样对淤浆法有害的是此类催化剂所表现出的聚合物堆积密度下降。堆积密度较低可能不利地影响反应器中聚合物的收获,即利用沉降支管或依靠聚合物从液体连续相的重力沉降的其它装置。
希望提供一种利用负载型催化剂的烯烃聚合方法,其中所述总聚合过程在上述问题方面得到改进,而不招致催化剂活性降低或产生物理化学性质不理想的聚合物粒子的代价。

发明内容
现已意外地发现有单一活性官能团使之能在单一部位维系在负载型催化剂之上而且不含碱性氮的长链、尤其是疏水性分子在气相和淤浆烯烃聚合工艺中使工艺操作性提高而不显著地降低催化剂的活性或不利地影响聚合物的形态。在淤浆法中可显著地提高聚合物的堆积密度。
具体实施例方式
本发明负载型催化剂适用于采用负载型有机金属催化剂的烯烃聚合法。此类方法包括气相聚合和淤浆聚合。气相聚合一般涉及向填充有预先形成的聚合物、催化剂颗粒、添加剂等的垂直取向的聚合反应器中加入气态单体。上升的气相使床流化,在此过程中气相中所含单体在负载型催化剂或预形成的聚合物上聚合。到达反应器顶部时,未反应的单体再循环,而聚合物不断地沿反应器侧面下降。此方法是公知的。例子之一是世界范围内广泛使用的UnipolTM法,描述在US4 003 712和其它专利中。
在淤浆反应器中,用低沸点烃类溶剂如异丁烷、己烷或庚烷作为连续介质,单体和催化剂等加入此连续相中。生成的聚合物不溶于反应介质,产生聚合物和催化剂等的浆液。淤浆反应器可分为环管反应器和沸腾溶剂反应器。后者采用立式反应器例如CSTR,温度和压力是使溶剂沸腾的。至少部分地通过溶剂气化潜热除去热量,然后使溶剂冷凝,再返回反应器。聚合物以浆液形式从反应器底部排出并闪蒸除去溶剂,溶剂再循环。
淤浆环管反应器是套管式反应器,可以是水平或垂直取向的。在两管之间流动的水起除去热量而保持温度相对恒定的作用。利用泵使浆液流动,使聚合物浆液保持较高的速度。产物连续或不连续地从“沉降支管”中排出。
本发明多相催化剂包括细碎的多孔无机载体材料,所述载体材料经处理含有过渡金属或内过渡金属有机金属配合物“催化剂前体”(precatalyst)和至少一种活化剂(优选有机铝氧烷)。本领域中术语“催化剂前体”许多情况下与“催化剂”同义,是优选的术语,因为用作催化剂的金属配合物在没有催化剂体系的其它成分的情况下通常没有或仅有很低的聚合活性。金属配合物本身可能不是真实的催化剂而是其前体。因此,术语“催化剂前体”似乎是描述此金属配合物的适用术语。
术语“助催化剂”和“活化剂”通常互换使用。这些术语表示加入催化剂前体时产生高烯烃聚合活性的组分。本文中使用术语“活化剂”。虽然烷基金属化合物对于齐格勒-纳塔催化剂是有效的活化剂,但对本发明催化剂不是有效的活化剂。相反,庞大的阴离子和优选的铝氧烷是有效的活化剂。所述催化剂上可存在少量的烷基金属化合物,可增大或改进催化剂体系的活性。烷基金属化合物还可有效地作为使催化剂体系钝化的物质例如可能以低浓度在反应物原料流或溶剂进料或循环原料流中进入反应器的痕量水的清除剂。
许多催化剂前体是适用的。本发明范围内,催化剂前体是用铝氧烷活化后显示出烯烃聚合活性的过渡金属化合物或配合物,下文中使用术语“配合物”。所述催化剂前体通常是过渡金属的金属配合物,优选钛、锆或铪的配合物。许多适合的催化剂前体是含有一或多个π-键合的芳族或杂芳族配体的金属配合物,即以下通式的配合物(A)nMLm其中A为芳族或杂芳族π-键合配体例如但不限于取代或未取代的环戊二烯基、茚基、硼杂苯、硼杂萘、吡咯基等,其中两个A可通过二价桥连配体如亚烷基、和甲硅烷基等连接,L为非π-键合的配体如烷基、卤基、烷氧基、或氰基等,n和m是满足金属M的化合价的数。此类催化剂的非限制性实例包括前面所引US专利中公开的那些。特别优选用于气相法的催化剂前体包括US6 232 260和6 376 629中公开的茚并吲哚基配合物。本申请中,有机金属催化剂前体是在铝氧烷或阴离子活化剂存在下有烯烃聚合活性的过渡或内过渡金属有机配合物。
优选铝氧烷与本发明负载型催化剂一起使用。所述铝氧烷是有机铝氧烷,可通过例如烷基铝水解制备。优选的铝氧烷是甲基铝氧烷例如以“MAO”和“PMAO”商购的那些。代替或除甲基之外还含有其它有机基如乙基、正丙基、异丙基、正丁基和异丁基等的铝氧烷也适用。既含有甲基又含有其它基团的铝氧烷有时称为“改性甲基铝氧烷”或“MMAO”。甲基铝氧烷的制备公开在许多专利中,包括US5 041 584;5 066 631;和5 329 032。除所要求的铝氧烷之外,所述负载型催化剂可还包括其它“助活化剂”。适合的“助活化剂”包括烷基铝化合物(三乙基铝、氯化二乙基铝、三甲基铝、三异丁基铝)等。
代替或除铝氧烷活化剂之外,本发明催化剂体系可采用阴离子活化剂。阴离子活化剂还包括含有非亲核阴离子的酸式盐。这些化合物一般由含有“非配位”阴离子的化合物组成,所述阴离子包含与硼或铝键合的庞大配体。例子包括四(五氟苯基)硼酸锂、四(五氟苯基)铝酸锂、和四(五氟苯基)硼酸苯铵等。适合的活化剂还包括取代和未取代的三烷基和三芳基硼烷如三(五氟苯基)硼烷、三苯基硼烷、和三正辛基硼烷等。这些和其它适合的含硼活化剂描述在US5 153 157;5 198 401;和5 241025中。适合的活化剂还包括硼铝酸盐(烷基铝化合物与有机硼酸的反应产物),如US5 414 180和5 648 440中所述。
所述载体材料可以是任何细碎的多孔无机基质,包括但不限于各种氧化铝、硅酸盐、氧化硅等。硅酸盐如硅酸铝、硅酸镁、和金属硅铝酸盐如硅铝酸镁都适用。但优选的是细碎氧化硅如Davison 948氧化硅和类似的氧化硅,可来自许多源。粒度、表面积、孔径和孔体积都是本领域常用的。例如但不限于,表面积可在10至700m2/g的范围内;孔体积可在0.1至5.0cm3/g的范围内;平均粒度可在10或更小至500μm的范围内。更优选,表面积在50至500m2/g的范围内;孔体积在1.0至4.0cm3/g的范围内;平均粒度在10至200μm的范围内。孔径可在10至1000埃、更优选50至800埃、最优选75至500埃的范围内。
所述催化剂前体和活化剂一般在可接受溶剂优选烃类溶剂如甲苯、二甲苯、己烷、庚烷等的溶液中加至催化剂载体之上。可采用US4 921 825所公开的涉及通过加入所述组分不溶于其中的第二溶剂导致沉淀的制备方法,以及如US4 808 561;4 791 180;4 752 597;5 635 437;5554 704;和5 240 894中公开的技术。
所用溶液的体积可在小于氧化硅孔体积的0.1至所述孔体积的很多倍的范围内,但优选在载体孔体积的0.5至10、更优选0.5至6、最优选0.8至2的范围内。在任何给定时间内使用有限量的溶液即小于孔体积的1.5倍、优选小于孔体积的1.0倍时,产品仍然是自由流动的而且似乎是干的或仅仅稍微潮湿。可除去溶剂产生“干”催化剂。可使催化剂重新在溶剂中形成浆液以利于催化剂前体和铝氧烷的均匀结合或除去不想要的副产物或杂质。使用更大量的溶剂时,产生浆液。已发现在加入各种催化剂体系成分之前形成载体浆液使聚合物的形态得到改善,因而是本发明更优选的实施方案。
催化剂前体和活化剂的添加顺序无严格要求。例如,可先加入催化剂前体,然后干燥,再加入活化剂,或者可颠倒此顺序。此外,可先使催化剂前体和活化剂混合在一起形成溶液,或者当活化剂为铝氧烷时,可使催化剂前体与有限的铝氧烷混合在一起形成固体催化剂前体/铝氧烷反应产物粒子的分散体。每种组分都可采用多次施加。铝氧烷与金属催化剂前体之比按Al金属之摩尔比计算可以是任何适合的范围,例如在公开的或本领域技术人员已知的范围内。优选Al/M之摩尔比为0.5至1000∶1,更优选10∶1至400∶1。使用庞大阴离子活化剂时,有机金属催化剂前体中金属与庞大非配位阴离子之比为100∶1至1∶10、优选10∶1至1∶1、更优选3∶1至1∶1。
可进一步用烷基金属化合物、抗静电剂等处理所述活化的催化剂体系粒子,在施加催化剂前体和活化剂之前或之后。用催化剂体系的组分处理之前载体材料可含有很多羟基官能团,或者可经焙烧或用可与羟基反应的疏水剂如六甲基二硅氮烷、三甲基氯硅烷、或三甲基甲氧基硅烷等处理。载体为氧化硅时,优选将载体在200至800℃、更优选250至650℃的温度下焙烧几小时。
操作改进添加剂可在负载型催化剂制备过程中的任何时间加入载体中,即在加入催化剂前体和/或铝氧烷之前、添加催化剂前体和铝氧烷之间、添加这些组分的同时或之后。操作改进添加剂可在负载型催化剂制备的一或多个阶段分批加入。
所述“操作改进添加剂”是含有能使该化合物锚固或“维系”在负载型催化剂之上的疏水性单官能团的化合物。这些操作工艺改进添加剂在本文中称为“单官能疏水性栓系剂”,它们不含碱性氮即伯、仲或叔氨基,但可含有季氮。
已意外地发现本发明单官能疏水性栓系剂(tether)使烯烃聚合过程得到显著的改进,包括气相聚合中结片和/或结垢减少,同时避免催化剂活性明显损失。某些情况下,催化剂活性实际上提高。这与以US6140 432为代表的采用羟烷基伯、仲和叔胺的所谓“表面改性剂”相反。还意外地发现所述单官能疏水性栓系剂还可改善聚合物的堆积密度,特别是在淤浆聚合中,而且可改变所生产聚合物的MI2和MIR比。MI2是关于在2Kg载荷所施加的压力下的熔体指数的标准工业术语,而MIR是MI20/MI2之比。熔体指数和熔体指数比在聚烯烃的深加工例如注塑、薄膜吹塑、挤出等中特别重要。
所述单官能疏水性栓系剂有疏水部分,优选由未支化的主链构成,如果是未取代的,最少有约6个碳原子;如果是高度氟代的(优选全氟代),最少有约4个碳原子;而主链为低聚硅氧烷时,最少有4个烃取代的甲硅烷氧基单元。在低聚硅氧烷的情况下,甲硅烷氧基可被亚烷基桥连基以亚烷基中的2个碳对每个甲硅烷氧基的比例替代。类似地,烷基的两个碳可被一或多个甲硅烷氧基取代。所述未支化的主链可被优选在反应条件下惰性的基团即氟、芳基、烷基、氟烷基、氟芳基、烷氧基烷基和烷氧基芳基等取代。除未支化的疏水物之外,支化的疏水物例如仲和叔烷基、新链烷烃衍生的基团、和芳基-和环烷基-取代的烷基也适用,只要所述支化的疏水物含有至少一个C6链。优选所述疏水基含有12-24个碳原子和/或5-10个甲硅烷氧基。所述疏水物可还有烯键式不饱和。
适合的疏水物非限制地包括正己基、正辛基、2-乙基己基、2-环己基乙基、正壬基、正癸基、异辛基、2,2-二甲基辛基、正十二烷基、新癸基、正十四烷基、正十八烷基、正二十烷基、4-(壬苯基)丁基、6-丁氧基己基、九甲基丁硅烷氧基、1-三甲基甲硅烷氧基-2-二甲基甲硅烷氧基丙基、十一甲基戊硅烷氧基等。所述单官能疏水性栓系剂的脂族烃疏水部分可还包括散布的氧原子(醚键),条件是所得醚仍是疏水性的。4或更多碳原子/醚键的比例是优选的。例子包括6-丙氧基己基和6-乙氧基己基。
优选的疏水基团包括CH3(CHR)n-,其中R为H、F、CF3或C1-8烷基,优选C1-4烷基,优选H或甲基,n为5至20、优选7至17;CF3(CF2)m-,其中m为3至17、优选5至7;和R3SiO(R2SiO)-,其中每个R独立地为C1-18烷基、优选C1-10烷基、更优选C1-4烷基、最优选甲基,或者R为C6-10芳基,均可选地氟代。
本发明单官能疏水性栓系剂的优选的有机硅疏水部分包括有5至10个重复的甲硅烷氧基的有机聚硅氧烷,通常一端以三有机基甲硅烷氧基封端。优选的有机聚硅氧烷包括环状的二有机基聚硅氧烷(利用其开环能力既作为单官能疏水性栓系剂的疏水部分又作为后面定义的单官能反应基),和直链或支链的低聚有机聚硅氧烷,带有可选地氟代的烷基或芳基、优选可选地氟代的C1-24烷基、更优选可选地氟代的C1-4烷基或苯基。所述直链和支链的有机聚硅氧烷优选含有端或侧甲硅烷基,有作为单官能反应基的活性官能团。后者的非限制性实例包括有易水解官能团的甲硅烷基,所述易水解官能团的例子包括卤基(优选氯);乙酰氧基;肟基;烷氧基(优选甲氧基或乙氧基);或与硅键合的氢。
烃取代的硅烷也是优选的单官能疏水性栓系剂。例子包括有可选地氟代的长链烷基的单体硅烷例如辛基二甲基硅烷、二(十二烷基)甲基硅烷、十四烷基二甲基甲氧基硅烷、和十八烷基硅烷等。这些硅烷含有与硅原子键合的反应基,例如乙酰氧基;肟基;卤基;烷氧基;或与硅键合的氢。
所述单官能疏水性栓系剂的单官能反应基直接或通过连接基与疏水物相连。所述单官能反应基必须是与所述负载型催化剂的至少一种组分“反应的”使之在后续烯烃聚合反应(如果用于淤浆聚合)过程中基本上保持栓系状态。预计单官能疏水性栓系剂有一些损失。但如果损失基于初始存在量大于50%(摩尔),则可能需要不希望的大量的单官能疏水性栓系剂。可通过标记栓系剂并测量滤除所有固体之后其在聚合过程连续相中的存在量估计未安全栓系的量。栓系的疏水物的损失通常不是问题。
用作栓系基的官能团必须是单官能的,即必须在单官能疏水性栓系剂的唯一部位有反应基。因此,利用位于疏水链两端的两个反应基的添加剂是不满足的,有连接在疏水性栓系剂的不同位置即在栓系剂的两个不同原子上的两个反应官能团的疏水基也不满足。
例如,有一个二甲基甲氧基甲硅烷基官能团的疏水性栓系剂显然是单官能疏水性栓系剂。但疏水链上有甲基二甲氧基甲硅烷基或三甲氧基甲硅烷基的疏水性栓系剂也是单官能栓系剂,因为反应基-甲氧基与同一原子(硅)相连。相反,含有两个邻位二甲基甲氧基甲硅烷基的栓系剂不是单官能栓系剂,因为反应基(甲氧基)不位于同一硅之上。因此,含有活性官能团如双(2-羟乙基)氨基的栓系剂在本发明含义内不是单官能的,即使在允许碱性氨基氮原子的情况下。
单官能反应基的例子包括但不限于含有诸如-OH、-SH、-SiR2H、-SiRH2、-SiH3、-OSiR2H、-OSiRH2、-OSiH3、-OSiR2OR、-OSiR(OR)2、-OSi(OR)3、-OSiR2Cl、-OSiRCl2、-C(O)H和-NR3+X-等基团的那些,其中R为H或C1-20烃,X-为阴离子、优选卤离子。其它例子包括环氧基、铝酸根和硼酸根基,即脂族羧酸的铝酸盐或硼酸盐。如果不直接与疏水物相连,所述栓系基可通过间隔基如酯、氨酯或醚键等键合。
单官能疏水性栓系剂的量可在较宽范围内改变,但优选为0.1至100mol/mol催化剂前体金属,更优选0.5至10mol,最优选在0.8至4mol的范围内。例如,在锆基催化剂前体的情况下,已发现2mol操作改进添加剂/mol Zr的比例是有利的。可通过制备单官能疏水性栓系剂的量不同而其它方面相同的催化剂确定最佳量。理想地,所述单官能疏水性栓系剂有效地减少不希望的聚合现象如结垢和结片,而且基本上保持或者甚至提高催化剂的聚合活性(kg聚合物/g金属)和聚合物的堆积密度。
所述单官能疏水性栓系剂可在添加催化剂前体和铝氧烷之前、之后或同时加入载体中,或者可采用这些添加方式组合,如前面所述。所述添加剂一般溶于溶剂例如甲苯、二甲苯、脂族烃、醚等中加入。在铝氧烷活化剂的情况下,优选的添加方法是将所述添加剂加入铝氧烷的溶液或分散体中并使该溶液的一部分沉积至载体之上,然后将催化剂前体加至剩余的添加剂/铝氧烷溶液中进行沉积。经过处理的载体可用溶剂洗涤以使组分进一步分布和/或除去未固定在载体之上的组分。可使所述催化剂干燥或以浆液形式使用,在相同或不同的液相中。在有机溶剂如庚烷中洗涤之后所述负载型催化剂上仍存在单官能疏水性栓系剂是所述单官能疏水性栓系剂已反应或“栓系”在负载型催化剂之上的证据。
含有所述添加剂(可选地还含有活化剂和/或催化剂前体)的溶液的体积可考虑加至载体之上的希望的方法进行调节。如果要制备催化剂浆液或浆料则使用较多、较稀的溶液,而在初湿法的情况下则采用较少而且较浓的溶液。也可采用喷涂技术,其中将溶于溶剂的各种催化剂组分通过喷嘴或雾化器喷至搅动的载体之上。
本发明负载型催化剂生产方法之一实施方案中,优选在任何给定时间加至载体之上的溶液总体积是这样的以致获得看似干的或者仅稍微潮湿的产品。将催化体系的各组分加至载体之间,可通过除去预先施加的溶剂(优选在真空下)使催化剂干燥。采用此方法可避免在催化剂体系的组分沉积过程中形成浆料或浆液。已发现如此形成的负载型催化剂通常提供更佳效果,甚至在随后用较大量的溶剂洗涤时,此时必然形成浆液。
另一优选实施方案中,采用淤浆法制备负载型催化剂。与将载体即焙烧过的氧化硅加入活化剂溶液优选铝氧烷溶液中的现有淤浆法相反,该优选实施方案中,先使载体在烃类溶剂或含有少量活化剂(即铝氧烷为活化剂时,要加铝氧烷总量的10wt%或更少)的烃类溶剂中形成浆液。优选仅使用溶剂。然后在一或多个后续步骤中(可选地与催化剂前体同时,在任何给定步骤中)加入铝氧烷或剩余部分的铝氧烷。
因此,可先使载体在烃中形成浆液,使用例如约为载体孔体积2至10倍的溶剂(优选孔体积的2.5至4倍),产生浆液或湿浆料,然后在搅拌下缓慢加入铝氧烷溶液。接着,在溶液中施加催化剂前体,优选与附加的铝氧烷同时加入。最终铝与过渡或内过渡金属之摩尔比可为例如(但非限制)40∶1至400∶1、优选50∶1至200∶1、最优选80∶1至160∶1。每次添加之后,一般将催化剂浆液搅拌30分钟至3小时、优选1至1.5小时。使催化剂产品真空干燥,优选在稍微升高的温度即35℃下,以除去溶剂而产生看似干的自由流动催化剂。
活化剂和催化剂前体可在一份溶剂中一起加入,可先在溶剂的第一部分中加入一部分活化剂,然后在溶剂的第二部分中加入第二部分活化剂,其中可能利于至少含有一部分催化剂前体。所述单官能疏水性栓系剂(本发明该实施方案中使用时)可在任何时间加入,即在添加铝氧烷之前(在与铝氧烷相同的溶液中,可部分或全部与铝氧烷反应)、或在添加催化剂体系的其它组分之后。术语“催化剂体系的组分”意指所述活化剂和所述催化剂前体。
使载体形成浆液和提供活化剂、催化剂前体、单官能疏水性栓系剂、清除剂(即TEAL、TIBAL)等的溶液所使用的有机溶剂可相同或不同,优选为非质子溶剂例如酮类、醚类、烷基酯类、酰胺类、及脂族和芳族溶剂。例子包括二甲基酮、甲基乙基酮、二乙基酮、乙酸甲酯、乙酸乙酯、二乙醚、四氢呋喃、二甲基甲酰胺、二甲亚砜、和乙腈等。但优选脂族和芳族溶剂,包括脂族溶剂例如戊烷、己烷、环戊烷、环己烷、庚烷、和常用的这些和其它石蜡族溶剂的混合物,和芳族溶剂例如苯、甲苯、二甲苯异构体和二甲苯异构体混合物等。利于使用溶剂的混合物。
本领域技术人员基于例如溶解所需量的各种待提供化合物的能力、抗潜在干扰物(例如在酯类溶剂情况下的游离酸)的相对能力、以较纯形式提供或易于提纯的能力即除去痕量的水、和从最终催化剂浆液中除去的难易等性能选择溶剂。甲苯是优选的溶剂。
所述负载型催化剂的组分可以任何顺序和以任意组合一次或分多次加入,只要最初使载体在基本上不含催化剂体系组分(活化剂和催化剂前体)的溶剂中形成浆液。希望此初始浆液完全不含此类组分,但包括很少量的所述组分而且其量足够低以致催化剂活性和/或聚合物形态相对于加入干载体中的初始溶液含有大量即活化剂和/或催化剂前体总量的20wt%或更多的常规方式制备的催化剂仍获得改进也不背离本发明的精神。
意外地,通过此溶剂浆液法制备的催化剂的活性比常规催化剂高,许多(即使不是大多数)情况下,甚至比通过初湿技术制备的催化剂高。聚合速率和产率的改进可达20-40%。此外,聚合物形态特别是较大附聚物(即粒度>2mm)的形成减少,甚至在不加本发明操作改进添加剂或其它添加剂如抗静电剂等的情况下。由于所述催化剂是烯烃聚合中成本较高的组分,所以聚合速率和产率的这些改进很有商业价值。
上述方法已针对与铝氧烷活化剂一起使用的情况进行了描述,但也可与非配位的庞大阴离子活化剂一起使用。意外的是最初使载体在基本上仅含溶剂的液体中形成浆液产生活性明显更高的催化剂。
本发明负载型催化剂适用的烯烃聚合法包括气相和淤浆法,如前面所述。乙烯和丙烯是优选的单体,通常与可共聚的共聚单体一起。优选的共聚单体包括C4-12单和二烯烃如1-丁烯、1-戊烯、1-己烯、1-辛烯、1-癸烯、1-十二碳烯、1,5-己二烯、环己烯、和降冰片烯。丙烯也可以是乙烯聚合中的共聚单体,反之亦然。其它可共聚的单体如乙烯基酯和苯乙烯等也可使用。
以下实施例用于说明催化剂的制备及该催化剂在气相和淤浆聚合法中的应用。这些实施例是举例说明而非限制性的。所有实施例和对比例中,除非另有指示,所用氧化硅的典型粒度为40μm(10th百分位,10μm最小,10μm典型;50th百分位,35-49μm;90th百分位,97μm最大,80μm典型),表面积为280-355m2/g(300m2/g典型),孔体积为1.55-2.00cm3/g(1.65cm3/g典型)。
实施例1和2及对比例C1和C2向8.5ml 30%甲基铝氧烷的甲苯溶液(38.8mmol Al)中加入0.40mmol单官能疏水性栓系剂,所得混合物在环境温度下搅拌30分钟。用桨式搅拌器剧烈搅拌的情况下将2.1ml该混合物滴加至6.00g煅烧氧化硅中。加入甲基铝氧烷/单官能疏水性栓系剂混合物之后继续搅拌30分钟。将104mg催化剂前体配合物-(5,8-二甲基-5,10-二氢茚并[1,2-b]吲哚基)-环戊二烯基二氯化锆加入剩余的甲基铝氧烷/操作改进添加剂混合物中,将该混合物在环境温度下搅拌30分钟。然后将混合物滴加至所述处理过的载体中,将所得固体在环境温度下搅拌1小时。使所述固体催化剂在35℃下真空干燥2小时。将4.0g干燥的催化剂用总共190ml庚烷洗四遍,然后在35℃下真空干燥90分钟。对比例C1的催化剂不含添加剂,而对比例C2的催化剂不含单官能疏水性栓系剂(该术语在本文中已定义),而是用常规的抗静电剂或“表面改性剂”Armostat710制备。
在3.3L搅拌床气相反应器中进行实验室规模的气相聚合,以半间歇方式操作,保持在70℃。将300g LLDPE粉末床装入反应器中,加热并用氮气吹扫以建立惰性气氛。吹扫后,将3.0ml 0.050M Al(i-Bu)3溶液加入反应器中作为潜在毒物的清除剂。在反应器中加入适量的催化剂,然后密封。向反应器中加氮气形成138psig的压力。然后向反应器中加入足以产生1.3psi的1-己烯分压的预测量的1-己烯以及足以使反应器总压达到300psig的乙烯。然后以6.6%的1-己烯/乙烯质量比向反应器中供应乙烯和1-己烯以保持所述反应器总压。已消耗320g乙烯和1-己烯(2-3小时)之后,通过放空和吹扫反应器停止反应。从反应器中取出与1-己烯和乙烯消耗量相等量的聚合物。此过程重复四遍达到足以产生代表性试样的床周转率。
在上述乙烯/己烯气相聚合中使用不含操作改进添加剂(对比例C1)的负载型催化剂、含Armostat710双(2-羟乙基)-9-十八碳烯-1-胺(对比例C2)的负载型催化剂、和本发明两种单官能疏水性栓系剂处理过的催化剂。结果示于下面。
表1

从以上实施例可见与不含Armostat710(常用的抗静电剂)的负载型催化剂相比,Armostat710使催化活性降低。实施例1和2的单官能疏水性栓系剂在这些实验室规模的试验中保持或实际上提高催化活性。聚合物的堆积密度也有些提高,尽管所有堆积密度都较高。
实施例3和对比例C3按US6 232 260制备负载型催化剂,用(环戊二烯基)(10H-茚并[3,2-b]吲哚基)二氯化锆作催化剂前体。向已在482°F(250℃)下焙烧5小时的3.0lb(1.34kg)氧化硅中加入0.94lb(420g)的3.84lb(1.71kg)30%重MAO的甲苯溶液与24g(30ml)十八烷基硅烷的预混物。所有制备和添加过程都在干氮气下进行。将该混合物以约0.045lb/min(20g/min)的速度喷射至氧化硅中从而在约30分钟内加完。使反应器内容物在室温下混合1小时。向剩余的MAO/十八烷基硅烷预混物中加入22.7g(环戊二烯基)(10H-茚并[3,2-b]吲哚基)二氯化锆。在1-1.5小时的时间内将该混合物如前所述加至搅拌着的预处理过的氧化硅中。然后使反应器与真空管线相连,反应器夹套温度控制设定在110°F(43℃)。除去溶剂直至处理后的氧化硅看似干的,约4-8小时。然后将温度再设定至65°F(18.3℃),加入29lb(13kg)庚烷,搅拌4小时,然后滗析。再加入庚烷3×18lb(8kg),每次搅拌0.5小时,然后分别滗析。重新启动真空,在110°F(43℃)下除去剩余溶剂。催化剂上的Zr载荷通常为0.20%重。
在中试规模的气相反应器中评价单官能疏水性栓系剂处理的负载型催化剂,与采用相同类型和Zr载荷的常规负载型催化剂的乙烯聚合对比。反应器构型与US4 003 712中公开的类似。反应器中已装入乙烯(50mol%)、己烯(1.0mol%)、异丁烷(25mol%)和氮气(24mol%)之后,开始向反应器中供入催化剂。直至前10小时后才观察到缓慢的反应,入口气体温度稍微降低而且A和B探头处的反应器静电变成负值指示启动周期结束。然后逐渐增加催化剂进料以提高生产速率。结果示于下表2中。
表2

表2所示结果表明催化剂活性比不含单官能疏水性栓系剂的类似催化剂意外地提高。催化剂产率从1500kg聚合物/g Zr增至1800kg聚合物/g Zr,这在工业上是明显的提高。但工艺操作性的提高同样重要。虽然对比例和本发明实施例中都产生聚乙烯“碎块”,但所述单官能疏水性栓系剂处理的催化剂产生较小的碎块,而对比催化剂产生的碎块包括“珊瑚型”块。本发明方法中碎块的形态显示出明显的改善。还值得注意的是静电明显减少,如位于反应器内12in(30cm)高处的“A”探头所测量的。用本发明催化剂进行的试验的静电较低(+1200V)而且较均匀,而用对比催化剂进行的试验显示出较高的平均值(+2100V)以及较高的波动。
实施例4-9和对比例C4和C5通过类似于实施例1中所述的方法在煅烧氧化硅上制备一系列负载型催化剂,但催化剂前体是双(环戊二烯基)二氯化锆,用MAO作活化剂,Al/Zr摩尔比为200。采用不同的单官能疏水性栓系剂,以2mol单官能疏水性栓系剂对1mol Zr的比例。在实验室规模的淤浆反应器中测试各种负载型催化剂的性能,用异丁烷作淤浆介质,1-丁烯作为共聚单体。生产的LLDPE聚乙烯标称密度为0.92g/cm3。针对各添加剂以及不含添加剂和包含传统的“抗静电剂”Armostat710的类似催化剂测量催化剂产率、熔体指数、熔体指数比、和堆积密度。结果示于下表3中。
表3

*Armostat710不是单官能疏水性栓系剂表3中所示结果显示相对于Armostat710,本发明单官能疏水性栓系剂都显示出高得多的催化剂产率。但还更意外的是使用本发明单官能疏水性栓系剂时,既获得重均分子量提高,又获得堆积密度提高。后者是烯烃淤浆聚合过程中的重要性能。只有十甲基环戊硅氧烷未显示出聚合物堆积密度提高。但此单官能疏水性栓系剂显示出与未改性的负载型催化剂近似相同的活性,分子量高约74%,催化剂产率高于Armostat710的三倍。
相信其它催化剂制备方法产生类似结果。例如,过去用淤浆法形成负载型催化剂,其中液体体积显著地超过孔体积,形成初始浆液,然后干燥。实施例9和下面的对比例C6说明在这些类型的负载型催化剂中采用本发明可能的改进,而实施例10和对比例C7说明所述改进淤浆法本身(即不存在任何改性剂)所获得的活性改进,从而可直接对比催化剂制备方法。
实施例9和C6通过淤浆法使双(环戊二烯基)二氯化锆催化剂前体、MAO、和Armostat710(对比例C6)或1-十八烷醇(实施例9)负载于煅烧氧化硅之上,然后使所述负载型催化剂真空干燥。添加剂载荷为0.22mmol/g氧化硅。在实验室规模的气相反应器中测试所述负载型催化剂的活性。本发明催化剂显示出1.7Kg/g的产率(实施例9),而对比催化剂仅显示出0.100Kg/g的产率。
实施例10和对比例C7如下制备本发明催化剂使4.01g Crosfield ES 757氧化硅(在流化的干氮气中于250℃焙烧12小时)在20ml甲苯中形成浆液。在搅拌下向该浆液中滴加3.3ml 30%甲基铝氧烷(甲苯溶液,13.6%Al,0.92g/ml(A1bemarle),15mmol)。将该浆液在环境温度下搅拌1小时。使催化剂前体(环戊二烯基)(10H-茚并[3,2-b]吲哚基)二氯化锆(23.9mg,0.443mmol)溶于4.9ml 30%甲基铝氧烷的甲苯溶液(23mmolAl),将该混合物在氮气下搅拌1小时。所得溶液滴加至甲基铝氧烷处理的氧化硅浆液中,将所得负载型催化剂浆液在环境温度下搅拌90分钟。在真空中35℃下经90分钟除去溶剂,得到看似干的自由流动粉末。
类似地制备催化剂(对比例C7),但在加入甲基铝氧烷之前不使氧化硅在甲苯中形成浆液。
在300psig、49.7%的乙烯浓度和1.3%的己烯浓度下用这两种催化剂在气相进行乙烯/己烯共聚。结果示于下表4中。
表4

1在1-2小时试验中的速率从表4中可见,本发明淤浆催化剂制备方法(实施例10的催化剂)在相同的催化剂计量下使聚合速率(g聚合物/g催化剂/hr)提高38%,产率(g聚合物/g Zr)提高25%。此外,粒子形态显著改善,粒度>2mm的粒子数量从10g降至0.5g。相对于所生产的全部聚合物计算,这仅占用常规方法制备的催化剂所得大粒子量的4%。预计使用本发明操作改进添加剂将进一步改进聚合物形态。
实施例11通过实施例10的方法用237mg(0.439mmol)催化剂前体制备负载型催化剂。但用3.3ml将241mg 1-十八烷醇(0.891mmol)加入8.3ml 30%甲基铝氧烷(溶于甲苯)溶液中制备的溶液代替将加入载体浆液中的初始甲基铝氧烷溶液。使催化剂浆液在45.8℃下真空干燥1.5小时。
虽然已举例说明并描述了本发明的具体实施方案,但这些具体实施方案不是要说明和描述本发明的所有可能形式。相反,说明书中所用词语是说明而非限制性词语,应理解为可在不背离本发明精神和范围的情况下进行各种改变。除非另有说明,术语“一种”意指“一或多种”。
权利要求
1.在适用于采用包含担载于粒状多孔无机载体之上的有机金属催化剂前体及活化剂的多相催化剂的一或多种烯烃单体聚合的烯烃聚合催化剂中,改进包括在所述多相催化剂上沉积包含疏水部分和单官能反应基的单官能疏水性栓系剂,所述单官能疏水性栓系剂不含碱性氮。
2.权利要求1的催化剂,其中所述单官能疏水性栓系剂的疏水部分包括C6-24支化或未支化的可选地氟代的脂族烃基、最少含4个碳原子的高氟代脂族烃、至少含5个硅原子的有机聚硅氧烷、或既含Si-C键合的脂族烃部分又含二有机基硅烷氧基部分其中脂族烃部分中碳原子数的一半加二有机基硅烷氧基中硅原子数之和最小为4的化合物。
3.权利要求1的催化剂,其中所述单官能反应基选自羟基、环氧基、季铵、硫醇、醛、可水解的硅烷、Si-H官能的硅烷、铝酸盐、和硼酸盐。
4.权利要求1的催化剂,其中所述疏水部分包括C10-24可选地支化的脂族烃、全氟代C6-10脂族烃、或Si5-10二有机基聚硅氧烷。
5.权利要求1的催化剂,其中所述单官能疏水性栓系剂选自脂肪醇、C8-24-取代的硅烷、和脂肪族季铵卤化物。
6.权利要求1的催化剂,其中所述单官能疏水性栓系剂溶于低于多孔无机载体孔体积1.5倍的溶剂中加至所述多孔无机载体之上。
7.权利要求1的催化剂,其中所述单官能疏水性栓系剂与所述铝氧烷混合在有机溶剂中加至所述多孔无机载体之上。
8.权利要求1的催化剂,其中单官能疏水性栓系剂的第一部分在溶剂中与所述铝氧烷的第一部分混合以低于所述多孔无机载体孔体积两倍的总液量加至所述多孔无机载体之上,可选地除去溶剂,然后所述单官能疏水性栓系剂的第二部分、所述铝氧烷的第二部分和所述单活性中心催化剂前体的至少一部分在溶剂中加入,液相的量是不形成浆液的量。
9.权利要求1的催化剂,其中所述活化剂包括铝氧烷。
10.权利要求1的催化剂,其中所述活化剂包括庞大阴离子配体。
11.在通过气相法或淤浆法使一或多种烯烃聚合的烯烃聚合方法中,改进包括使所述一或多种烯烃在权利要求1的催化剂存在下聚合。
12.权利要求11的方法,其中所述烯烃包括乙烯、丙烯、或其混合物,可选地存在一或多种其它可共聚的烯键式不饱和单体。
13.权利要求11的方法,其中使用其它可共聚的烯键式不饱和单体,选自C4-12单-和二烯烃。
14.权利要求11的方法,其中聚烯烃产品的堆积密度比相同条件下用其上未沉积单官能疏水性栓系剂的类似负载型催化剂制备的聚烯烃产品的堆积密度高。
15.权利要求11的方法,其中所述催化剂前体包括有至少一个可选地取代的茚并吲哚基配体的过渡金属配合物。
16.权利要求1所述催化剂的制备方法,所述方法包括a)使催化剂前体沉积至多孔无机粒状载体之上;b)使活化剂沉积至所述载体之上;c)使单官能疏水性栓系剂沉积至所述载体或所述催化剂前体和/或活化剂之上,其中步骤a)、b)和c)以任何顺序进行或者步骤a)、b)和/或c)之任意同时进行。
17.权利要求16的方法,其中所述单官能疏水性栓系剂的疏水部分包括C6-24支化或未支化的可选地氟代的脂族烃基、最少含4个碳原子的高氟代脂族烃、至少含5个硅原子的有机聚硅氧烷、或既含Si-C键合的脂族烃部分又含二有机基硅烷氧基部分其中脂族烃部分中碳原子数的一半加二有机基硅烷氧基中硅原子数之和最小为4的化合物。
18.权利要求16的方法,其中所述单官能反应基选自羟基、环氧基、季铵、硫醇、醛、可水解的硅烷、Si-H官能的硅烷、铝酸盐、和硼酸盐。
19.权利要求16的方法,其中所述单官能疏水性栓系剂溶于低于多孔无机载体孔体积1.5倍的溶剂中加至所述多孔无机载体之上。
20.权利要求16的方法,其中所述单官能疏水性栓系剂与所述铝氧烷混合在有机溶剂中加至所述多孔无机载体之上。
21.权利要求16的方法,其中先使所述多孔无机载体在基本上不含其它催化剂体系组分的有机溶剂中形成载体浆液;然后向所述载体浆液中加入催化剂前体和活化剂,所述催化剂前体和活化剂溶于有机溶剂中;然后除去有机溶剂,产生权利要求1的负载型催化剂。
22.权利要求21的方法,其中所述活化剂的一部分在有机溶剂的第一部分中加入,所述活化剂的第二部分在还包含所述催化剂前体的有机溶剂的第二部分中加入。
23.权利要求21的方法,其中所述活化剂包括铝氧烷。
24.一种负载型烯烃聚合催化剂的制备方法,所述方法包括a)将多孔无机粒状载体加入足量的基本上不含其它催化剂体系组分的有机溶剂中形成载体浆液;b)向所述载体浆液中加入活化剂和催化剂前体,所述活化剂和所述催化剂前体在有机溶剂中;c)在步骤b)之前、同时或之后可选地向所述载体浆液中加入包含疏水部分和单官能反应基的单官能疏水性栓系剂,所述单官能疏水性栓系剂不含碱性氮;和d)除去溶剂。
25.权利要求24的方法,其中加入单官能疏水性栓系剂,其中所述单官能疏水性栓系剂的疏水部分包括C6-24支化或未支化的可选地氟代的脂族烃基、最少含4个碳原子的高氟代脂族烃、至少含5个硅原子的有机聚硅氧烷、或既含Si-C键合的脂族烃部分又含二有机基硅烷氧基部分其中脂族烃部分中碳原子数的一半加二有机基硅烷氧基中硅原子数之和最小为4的化合物。
26.权利要求24的方法,其中加入单官能疏水性栓系剂,其中所述单官能反应基选自羟基、环氧基、季铵、硫醇、醛、可水解的硅烷、Si-H官能的硅烷、铝酸盐、和硼酸盐。
27.权利要求24的方法,其中所述活化剂包括铝氧烷。
28.权利要求24的方法,其中步骤b)中,活化剂的至少第一部分在有机溶剂的第一部分中加入所述载体浆液中,所述活化剂的第二部分在还包含所述催化剂前体的至少一部分的有机溶剂的第二部分中加入。
29.在采用负载型催化剂的一或多种烯烃单体聚合的气相法中,改进包括使所述一或多种烯烃单体在权利要求1的负载型催化剂存在下聚合,其中所述催化剂前体包括含有至少一个茚并吲哚基配体的过渡金属或内过渡金属配合物。
30.权利要求29的方法,其中所述催化剂前体包括含有一个可选地取代的环戊二烯基配体和一个茚并吲哚基配体的钛、锆或铪配合物。
全文摘要
在负载型催化剂中加入包含不含碱性氮的疏水部分和一价反应基的单官能疏水性栓系剂改进在多相负载型催化剂存在下的烯烃聚合。所述单官能疏水性栓系剂使气相聚合法中结垢和结片减少并使淤浆聚合法中聚合物形态和堆积密度得到改善,同时基本上保持或提高催化剂的聚合活性。
文档编号C08F210/16GK1714104SQ03822997
公开日2005年12月28日 申请日期2003年8月21日 优先权日2002年10月17日
发明者K·L·尼尔-霍金斯, S·M·纳吉, W·J·萨廷, K·格普蒂, K·W·约翰逊 申请人:伊奎斯塔化学有限公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1