包含1,1-二氟乙烯的多孔高分子膜的利记博彩app

文档序号:3709289阅读:168来源:国知局
专利名称:包含1,1-二氟乙烯的多孔高分子膜的利记博彩app
技术领域
本发明涉及多孔高分子膜。本发明特别涉及制备多孔高分子膜的方法,并涉及这种膜在锂电池或燃料电池中的用途。
用锂金属阳极和可以嵌入或插入锂离子的材料的阴极制备电池已问世多年。这种电池可以利用锂盐在有机液体如碳酸异丙烯酯中的溶液作为电解质,和如滤纸或聚丙烯等作为隔离物。最近还公开了固态离子导电聚合物作为电解质的用途。对于二次或可充电锂电池,由于枝晶生长引起的问题使得使用锂金属阳极不能令人满意。现在通过使用在非常低的电压下能够可逆嵌入锂离子的材料如石墨,得到所谓的“锂离子”、“摇椅”或“摇摆”的可充电锂电池可以消除这个问题。这些锂电池以下述原理工作它们不合锂金属,而是含有锂离子,锂离子在循环的充电和放电期间在两种嵌入材料之间来回摇摆。
Gozdz等人(US 5,296,318)公开了一种聚合物电解质,它包括75-92%1,1-二氟乙烯和8-25%六氟丙烯的共聚物,掺混了锂盐和相容性溶剂如碳酸亚乙酯/碳酸异丙烯酯混合物,并由在低沸点溶剂如四氢呋喃中的溶液进行流延。GB 2 309 701 B(AEA Technology)描述了如何通过将适当的单不饱和基团接枝到聚合物链上来提高聚合电解质组合物的粘结性,在这种情况下聚合物链可以是均聚物PVdF,或基本由1,1-二氟乙烯组成的共聚物或三聚物。也可以通过首先制备聚合物材料的多孔薄膜,然后将该薄膜浸没在锂盐在有机溶剂中的溶液中以使电解质溶液与聚合物薄膜结合来制备固体聚合物电解质,如EP 0730 316 A(Elf Atochem)所述。但是,使用已知的方法制备多孔膜难以获得尺寸基本均匀的微孔,并难以控制所得薄膜的孔隙率。
燃料电池使用多孔膜隔离阳极和阴极。该膜典型地为多层组合并且可包括例如一层多孔膜和一层或多层扩散层。需要改进的膜来改善气体向燃料电池板的均匀扩散。
本发明提供一种制备多孔聚合物膜的方法,该方法包括a)通过在将溶剂加入之前将聚合物分散在非溶剂中制备在溶剂/非溶剂混合物中的含有聚合物的溶液,该聚合物含有1,1-二氟乙烯;b)将该溶液保持在高温下直到该聚合物完全溶剂化;
c)流延该溶液形成薄层;和d)干燥该薄层形成膜。
该聚合物典型地主要包括1,1-二氟乙烯。因此该聚合物可以是均聚物,如聚二氟乙烯(PVdF),或1,1-二氟乙烯与例如六氟丙烯的共聚物,或三聚物。典型的优选级聚合物为PVdF均聚物Solvay Solef 1015或6020、共聚物Solvay Solef 20615或20815或Atochem 2801和包括1,1-二氟乙烯、六氟丙烯和三氟氯乙烯的三聚物,如WO 02/11230所述。
该聚合物也可以是这样一种聚合物,其中聚合物链主要由1,1-二氟乙烯组成,在该链上接枝单不饱和羧酸、磺酸或膦酸、酯或酰胺。待接枝到聚合物链上的单体应该在碳链R-上只具有一个双键和一个或多个羧基基团-COOH、磺酸基团-SO2OH、膦酸基团-PO(OH)2、酯基团-COOR’或酰胺基团-CONH2。一般碳链R-上具有少于5个碳原子的较小单体是优选的。例如丙烯酸;巴豆酸、乙烯基乙酸、甲基丙烯酸(丁烯酸的异构体);戊烯酸的异构体,如烯丙基乙酸等。也可以使用相应的酰胺(和取代的酰胺)。在酯中,基团R’可以是甲基、乙基或丁基;例如可以使用诸如丙烯酸甲酯或丙烯酸丁酯等酯。用于接枝的一些优选单体为丙烯酸或二甲基丙烯酰胺,但能引入最终基团的其它单体也是适用的。
接枝可通过辐射方法实现。例如可使聚合物链基材与接枝单体材料一起经历连续或间歇辐照;或者更优选在基材与单体材料接触之前对其进行预辐照。辐射可以是电子束、γ-射线或X-射线辐射。辐射显然是通过产生自由基来激活基材(聚合物链)。接枝度由几个因素决定,最重要的是聚合物基材被辐照预激活的程度、被激活聚合物与接枝单体材料的接触时间长度、单体穿透聚合物的程度、及聚合物与单体接触时的温度。所得材料中接枝度理想地占最终重量的2-20%,更优选占3-12%,例如5%或10%。
其它组分也可存在于溶液中,例如粘度改性剂,如羧甲基纤维素,和表面张力改性剂,如草酸或马来酸。
聚合物与非溶剂混合形成浆料,然后加入溶剂形成均匀溶液。典型地,形成聚合物和非溶剂的浆料并加热到约60℃,优选在非金属容器(例如玻璃的或塑料的,例如聚丙烯的)中搅拌下进行,然后快速加入溶剂(例如约1升/5秒)。
如果先将聚合物与溶剂混合,然后再向溶液中加入非溶剂,则产生微粒凝胶,于是溶液不稳定并且不能得到可再生的膜。
非溶剂是一种当单独使用时不溶解聚合物的液体。非溶剂不应该只能溶解在溶剂中,还应该以基本所有的比例与溶剂混溶。典型地,非溶剂的沸点高于溶剂,优选高20℃,更优选高40℃或更高。非溶剂的实例包括含有6-20个碳原子的醇,例如辛醇、癸醇和十二烷醇及其混合物,优选癸醇、十二烷醇及其混合物。特别优选的非溶剂为50∶50的十二烷醇和癸醇的混合物或单独的十二烷醇。
溶剂是一种可以溶解或溶胀聚合物的溶剂。溶剂可以选自例如酮、醚、N,N-二甲基甲酰胺(DMF)、N,N-二甲基乙酰胺(DMA)、N,N-二乙基乙酰胺、N-甲基-2-吡咯烷酮(NMP)、六甲基磷酰胺、四甲基脲和二甲亚砜(DMSO)或其混合物。DMF和NMP是优选的溶剂。更优选NMP作为溶剂。
溶液中非溶剂与溶剂的比例可以变化。典型地,非溶剂在溶剂/非溶剂混合物中的比例为2-30wt%,优选5-15wt%,更优选7-10wt%。
聚合物在溶液中的量一般为3-30wt%,优选5-20wt%,更优选8-15wt%。
聚合物的溶剂化在高温进行。高温指室温(定为20℃)以上的温度。所选温度对所用聚合物和溶剂/非溶剂的组合以及进行溶剂化所用的时间是特定的。典型的高温至少为40℃,更典型至少为50℃,例如55℃。如果溶剂化进行得时间较长,则可以采用较低的温度。
典型的溶剂化进行几天。溶剂化过程继续直到聚合物完全被溶剂化。溶剂化所需的精确时间依溶剂/非溶剂混合物、所用聚合物和温度的选择而变化。典型的溶剂化进行4-14天,优选5-10天,且最优选5-7天。例如,PVdF(Solvay Solef 6020/1001)在N-甲基-2-吡咯烷酮及癸醇和十二烷醇的50∶50混合物中完全溶剂化典型地要5-14天,根据溶液中非溶剂与溶剂的比例一般要10天。在溶剂化过程中凝胶形成很慢,可以忽略。在不形成微粒凝胶的情况下也能进行溶剂化。
一旦聚合物完全溶剂化,溶液在室温下几周内都是稳定的。因此,溶液的粘度不随时间而变,溶液的颜色保持恒定,并且没有溶剂或非溶剂从溶液中分离出来。另外溶液流延形成具有一致性能的可再生膜。因此,不必立即将溶液流延成薄膜。
溶液一般流延在非多孔基材如铝箔或聚酯薄膜上。铝箔一般厚约20μm,而聚酯薄膜一般厚约100μm。如果阳极或阴极由不具有太多孔的材料制成,则溶液也可流延到阳极或阴极上。
当流延溶液时,溶液一般以厚度小于0.5mm,优选小于0.3mm的薄层流延在基材上。
一般在干燥机中经过至少两个连续的干燥区才能形成薄膜;薄膜不与任何液体接触。优选干燥机具有3或4个干燥区,最优选4个干燥区。每一个区保持不同的温度并且沿着薄膜移动的方向各区的温度依次升高。当使用连续辊衬刮刀辊涂法在移动网上制备膜时,干燥区中的典型温度值如下第一区50-120℃第二区80-150℃典型的温度配对可以是例如第一区65℃和第二区100℃,或第一区95℃和第二区120℃。如果干燥机具有3或4个干燥区,则各区之间的温度变化可以更缓和。例如,在干燥机具有4个干燥区时,可依次设定各区的温度为65℃、75℃、95℃和110℃。
移动网的速率一般为0.2-5.0m/min。网的移动速率依干燥区的长度和干燥区的数量而变化。干燥机具有的干燥区越多,网可以移动得越快而不会对膜性能产生不利影响。
在气体存在下干燥溶液形成膜。在一个实施方案中,该气体为干燥气体,例如干燥空气。例如,可以使用露点低于-20℃,例如-35℃至-37℃的空气。但是,该气体不必是无水的。该气体也可以是潮湿的空气,例如在相对湿度34%且16℃的环境条件下所提供的空气。但是如果空气湿度变化,膜的渗透性也将发生变化。
可以通过改变非溶剂与溶剂的比例、聚合物与溶剂/非溶剂的比例、第一和第二干燥区的温度及移动网的速率来控制所得多孔聚合物膜的孔隙率。
所制备膜的孔隙率可以在Gurley机上测量。给出的是使用该机器测定的不同薄膜的相对孔隙率。该机器测定100cm3空气在小的标准压力差(1.215kPa)下通过1平方英寸(6.45cm2)膜所用的时间(秒)。得到被称作Gurley数或Gurley值的读数。这也可以表示为以Gurley秒为单位。市售薄膜的Gurley数(Gurley秒)为400-600。Gurley数<60的薄膜在用于电池时倾向于短路。但是,它们适用于燃料电池。Gurley数为50-200,更优选60-100的薄膜是本发明情况中优选的。随着Gurley数增加,膜的孔隙率下降,表明更难使空气通过膜。这可能是由于根据孔的分布膜具有较小的孔或较少较大孔所致。
根据本发明可制备薄至5μm的薄膜。因此,薄膜的厚度至少为5μm,优选10-30μm,更优选15-25μm,最优选17-22μm。
本发明的一个优点在于,可以制备具有足以用于电池的强度的薄膜。该薄膜也不会遭受短路。
在第二方面,本发明提供一种包含聚合物的膜,该聚合物包含厚度为5-30μm且Gurley数为5-300(Gurley秒)的1,1-二氟乙烯。该膜的Gurley数为50-200,更优选60-100,最优选70-90。这种膜迄今为止尚不存在。
本发明还提供本发明的膜或根据本发明制备的膜作为电池中隔离物的用途。该膜适用于不同类型的电池,例如镍镉、镍金属氢化物、锂离子和锂聚合物电池。可控的孔隙率和膜厚度以及这些膜的高强度使它们在这类应用中特别有利。
本发明还提供本发明的膜或根据本发明制备的膜在燃料电池中的用途。本发明还提供包括本发明膜的层压制件以及该层压制件在燃料电池中的用途。
现在通过实施例更详细地描述本发明。
实施例在这些实施例中所描述的膜的Gurley数是在由GurleyInstruments of 514 Fulton Street,Troy,New York,USA制造的4340型Automatic Densometer上获得的。
实施例1将100g特性粘度为0.210l/g(DMF,25℃)的PVdF(Solef 6020)分散在70g辛醇中。搅拌浆料并加入900g DMF。将该混合物在55℃搅拌1天并在55℃再保持6天直到达到完全溶剂化。
使用辊衬刮刀辊涂系统将溶液流延在以0.5m/min移动的聚酯网上。刮刀间隙设置为0.32mm,并且干燥区温度设置为第1区65℃、第2区100℃。得到厚度为17μm且空气渗透率为32 Gurley秒的成品微孔薄膜。
升高第1区的干燥温度至80℃、第2区的温度至105℃,得到厚度为17μm且空气渗透率为85 Gurley秒的薄膜。
再升高第1区的干燥温度至95℃、第2区的温度至110℃,得到厚度为17μm且空气渗透率为93 Gurley秒的薄膜。
实施例2将100g特性粘度为0.210l/g(DMF,25℃)的PVdF(Solef 6020)分散在80g癸醇中。搅拌浆料并加入900g NMP。如实施例1所述搅拌并加热该混合物直到达到完全溶剂化。
使用辊衬刮刀辊涂系统将溶液流延在以0.5m/min移动的聚酯网上。刮刀间隙设置为0.32mm。干燥区温度和薄膜性能列于下表1中。
表1
实施例3将100 g特性粘度为0.210l/g(DMF,25℃)的PVdF(Solef6020)分散在70g癸醇和十二烷醇的1∶1混合物(重量)中。搅拌浆料并加入900gNMP。将该混合物在55℃搅拌1天,并在55℃再保持10天直到达到完全溶剂化。
使用辊衬刮刀辊涂系统将溶液流延在以0.5m/min移动的聚酯网上。刮刀间隙设置为0.32mm。干燥区温度和薄膜性能列于下表2中。
表2
实施例4将100g特性粘度为0.210l/g(DMF,25℃)的PVdF(Solef6020)分散在100g癸醇和十二烷醇的1∶1混合物(重量)中。搅拌浆料并加入900gNMP。如实施例3所述搅拌并加热该混合物直到达到完全溶剂化。
使用辊衬刮刀辊涂系统将溶液流延在以0.5m/min移动的聚酯网上。刮刀间隙设置为0.32mm。干燥区温度和薄膜性能列于下表3中。
表3
从以上实施例可见,如果干燥器设置在较高温度,并且非溶剂的比例较低,则孔隙率变小(即Gurley数增加)。如果非溶剂与溶剂间的沸点之差大于25℃,则薄膜的品质显著提高。
实施例5将100g特性粘度为0.210l/g(DMF,25℃)的PVdF(Solef 6020)分散在100g十二烷醇中。搅拌浆料并加入900g NMP。如实施例1所述搅拌并加热该混合物直到达到完全溶剂化。
使用辊衬刮刀辊涂系统将溶液流延在以0.5m/min移动的聚酯网上。刮刀间隙设置为0.30mm。干燥区温度和薄膜性能列于下表4中。
表4
实施例6将100g特性粘度为0.210l/g(DMF,25℃)的PVdF(Solef 6020)分散在80g十二烷醇中。搅拌浆料并加入900g NMP。如实施例1所述搅拌并加热该混合物直到达到完全溶剂化。
使用辊衬刮刀辊涂系统将溶液流延在以0.5m/min移动的聚酯网上。刮刀间隙设置为0.32mm。干燥区温度和薄膜性能列于下表5中。
表5
实施例7将100g特性粘度为0.210l/g(DMF,25℃)的PVdF(Solef 6020)分散在60g十二烷醇中。搅拌浆料并加入900g NMP。如实施例1所述搅拌并加热该混合物直到达到完全溶剂化。
使用辊衬刮刀辊涂系统将溶液流延在以0.5m/min移动的聚酯网上。刮刀间隙设置为0.30mm。干燥区温度和薄膜性能列于下表6中。
权利要求
1.一种制备多孔聚合物膜的方法,该方法包括a)通过在加入溶剂之前将聚合物分散在非溶剂中制备在溶剂/非溶剂混合物中的含有聚合物的溶液,该聚合物含有1,1-二氟乙烯;b)将该溶液保持在高温下直到该聚合物完全溶剂化;c)流延该溶液形成薄层;和d)干燥该薄层形成膜。
2.根据权利要求1的方法,其中所述溶液包含聚二氟乙烯(PVdF)。
3.根据权利要求1或2的方法,其中所述溶剂为N,N-二甲基甲酰胺(DMF)、N,N-二甲基乙酰胺(DMA)或N-甲基-2-吡咯烷酮(NMP)。
4.根据上述任意一项权利要求的方法,其中所述非溶剂为辛醇、癸醇、十二烷醇或其混合物。
5.根据上述任意一项权利要求的方法,其中所述溶液进行溶剂化最高达14天。
6.根据上述任意一项权利要求的方法,其中将单不饱和羧酸、磺酸或膦酸、酯或酰胺基团接枝到1,1-二氟乙烯上。
7.由根据上述任意一项权利要求的方法制备的膜。
8.包括根据权利要求1-6任意一项的方法制备的膜的层压制件。
9.根据权利要求1-5任意一项的方法制备的膜或根据权利要求7-9任意一项的膜在电池中的用途。
10.根据权利要求1-6任意一项的方法制备的膜在燃料电池中的用途。
11.根据权利要求8的层压制件在燃料电池中的用途。
全文摘要
一种制备多孔聚合物结构的方法,该方法包括制备在溶剂/非溶剂混合物中的含有聚合物的溶液,该聚合物含有1,1-二氟乙烯;将该溶液保持在高温下直到该聚合物完全溶剂化;流延该溶液形成薄层;和干燥该薄层形成膜。在制备溶液时,在加入溶剂之前,将聚合物分散在非溶剂中,以防止形成微粒凝胶。在高温下进行长时间的溶剂化提供了稳定的溶液,并能够形成具有可控孔隙率的膜。
文档编号C08J9/28GK1668680SQ03817082
公开日2005年9月14日 申请日期2003年6月23日 优先权日2002年7月19日
发明者N·J·马廷利, E·克伦夫利 申请人:Aea 技术电池系统有限公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1