专利名称:卤化异烯烃类三元共聚物的利记博彩app
技术领域:
本发明涉及异烯烃类三元共聚物。更特别地,本发明涉及三元共聚物组合物,其中三元共聚物包括异烯烃衍生单元,苯乙烯类衍生单元,和多元烯烃衍生单元,该组合物可用于轮胎,特别用于汽车组件如胎面、带束层、轮胎内衬层、内胎、和其它气密层。
背景技术:
包括异烯烃、苯乙烯类、和多元烯烃衍生单元的异丁烯类三元共聚物已经公开于U.S.3,948,868、U.S.4,779,657和WO01/21672。包括这种三元共聚物并用于气密层如内衬层和内胎的组合物不是已知的。
需要改进轮胎内衬层的特定性能而不牺牲目前的性能。与通用的弹性体(如NR、BR或SBR)或其与异丁烯弹性体的共混物相比,使用异丁烯类弹性体如丁基橡胶(IIR)、卤化丁基橡胶(氯化(CIIR)或溴化(BIIR))或溴化的异丁烯-共-对甲基苯乙烯(BIMS)作为内衬层聚合物以提供降低的透气性。耐屈挠疲劳性,对其它轮胎组件如胎体和胎圈复合物的粘合力,和耐磨性也是所需的性能特性。使用BIMS共聚物增加内衬层与GPR烃类弹性体的相容性;然而,使用含硫硫化体系的共硫化仍然达不到足够高的程度。仍然需要改进对胎体复合物的实验室粘合力数值。
例如,为了在轮胎胎面或轮胎胎侧中用作多组分汽车轮胎的一部分,所需的三元共聚物必须是可用硫硫化,并且与其它橡胶如天然橡胶和聚丁二烯可兼容。此外,为用作气密层如轮胎内衬层,三元共聚物组合物必须是不透气的,可较好地粘合到轮胎胎体如聚(苯乙烯-共-丁二烯)(SBR)胎体上,并具有合适的耐用性。由于提高一种性能通常会降低其它性能,这些性能通常难以一起达到。
出乎意料的是在包括聚合物的组合物中引入多元烯烃衍生单元会有益于改进胎体粘合性和柔韧性,同时保持不透气性,该聚合物含有异丁烯/对甲基苯乙烯主链。同样,出乎意料的是考虑到IB/PMS共聚物不能用硫硫化,而这种三元共聚物可用硫硫化。然而,本发明人在此证明,其中,引入多元烯烃的某些异烯烃三元共聚物的实际应用,该三元共聚物可用硫硫化。更特别地,已经发现由于改进的牵引力和磨耗性能,这些三元共聚物可用于与合适填料等的可硫化共混物中,因此使这些组合物可用于轮胎胎面、胎侧以及气密层如用于充气轮胎的内衬层和内胎。
其它背景参考文献包括美国专利Nos.3,560,458和5,556,907和欧洲专利1215241A。
发明概述这些和其它问题由以下方式制备的三元共聚物解决在一个实施方案中,引入C4-C8异烯烃如异丁烯(IB)以及多元烯烃如异戊二烯(I)和苯乙烯类部分如对甲基苯乙烯(MS)衍生单元。异戊二烯在三元共聚物中以所需的足够的浓度存在以促进由常规含硫硫化成分进行的硫化。此外,可以卤化三元共聚物以进一步增强交联反应。因此,可以将卤素原子,所需地氯或溴引入到三元共聚物如溴化丁基橡胶主链中的异戊二烯部分上,或引入到甲基苯乙烯的主链和甲基基团上。这些反应活性部位可允许卤化三元共聚物自身的交联,也允许与用于轮胎胎体复合物的烃类二烯橡胶,如NR、BR和SBR的交联。
本发明包括适用于气密层如汽车轮胎的内衬层或内胎和其它需要不透气性和柔韧性的制品的组合物。本发明包括从以下物质的组合物制备的汽车内衬层至少一种(即一种或多种)填料,含硫硫化体系,和非必要地至少一种第二橡胶(secondary rubber),和至少一种由C4-C8异烯烃衍生单元,C4-C14多元烯烃衍生单元,和对烷基苯乙烯衍生单元形成的卤化三元共聚物。在一个实施方案中,三元共聚物是卤化的。填料合适的例子包括,但不限于,炭黑、改性炭黑、二氧化硅,所谓的纳米粘土或层离粘土(exfoliated clay)、及其结合物。
本发明也包括一种生产弹性体三元共聚物组合物的方法,该方法包括在路易斯酸和至少一种引发剂存在下,在稀释剂中结合C4-C8异烯烃单体,C4-C14多元烯烃单体,和对烷基苯乙烯单体以生产三元共聚物,该稀释剂的介电常数在一个实施方案中至少为6,在另一个实施方案中至少为9。合适引发剂的例子包括叔丁基氯、2-乙酰基-2-苯基丙烷(乙酸枯酯)、2-甲氧基-2-苯基丙烷(枯基甲基-醚)、1,4-二(2-甲氧基-2-丙基)苯(二(枯基甲基醚));枯基卤化物,特别是氯化物,例如,2-氯-2-苯基丙烷、枯基氯((1-氯-1-甲基乙基)苯)、1,4-二(2-氯-2-丙基)苯(二(枯基氯))、和1,3,5-三(2-氯-2-丙基)苯(三(枯基氯));脂族卤化物,特别是氯化物,例如,2-氯-2,4,4-三甲基戊烷(TMPCl)、2-溴-2,4,4-三甲基戊烷(TMPBr)、和2,6-二氯-2,4,4,6-四甲基庚烷;枯基和脂族羟基化合物如1,4-二((2-羟基-2-丙基)-苯)、2,6-二羟基-2,4,4,6-四甲基庚烷;1-氯金刚烷和1-氯莰烷、5-叔丁基-1,3-二(1-氯-1-甲基乙基)苯和相似化合物或以上所列这些化合物的混合物。
附图简述
图1是实施例4(SBB)、5(BIIR)、6(BIMS)和7(BrIBIMS)的tanδ(G”/G’)与温度的函数关系图,所有实施例都在组合物中包括炭黑。
发明详述本发明包括制备异丁烯类三元共聚物的方法,和这些三元共聚物的组合物和卤化的三元共聚物,该三元共聚物包括C4-C8异烯烃衍生单元,C4-C14多元烯烃衍生单元,和对烷基苯乙烯类衍生单元。可以使用至少包含单体,路易斯酸催化剂,引发剂和稀释剂,所需的为极性稀释剂的混合物,通过碳正离子聚合方法制备本发明的三元共聚物。聚合典型地或者在淤浆中如在连续淤浆反应器或丁基类型反应器中,或在溶液中进行。保持共聚合反应器基本没有可与催化剂、引发剂、或单体络合的杂质。基本没有杂质表示杂质的水平不大于100ppm。优选无水条件和所需地由本领域公知的技术从单体和稀释剂中除去反应性杂质,如含活性氢原子的组分(水、醇等)。如果有的话,这些杂质,如水,在一个实施方案中的存在程度不大于500ppm。
在此使用的术语“催化剂体系”表示并包括用于活化烯烃单体聚合的任何路易斯酸或其它金属络合物,以及下述的引发剂,和其它在此所述的少量催化剂组分。
在此使用的术语“聚合体系”至少包括丁基类型反应器中的催化剂体系,稀释剂,单体和反应的单体(聚合物)。“丁基类型”反应器表示任何合适的反应器如实验室规模的小的间歇式反应器或工厂规模的大反应器。这种反应器的一个实施方案是U.S.5,417,930的连续流动搅拌釜反应器(“CFSTR”)。在这些反应器中,淤浆(反应的单体)由泵通过换热器的管子循环,同时在壳程由沸腾乙烯提供冷却,淤浆温度由沸腾乙烯温度、要求的热流和总体传热阻力确定。
在此使用的术语“稀释剂”表示一种物质或两种或多种物质的混合物,该物质在室温和大气压下为液体或气体,可用作聚合反应的反应介质。
在此使用的术语“淤浆”表示反应的单体,该单体已经聚合到从稀释剂沉淀的阶段。淤浆“浓度”是这些反应的单体的重量百分比--反应的单体对淤浆、稀释剂、未反应的单体和催化剂体系总重量的重量百分比。
在此使用的术语“弹性体”可以与术语“橡胶”互换使用,并与ASTM 1566中的定义一致。
在此使用的周期表族的新编号方案如在HAWLEY’SCONDENSED CHEMICAL DICTIONARY 852(第13版,1997)中所使用的。
在此描述的单体的聚合物和共聚物表示包括或包含相应单体“衍生单元”的聚合物或共聚物。因此,例如,由异戊二烯和异丁烯单体聚合形成的共聚物可以称为异戊二烯衍生单元和异丁烯衍生单元的共聚物。
在此使用的术语“丁基橡胶”定义为表示主要由衍生自异烯烃如异丁烯的重复单元组成,但包括衍生自多元烯烃如异戊二烯的重复单元的聚合物,术语“三元共聚物”用于描述包括异烯烃衍生单元,多元烯烃衍生单元和苯乙烯类衍生单元的聚合物。
在此使用的术语“苯乙烯类”表示任何苯乙烯或取代苯乙烯的单体单元。取代表示至少一个氢原子由至少一种选自以下的取代基取代例如,卤素(氯、溴、氟、或碘)、氨基、硝基、磺酰氧基(磺酸根或烷基磺酸根)、硫醇、烷基硫醇、和羟基;含有1-20个碳原子的直链或支链烷基;含有1-20个碳原子的直链或支链烷氧基,例如包括,甲氧基、乙氧基、丙氧基、异丙氧基、丁氧基、异丁氧基、仲丁氧基、叔丁氧基、戊氧基、异戊氧基、己氧基、庚氧基、辛氧基、壬氧基、和癸氧基;卤代烷基,它表示由至少一种卤素取代的含有1-20个碳原子的直链或支链烷基,和包括,例如,氯甲基、溴甲基、氟甲基、碘甲基、2-氯乙基、2-溴乙基、2-氟乙基、3-氯丙基、3-溴丙基、3-氟丙基、4-氯丁基、4-氟丁基、二氯甲基、二溴甲基、二氟甲基、二碘甲基、2,2-二氯乙基、2,2-二溴乙基、2,2-二氟乙基、3,3-二氯丙基、3,3-二氟丙基、4,4-二氯丁基、4,4-二氟丁基、三氯甲基、三氟甲基、2,2,2-三氟乙基、2,3,3-三氟丙基、1,1,2,2-四氟乙基、和2,2,3,3-四氟丙基。所需的苯乙烯类单体单元包括对烷基苯乙烯,所需地对甲基苯乙烯,及其官能化衍生物,其中甲基基团由上述取代基取代。
在此使用的术语“取代芳基”表示由至少一种选自以下的取代基取代的苯基、萘基和其它芳族基团例如,卤素(氯、溴、氟、或碘)、氨基、硝基、磺酰氧基(磺酸根或烷基磺酸根)、硫醇、烷基硫醇、和羟基;含有1-20个碳原子的直链或支链烷基;含有1-20个碳原子的直链或支链烷氧基,例如,甲氧基、乙氧基、丙氧基、异丙氧基、丁氧基、异丁氧基、仲丁氧基、叔丁氧基、戊氧基、异戊氧基、己氧基、庚氧基、辛氧基、壬氧基、和癸氧基;卤代烷基,它表示由至少一种卤素取代的含有1-20个碳原子的直链或支链烷基,和包括,例如,氯甲基、溴甲基、氟甲基、碘甲基、2-氯乙基、2-溴乙基、2-氟乙基、3-氯丙基、3-溴丙基、3-氟丙基、4-氯丁基、4-氟丁基、二氯甲基、二溴甲基、二氟甲基、二碘甲基、2,2-二氯乙基、2,2-二溴乙基、2,2-二氟乙基、3,3-二氯丙基、3,3-二氟丙基、4,4-二氯丁基、4,4-二氟丁基、三氯甲基、三氟甲基、2,2,2-三氟乙基、2,3,3-三氟丙基、1,1,2,2-四氟乙基和2,2,3,3-四氟丙基。“芳基”基团是任何芳环结构如苯基或萘基基团。
丁基类型橡胶是由异烯烃和共轭二烯烃--或多元烯烃--共聚单体之间的聚合反应生产的异丁烯类聚合物,因此包含异烯烃衍生单元和多元烯烃衍生单元。以与常规丁基橡胶相似的方式制备本发明的三元共聚物,区别在于也将另外的共聚单体(如苯乙烯类单体)引入聚合物链中。与催化剂和引发剂体系(以下更详细描述)结合采用的烯烃聚合反应进料是那些烯烃化合物,它们的聚合反应已知为阳离子引发。优选,本发明采用的烯烃聚合反应进料是常规用于丁基类型橡胶聚合物制备的那些烯烃化合物。通过反应共聚单体混合物制备三元共聚物,该混合物至少含有(1)C4-C8异烯烃单体组分如异丁烯,(2)苯乙烯类单体,和(3)多元烯烃单体组分。
本发明的三元共聚物可以由每种单体衍生单元的范围定义。异烯烃的范围在一个实施方案中是三元共聚物总重的至少70wt%,在另一个实施方案中是至少80wt%,在仍然另一个实施方案中是至少90wt%,在仍然另一个实施方案中是70-99.5wt%,和在另一个实施方案中是85-99.5wt%。苯乙烯类单体在一个实施方案中是三元共聚物的总重的0.5-30wt%,在另一个实施方案中是1-25wt%,在仍然另一个实施方案中是2-20wt%,和在仍然另一个实施方案中是5-20wt%。多元烯烃组分在一个实施方案中是三元共聚物的30-0.2wt%,和在另一个实施方案中是15-0.5wt%。在仍然另一个实施方案中,8-0.5wt%的三元共聚物是多元烯烃。按三元共聚物的重量,三元共聚物的所需实施方案可包括与任何下限wt%结合的任何上限wt%的任何结合。
异烯烃可以是C4-C8化合物,在一个实施方案中选自异丁烯(isobutylene)、异丁烯(isobutene)、2-甲基-1-丁烯、3-甲基-1-丁烯、2-甲基-2-丁烯和4-甲基-1-戊烯。苯乙烯类单体可以是任何取代的苯乙烯单体单元,和所需地选自苯乙烯、α-甲基苯乙烯或烷基苯乙烯(邻,间,或对),烷基选自任何C1-C5烷基或支链烷基。在一个所需的实施方案中,苯乙烯类单体是对甲基苯乙烯。多元烯烃可以是共轭或非共轭的C4-C14二烯烃,在一个实施方案中选自异戊二烯、丁二烯、2,3-二甲基-1,3-丁二烯、月桂烯、6,6-二甲基-富烯、己二烯、环戊二烯、甲基环戊二烯和戊间二烯。
可以在阳离子条件下共聚异单烯烃,苯乙烯类单体和多元烯烃单体,特别是异丁烯,对甲基苯乙烯和异戊二烯。参见,例如,WO00/27807和WO 01/04731;U.S.3,560,458和U.S.5,162,445。通过至少一种路易斯酸催化剂进行共聚反应。所需的催化剂是基于元素周期表第4、13、和15族金属的路易斯酸,该金属包括硼、铝、镓、铟、钛、锆、锡、钒、砷、锑、和铋。在一个实施方案中,金属是铝、硼和钛,所需是铝。
第13族路易斯酸具有通式RnMX3-n,其中“M”是第13族金属,R是选自C1-C12烷基、芳基、芳烷基、烷芳基和环烷基的单价烃基;n是0-3的整数;和X是独立地选自氟、氯、溴、碘的卤素,优选氯。术语“芳烷基”表示包含脂族和芳族两种结构的基团,该基团在烷基的位置。术语“烷芳基”表示包含脂族和芳族两种结构的基团,该基团在芳基的位置。这些路易斯酸的非限制性例子包括氯化铝、溴化铝、三氟化硼、三氯化硼、二氯化乙基铝(EtAlCl2或EADC)、氯化二乙基铝(Et2AlCl或DEAC)、倍半氯化乙基铝(Et1.5AlCl1.5或EASC)、三甲基铝和三乙基铝。
第4族路易斯酸具有通式MX4,其中M是第4族金属和X是配体,优选卤素。非限制性的例子包括四氯化钛、四氯化锆或四氯化锡。
第15族路易斯酸具有通式MXy,其中M是第15族金属,X是配体,优选卤素,和y是3-5的整数。非限制性的例子包括四氯化钒和五氟化锑。在一个实施方案中,路易斯酸可以为用于异丁烯共聚物阳离子聚合的任何那些,包括AlCl3、EADC、EASC、DEAC、BF3、TiCl4等,在一个实施方案中所需是EASC和EADC。
通过控制路易斯酸对引发剂的摩尔比,将大规模连续淤浆反应器中的催化剂效率(基于路易斯酸)优选保持在10000磅聚合物/磅催化剂和300磅聚合物/磅催化剂之间和所需地在4000-1000磅聚合物/磅催化剂的范围。
根据本发明的一个实施方案,与引发剂结合使用路易斯酸催化剂。引发剂可以由通式(A)描述 其中X是卤素,所需地氯或溴;R1选自氢、C1-C8烷基和C2-C8链烯基、芳基、和取代芳基;R3选自C1-C8烷基、C2-C8链烯基、芳基和取代芳基;和R2选自C4-C200烷基、C2-C8链烯基、芳基、和取代芳基、C3-C10环烷基,和由以下通式(B)表示的基团 其中X是卤素,所需地氯或溴;R5选自C1-C8烷基和C2-C8链烯基;R6选自C1-C8烷基、C2-C8链烯基、芳基、和取代芳基;和R4选自亚苯基、联苯、α,ω-二苯基烷烃和--(CH2)n--,其中n是1-10的整数;和其中R1,R2和R3也可形成金刚烷基或冰片基的环体系,在一个实施方案中X基团在叔碳的位置。
在此使用的术语“链烯基”表示单一或多不饱和的烷基,例如,C3H5基团、C4H5基团等。
用上述结构式基团(B)取代通式(A)中的R2导致以下通式(C)
其中X,R1,R3,R4,R5和R6如上所述。由结构式(C)表示的化合物包含两个可离解的卤原子。
在需要生产支化共聚物时采用多官能引发剂,而单官能和二官能引发剂优选用于基本线性共聚物的生产。
在一个所需的实施方案中,引发剂是由结构式(D)表示的异丁烯的低聚物及其混合物 其中X是卤素,和m的数值是1-60。在另一个实施方案中,m是2-40。此结构也描述为叔烷基氯化物封端的聚异丁烯,该聚异丁烯的Mn在一个实施方案中多至2500,和在另一个实施方案中多至1200。
合适引发剂的非限制性例子是烃基酸的枯基酯、烷基枯基醚、其它枯基化合物和/或卤化的有机化合物,特别是仲或叔卤化化合物,例如,叔丁基氯、2-乙酰基-2-苯基丙烷(乙酸枯酯)、2-甲氧基-2-苯基丙烷(枯基甲基-醚)、1,4-二(2-甲氧基-2-丙基)苯(二(枯基甲基醚));枯基卤化物,特别是氯化物,例如,2-氯-2-苯基丙烷、枯基氯((1-氯-1-甲基乙基)苯)、1,4-二(2-氯-2-丙基)苯(二(枯基氯))、和1,3,5-三(2-氯-2-丙基)苯(三(枯基氯));脂族卤化物,特别是氯化物,例如,2-氯-2,4,4-三甲基戊烷(TMPCl)、2-溴-2,4,4-三甲基戊烷(TMPBr)、和2,6-二氯-2,4,4,6-四甲基庚烷;枯基和脂族羟基化合物如1,4-二((2-羟基-2-丙基)-苯)、2,6-二羟基-2,4,4,6-四甲基庚烷、1-氯金刚烷和1-氯莰烷、5-叔丁基-1,3-二(1-氯-1-甲基乙基)苯和相似化合物。其它合适的引发剂公开于US4,946,899和3,560,458。这些引发剂一般是C5或更大叔或烯丙基烷基或苄基卤化物并可包括多官能引发剂。这些所需引发剂的例子包括TMPCl、TMPBr、2,6-二氯-2,4,4,6-四甲基庚烷、枯基氯化物以及‘二’和‘三’枯基氯化物或溴化物。
选择的稀释剂或稀释剂混合物应当提供具有一定程度极性的稀释剂介质。在此使用的短语“极性溶剂”包括单一化合物或化合物的混合物,该化合物所需地在20~-110℃下为液体,在给定温度(20~-110℃)下的介电常数大于4。术语“稀释剂”包括在此所述化合物的混合物。为满足具有一定程度极性的要求,可以使用非极性和极性稀释剂的混合物,但优选极性稀释剂或极性稀释剂的混合物。合适的非极性稀释剂组分包括烃和优选芳族或环烃或其混合物。这样的化合物包括,例如,甲基环己烷、环己烷、甲苯、二硫化碳等。合适的极性稀释剂包括卤代烃、直链、支链或环烃。具体的化合物包括优选的液体稀释剂如氯乙烷、二氯甲烷、甲基氯化物(氯代甲烷)、CHCl3、CCl4、氯代正丁烷、氯苯、和其它氯化烃。为达到合适的极性和溶解度,已经发现如果稀释剂,或稀释剂混合物是极性和非极性稀释剂的混合物,该混合物优选含有以体积计的至少70%极性组分。
可以按照稀释剂的介电常数描述稀释剂的相对极性。在一个实施方案中,稀释剂的介电常数(在20-25℃下测量)大于5,和在另一个实施方案中大于6。在仍然另一个实施方案中,稀释剂的介电常数大于7,和在仍然另一个实施方案中大于8。在一个所需的实施方案中,介电常数大于9。单一稀释剂的介电常数(20-25℃)的例子是氯代甲烷(10),二氯甲烷(8.9),二硫化碳(2.6),甲苯(2.4)和环己烷(2.0),该介电常数来自CRC HANDBOOK OF CHEMISTRY AND PHYSICS(“CRC化学和物理手册”)6-151到6-173(D.R.Line编辑,82ed.CRC出版社,2001)。
如典型情况的那样,产物分子量由温度,单体和引发剂浓度,反应物的性质和相似因素确定。因此,不同的反应条件会产生不同分子量和/或三元共聚物中不同单体组成的产物。因此,通过检验反应期间周期性取得的样品(广泛用于本领域和在实施例中显示的技术),或通过对反应器流出物取样,而监测反应过程,可达到所需反应产物的合成。
本发明在此不由制备三元共聚物的方法限制。例如,可以使用间歇聚合或连续淤浆聚合,和在任何体积规模上生产三元共聚物。可用于实施本发明的反应器包括任何常规反应器及其等同物。优选的反应器包括能够进行连续淤浆工艺的那些,如公开于US5,417,930的那些。反应器泵叶轮可以为向上泵送的种类或向下泵送的种类。反应器包含有效催化含单体的原料流聚合的足够含量的本发明催化剂体系,使得生产足够量的具有所需特性的聚合物。原料流在一个实施方案中包含大于30wt%(基于单体、稀释剂和催化剂体系的总重量),在另一个实施方案中大于35wt%的总单体浓度。在仍然另一个实施方案中,原料流包含35-50wt%的单体浓度,基于单体、稀释剂和催化剂体系的总重量。本体相,或其中单体和催化剂彼此接触以反应和形成聚合物的相,也可具有相同的单体浓度。
在本发明的一个实施方案中,原料流或本体相基本没有二氧化硅阳离子产生物质。基本没有二氧化硅阳离子产生物质表示在原料流或本体相中,存在不大于0.0005wt%的二氧化硅物质,基于单体的总重量。二氧化硅阳离子产生物质的典型例子是具有通式R1R2R3SiX或R1R2SiX2等的卤代烷基二氧化硅化合物,其中每个“R”是烷基和“X”是卤素。
反应条件典型地使得所需的温度,压力和停留时间可有效保持反应介质为液态并生产具有所需特性的所需聚合物。单体原料流典型地基本没有任何在聚合反应条件下可与催化剂发生不利反应的杂质。例如,优选单体进料应当基本没有碱(如K2O、NaOH、CaCO3和其它氢氧化物、氧化物和碳酸盐)、含硫化合物(如H2S、COS和有机硫醇,如甲基硫醇、乙基硫醇)、含N化合物、含氧碱如醇等。“基本没有”表示如果有的话,上述物质存在的程度不大于0.0005wt%。
在一个实施方案中,在催化剂体系存在下接触在一起的单体比例从98wt%异烯烃,1.5wt%苯乙烯类单体,和0.5wt%多元烯烃(“98/1.5/0.5”),到50/25/25的比例,基于单体的总量。例如,异烯烃单体在一个实施方案中为单体总重量的50-98wt%,和在另一个实施方案中为70-90wt%。苯乙烯类单体在一个实施方案中为单体总重量的1.5-25wt%,和在另一个实施方案中为5-15wt%。多元烯烃单体可以在一个实施方案中为单体总重量的0.5-25wt%,在另一个实施方案中为2-10wt%,和在仍然另一个实施方案中为3-5wt%。
常规地以目标聚合物分子量和要聚合的单体以及标准工艺变量和经济因素为基础,例如,速率,温度控制等选择聚合反应温度。聚合温度在一个实施方案中在-10℃和聚合体系凝固点之间,和在另一个实施方案中为-25~-120℃。在仍然另一个实施方案中,聚合温度是-40~-100℃,和在仍然另一个实施方案中为-70~-100℃。在仍然另一个所需的实施方案中,温度范围是-80~-99℃。选择温度以达到所需的聚合物分子量,它的范围可包括在此公开的任何上限和任何下限的任何结合。
采用的催化剂(路易斯酸)与单体的比例是本领域常规用于碳正离子聚合方法的那些。在连续淤浆或溶液工艺中需要特定的单体对催化剂的比例,其中大多数比例适用于实验室小规模的聚合物合成。在本发明的一个实施方案中,催化剂(路易斯酸)对单体的摩尔比是0.10-20,和在另一个实施方案中是0.5-10。在仍然另一个所需的实施方案中,路易斯酸对引发剂的比例是0.75-2.5,或在仍然另一个所需的实施方案中是1.25-1.5。反应器中引发剂的总浓度在一个实施方案中是50-300ppm,和在另一个实施方案中是100-250ppm。催化剂原料流中的引发剂浓度在一个实施方案中是500-3000ppm,和在另一个实施方案中是1000-2500ppm。描述反应器中引发剂含量的另一种方法是其相对于聚合物的含量。在一个实施方案中,是0.25-5.0摩尔聚合物/摩尔引发剂,和在另一个实施方案中是0.5-3.0摩尔聚合物/摩尔引发剂。
已知氯或溴可以快速地与多元烯烃衍生单元(如异戊二烯残余单元)的不饱和部分反应以形成卤化聚合物。对聚合物如丁基聚合物进行卤化的方法公开于US2,964,489、US2,631,984、US3,099,644、US4,254,240、US4,554,326、US4,681,921、US4,650,831、US4,384,072、US4,513,116和US5,681,901。用于制备卤化丁基橡胶的典型卤化方法包括所需含量的氯或溴向丁基橡胶胶粘剂(溶液)中的注入与在卤化反应器中采用典型地小于1分钟的相当短的停留时间剧烈混合反应物,随后HCl或HBr和任何未反应卤素的中和。本领域也公知卤化丁基橡胶的具体结构复杂并相信该具体结构依赖于卤化条件。在使“结构III”型溴化部分形成最小化的条件下制备大多数商业溴化丁基橡胶,如本发明溴化的三元共聚物。参见,例如,Anthony Jay Dias在5POLYMERIC MATERIALS ENCYCLOPEDIA(“聚合物材料百科全书”)(Joseph C.Salamone编辑CRC出版社,1996)第3485-3492页中所描述的。那典型地意味着自由基源如光或高温的不存在。或者可以在不存在溶剂的条件下,在挤出机或其它橡胶混合设备中在聚合物熔体中进行卤化反应。
卤素在卤化三元共聚物上的最终含量依赖于其应用和所需的硫化性能,该含量包括位于聚合物主链和其中引入的苯乙烯类部分上的卤素。本发明典型的卤化三元共聚物的卤素含量在一个实施方案中为三元共聚物重量的0.05-5wt%,在另一个实施方案中为0.2-3wt%,和在仍然另一个实施方案中为0.8-2.5wt%。在仍然另一个实施方案中,三元共聚物上存在的卤素含量小于10wt%,在另一个实施方案中小于8wt%,和在仍然另一个实施方案中小于6wt%。以另一种方式表达,引入三元共聚物的卤素含量在一个实施方案中是小于5摩尔%,在另一个实施方案中是0.1-2.5摩尔%,相对于三元共聚物中单体衍生单元的总摩尔数,和在另一个实施方案中是0.2-2摩尔%,和在仍然另一个实施方案中是0.4-1.5摩尔%。所需卤化的水平可包括任何wt%或摩尔%上限与任何wt%或摩尔%下限的任何结合。
在另一个实施方案中,在本发明典型的卤化三元共聚物主链(异戊二烯衍生单元)上的卤素含量为三元共聚物重量的0.05-5wt%,和在另一个实施方案中是0.2-3wt%,和在仍然另一个实施方案中是0.8-2.5wt%。在仍然另一个实施方案中,三元共聚物上存在的卤素含量小于10wt%,和在另一个实施方案中小于8wt%,和在仍然另一个实施方案中小于6wt%。以另一种方式表达,引入三元共聚物的卤素含量在一个实施方案中是小于5摩尔%,和在另一个实施方案中是0.1-2.5摩尔%,相对于三元共聚物中单体衍生单元的总摩尔数,和在另一个实施方案中是0.2-2摩尔%,和在仍然另一个实施方案中是0.4-1.5摩尔%。所需卤化的水平可包括任何wt%或摩尔%上限与任何wt%或摩尔%下限的任何结合。
在仍然另一个实施方案中,在苯乙烯类部分,例如,对甲基苯乙烯(因此形成对卤化甲基苯乙烯)上的卤素含量为0.05-5wt%,在仍然另一个实施方案中是0.2-3wt%,在仍然另一个实施方案中是0.2-2wt%,在仍然另一个实施方案中是0.2-1wt%,和在仍然另一个实施方案中是0.5-2wt%。
三元共聚物的分子量、数均分子量等依赖于采用的反应条件,例如,初始单体混合物中存在的多元烯烃含量,路易斯酸对引发剂的比例,反应器温度,和其它因素。本发明的三元共聚物的数均分子量(Mn)在一个实施方案中为多至1,000,000,和在另一个实施方案中多至800,000。在仍然另一个实施方案中,三元共聚物的Mn多至400,000,在仍然另一个实施方案中多至300,000,和在仍然另一个实施方案中多至180,000。三元共聚物的Mn数值在另一个实施方案中为至少80,000,在仍然另一个实施方案中为至少100,000,在仍然另一个实施方案中为至少150,000,和在仍然另一个实施方案中为至少300,000。三元共聚物Mn数值的所需范围可以是任何上限和任何下限的任何结合。
三元共聚物的重均分子量(Mw)在一个实施方案中为多至2,000,000,在另一个实施方案中为多至1,000,000,在仍然另一个实施方案中为多至800,000,和在仍然另一个实施方案中多至500,000。三元共聚物的Mw数值在另一个实施方案中为至少80,000,在仍然另一个实施方案中为至少100,000,在仍然另一个实施方案中为至少150,000,和在仍然另一个实施方案中为至少200,000。三元共聚物Mw数值的所需范围可以是任何上限和任何下限的任何结合。
三元共聚物的峰值分子量数值(Mp)在一个实施方案中为至少2,000,000,在另一个实施方案中为100,000,在另一个实施方案中为至少150,000,和在仍然另一个实施方案中为至少300,000。三元共聚物的Mp数值在另一个实施方案中多至600,000,在仍然另一个实施方案中多至400,000。三元共聚物Mp数值的所需范围可以是任何上限和任何下限的任何结合。
三元共聚物的分子量分布(Mw/Mn,或MWD)在一个实施方案中小于7.0,在另一个实施方案中小于4.0,和在仍然另一个实施方案中为1.5-3.8。在仍然另一个实施方案中,MWD数值为2.0-3.5。MWD数值可以是任何上限和任何下限的任何结合。
最后,本发明三元共聚物的门尼粘度(1+8,125℃)在一个实施方案中为20-60MU,在另一个实施方案中为25-70MU,在仍然另一个实施方案中为30-50MU,和在仍然另一个实施方案中为50-70MU。
三元共聚物和/或卤化的三元共聚物可以是组合物的一部分,该组合物包括其它组分如一种或多种第二橡胶组分,硫化体系,特别是含硫硫化体系,至少一种填料如炭黑或二氧化硅,和其它少量橡胶混炼领域中通常的组分。三元共聚物或卤化的三元共聚物在一个实施方案中在组合物中的存在量为5-100phr,在另一个实施方案中在组合物中为20-100phr,在仍然另一个实施方案中为30-90phr,在仍然另一个实施方案中为40-80phr,在仍然另一个实施方案中为20-50phr,在仍然另一个实施方案中为15-55phr,和在另一个实施方案中多至100phr。
第二橡胶组分第二橡胶组分可以存在于本发明的组合物中。这些橡胶包括,但不限于,天然橡胶、聚异戊二烯橡胶、聚(苯乙烯-共-丁二烯)橡胶(SBR)、聚丁二烯橡胶(BR)、聚(异戊二烯-共-丁二烯)橡胶(IBR)、苯乙烯-异戊二烯-丁二烯橡胶(SIBR)、乙烯-丙烯橡胶(EPM)、乙烯-丙烯-二烯橡胶(EPDM)、聚硫化物、丁腈橡胶、环氧丙烷聚合物、星型支化的丁基橡胶和卤化的星型支化丁基橡胶、溴化丁基橡胶、氯化丁基橡胶、星型支化的聚异丁烯橡胶、星型支化的溴化丁基(聚异丁烯/异戊二烯共聚物)橡胶、聚(异丁烯-共-对甲基苯乙烯)橡胶和卤化聚(异丁烯-共-对甲基苯乙烯),例如,异丁烯衍生单元,对甲基苯乙烯衍生单元,和对溴甲基苯乙烯衍生单元的三元共聚物、及其混合物。
存在的第二橡胶组分的所需实施方案是天然橡胶。天然橡胶由Subramaniam详细描述于RUBBER TECHNOLOGY(“橡胶技术”)179-208(Maurice Morton,Chapman & Hall 1995)。本发明天然橡胶的所需实施方案选自马来西亚橡胶如SMR CV、SMR 5、SMR 10、SMR20和SMR 50及其混合物,其中天然橡胶在100℃下的门尼粘度(ML1+4)为30-120,更优选40-65。在此提及的门尼粘度测试依据ASTMD-1646进行。
聚丁二烯(BR)橡胶是用于本发明组合物的另一种所需的第二橡胶。聚丁二烯橡胶在100℃下测量的门尼粘度(ML 1+4)可以为35-70,在另一个实施方案中为40-约65,和在仍然另一个实施方案中为45-60。用于本发明的这些合成橡胶的一些商业例子是NATSYNTM(GoodyearChemical Company)和BUDENETM1207或BR 1207(GoodyearChemical Company)。所需的橡胶是高顺式聚丁二烯(顺式-BR)。“顺式聚丁二烯”或“高顺式聚丁二烯”表示使用1,4-顺式聚丁二烯,其中顺式组分的含量至少为95%。用于组合物的高顺式聚丁二烯商业产品的例子是BUDENETM1207。
乙烯和丙烯衍生单元的橡胶如EPM和EPDM也适合作为第二橡胶。制备EPDM合适的共聚单体的例子是亚乙基降冰片烯、1,4-己二烯、二环戊二烯、以及其它物质。这些橡胶描述于RUBBERTECHNOLOGY 260-283(1995)。商购可获得的合适的乙烯-丙烯橡胶是VISTALONTM(ExxonMobil Chemical Company,休斯敦TX)。
在另一个实施方案中,作为三元共聚物组合物一部分的第二橡胶是卤化橡胶。该卤化丁基橡胶是溴化丁基橡胶,和在另一个实施方案中是氯化丁基橡胶。卤化丁基橡胶的一般性能和加工描述于THEVANDERBILT RUBBER HANDBOOK(“范德比尔特橡胶手册”)105-122(Robert F.Ohm编辑,R.T.Vanderbilt Co.,Inc.1990)和RUBBER TECHNOLOGY 311-321(1995)。丁基橡胶、卤化丁基橡胶和星型支化的丁基橡胶由Edward Kresge和H.C.Wang描述于8KIRK-OTHMER ENCYCLOPEDIA OF CHEMICALTECHNOLOGY 934-955(John Wiley & Sons,Inc.第4版,1993)。
本发明的第二橡胶组分包括,但不限于以下物质的至少一种或多种溴化丁基橡胶、氯化丁基橡胶、星型支化的聚异丁烯橡胶、星型支化的溴化丁基(聚异丁烯/异戊二烯共聚物)橡胶;卤化聚(异丁烯-共-对甲基苯乙烯),例如,异丁烯衍生单元,对甲基苯乙烯衍生单元,和对溴甲基苯乙烯衍生单元的三元共聚物(BrIBMS)、和与US5,162,445、US4,074,035和US4,395,506相似的卤甲基化芳族共聚物;卤化异戊二烯和卤化异丁烯共聚物、聚氯丁二烯等、及任何以上物质的混合物。卤化橡胶组分的一些实施方案也描述于US4,703,091和US4,632,963。
在本发明的一个实施方案中,所谓的半结晶共聚物(“SCC”)作为第二“橡胶”组分存在。半结晶共聚物描述于WO 00/69966。一般情况下,SCC是乙烯或丙烯衍生单元和α-烯烃衍生单元的共聚物,α-烯烃在一个实施方案中含有4-16个碳原子,在另一个实施方案中SCC是乙烯衍生单元和α-烯烃衍生单元的共聚物,α-烯烃含有4-10个碳原子,其中SCC具有一定程度的结晶度。在进一步的实施方案中,SCC是1-丁烯衍生单元和另一种α-烯烃衍生单元的共聚物,该另一种α-烯烃含有5-16个碳原子,其中SCC也具有一定程度的结晶度。SCC也可以是乙烯和苯乙烯的共聚物。
弹性体组合物的第二橡胶组分在一个实施方案中的存在量可多至90phr,在另一个实施方案中多至50phr,在另一个实施方案中多至40phr,和在仍然另一个实施方案中多至30phr。在仍然另一个实施方案中,存在的第二橡胶至少为2phr,在另一个实施方案中至少为5phr,在仍然另一个实施方案中至少为5phr,和在仍然另一个实施方案中至少为10phr。所需的实施方案可包括任何phr上限和任何phr下限的任何结合。例如,单独或作为橡胶共混物,例如NR和BR的第二橡胶,在一个实施方案中的存在量可为5-90phr,在另一个实施方案中为10-80phr,在仍然另一个实施方案中为30-70phr,在仍然另一个实施方案中为40-60phr,在仍然另一个实施方案中为5-50phr,在仍然另一个实施方案中为5-40phr,在仍然另一个实施方案中为20-60phr,和在仍然另一个实施方案中为20-50phr,选择的实施方案依赖于组合物所需的最终用途。
填料本发明适用于气密层的弹性体组合物可包括一种或多种填料组分如碳酸钙、粘土、云母、二氧化硅和硅酸盐、滑石、二氧化钛、淀粉和其它有机填料如木粉和炭黑。在一个实施方案中,填料是炭黑或改性炭黑。在一个实施方案中,填料是在组合物中以10-150phr,优选10-100phr,优选30-120phr,更优选40-80phr水平存在的增强级炭黑。炭黑的有用等级描述于RUBBER TECHNOLOGY 59-85(1995),并且范围为N110-N990。更所需地,例如用于轮胎胎面的炭黑的实施方案是在ASTM(D3037,D1510和D3765)中提供的N229、N351、N339、N220、N234和N110。例如,用于轮胎胎侧的炭黑的实施方案是N330、N351、N550、N650、N660和N762。例如,用于内衬层或内胎的炭黑的实施方案是N550、N650、N660、N762、N990和Regal 85(CabotCorporation Alpharetta,GA)等。
改性炭黑也适于作为填料。这样的“改性炭黑”公开于,例如,US3,620,792、5,900,029和6,158,488。例如,改性炭黑可包括由气体如氧化氮、臭氧、或其它气体处理过的炭黑,这些气体可赋予炭黑表面改进的性能。改性炭黑也可包括,例如,已经与含硅烷醇的化合物和/或烃基如烷基、芳基、烷芳基和芳烷基接触的炭黑。例如,可以通过使有机硅烷如烷基烷氧基硅烷与炭黑在高温下接触,制备与含硅烷醇的化合物接触的改性炭黑。代表性的有机硅烷包括四烷氧基硅酸酯如四乙氧基硅酸酯。或者,也可以在炭黑存在下,通过在高温下共熏蒸(co-fuming)有机硅烷和油制备改性炭黑。在制备改性炭黑的仍然另一个实施例中,可以采用或不采用电子源或采用或不采用质子溶剂,将重氮盐与炭黑接触。重氮盐是本领域已知的并可以通过使伯胺、腈和酸(质子给体)接触而产生。该腈可以是任何金属腈(metal nitrile),所需地为锂腈、钠腈、钾腈、锌腈、或其一些结合,或任何有机腈如异戊基腈或乙腈、或其一些结合。
层离粘土(exfoliated clay)也可存在于组合物中。也称为“纳米粘土”的这些粘土是公知的,并且它们的特性、制备方法和与聚合物的共混方法公开于,例如,JP2000109635、JP2000109605、JP11310643、DE19726278、WO98/53000、US5,091,462、US4,431,755、US4,472,538和US5,910,523。适用于本发明目的的可溶胀层状粘土材料包括天然或合成的页硅酸盐,特别是近晶粘土如蒙脱石、绿脱石、贝得石、铬岭石、合成锂皂石、锂蒙脱石、皂石、锌蒙脱石、麦羟硅钠石、水羟硅钠石、斯皂石等,以及蛭石、多水高岭土、铝酸盐氧化物、水滑石等。这些层状粘土一般包含粒子,并包含存在于层间表面处的可交换阳离子如Na+、Ca+2、K+或Mg+2,该粒子包含大量结合在一起厚度在一个实施方案中为4-20埃,在另一个实施方案中为8-12埃的硅酸盐小片状体。
可以采用有机分子(溶胀剂)处理而插层和层离层状粘土,该有机分子能够与存在于层状硅酸盐层间表面处的阳离子进行离子交换反应。合适的溶胀剂包括阳离子表面活性剂如脂族、芳族或芳基脂族胺、膦、硫化物的铵、烷基胺或烷基铵(伯、仲、叔和季)、鏻或锍的衍生物。所需的胺化合物(或相应的铵离子)具有R1R2R3N的结构,其中R1、R2和R3是可以相同或不同的C1-C20烷基或链烯烃。在一个实施方案中,层离剂(exfoliating agent)是长链叔胺,其中至少R1是C14-C20烷基或链烯烃。
另一类溶胀剂包括可以共价结合到层间表面上的那些。这些物质包括结构为Si(R’)2R2的聚硅烷,其中每次出现的R’可相同或不同并选自烷基、烷氧基或含氧硅烷,R2是与本发明复合物的基质聚合物兼容或可溶的有机基团。
其它合适的溶胀剂包括含2-30个碳原子的质子化氨基酸及其盐如12-氨基十二烷酸、ε-己内酰胺等材料。合适的溶胀剂和对层状硅酸盐插层的方法公开于US4,472,538、US4,810,734、US4,889,885,以及WO92/02582。
在本发明的一个实施方案中,将层离添加剂与卤化的三元共聚物结合。在一个实施方案中,该添加剂包括所有的伯胺、仲胺、叔胺和膦;烷基和芳基硫化物和硫醇;和它们的多官能变体。所需的添加剂包括长链叔胺如N,N-二甲基-十八胺、N,N-双十八烷基甲胺,所谓的二氢化牛油烷基甲胺等、和胺封端的聚四氢呋喃;长链硫醇和硫代硫酸盐化合物如六亚甲基硫代硫酸钠。在本发明的另一个实施方案中,由于多官能硫化剂如六亚甲基双(硫代硫酸钠)和六亚甲基双(肉桂醛)的存在,得到了改进的共聚物的不渗透性。
在本发明组合物的仍然另一个实施方案中,填料可以是矿物质填料如二氧化硅。所需矿物质填料的描述由Walter H.Waddell和LarryR.Evans在RUBBER TECHNOLOGY,COMPOUNDING ANDTESTING FOR PERFORMANCE(“配料和性能测试”)第325-332页(John S.Dick编辑,Hanser出版社,2001)中描述。这样的矿物质填料包括碳酸钙和其它碱土和碱金属的碳酸盐、硫酸钡和其它金属硫酸盐、研磨的结晶二氧化硅、如来自白云石、高岭土和其它氧化铝-硅酸盐粘土的生物二氧化硅、滑石和其它镁-二氧化硅化合物、氧化铝、金属氧化物如二氧化钛和其它第3-12族金属氧化物,以上提及的任何物质可以由本领域技术人员已知的技术沉淀。特别所需的矿物质填料包括沉淀的二氧化硅和硅酸盐。其它合适的非黑色填料和用于这些填料的加工助剂(如偶联剂)公开于BLUE BOOK第275-302,405-410页(Lippincott & Peto Publications,Rubber World 2001)。
当这样的矿物质填料存在时,也需要包括有机硅烷偶联剂。偶联剂典型地是双官能有机硅烷交联剂。“硅烷交联剂”表示本领域技术人员已知的任何硅烷偶合的填料和/或交联活化剂和/或硅烷增强剂,这些物质包括,但不限于,乙烯基三乙氧基硅烷、乙烯基-三-(β-甲氧基乙氧基)硅烷、甲基丙烯酰基丙基三甲氧基硅烷、γ-氨基丙基三乙氧基硅烷(由Witco以A1100销售)、γ-巯基丙基三甲氧基硅烷(由Witco以A189销售)等、及其混合物。在优选的实施方案中,采用双-(3(三乙氧基甲硅烷基)-丙基)-四硫烷(由Degussa AG,德国,以Si69销售)。优选,在一个实施方案中有机硅烷-偶联剂占弹性体组合物的2-15wt%,基于填料的重量。更优选,在仍然另一个实施方案中它占填料的4-12wt%。
弹性体组合物的填料组分的存在范围在一个实施方案中多至120phr,在另一个实施方案中多至100phr,和在仍然另一个实施方案中多至60phr。在仍然另一个实施方案中,填料存在量为5-80phr,在仍然另一个实施方案中为50-80phr,在仍然另一个实施方案中为20-80phr,在仍然另一个实施方案中为10-70phr,在仍然另一个实施方案中为50-70phr,和在仍然另一个实施方案中为60-90phr,其中所需的范围可以是任何phr上限和任何phr下限的任何结合。
硫化剂和促进剂根据本发明生产的组合物可包含其它组分和添加剂,如颜料、促进剂、交联和硫化材料、抗氧剂、防臭氧剂和填料。
一般情况下,例如用于生产轮胎的聚合物组合物是交联的。已知硫化橡胶复合物的物理性能,性能特性和耐用性直接与硫化反应期间形成的交联数目(交联密度)和类型相关。(参见,例如,W.Helt等,ThePost Vulcanization Stabilization for NR(“用于NR的后硫化稳定”),RUBBER WORLD 18-23,1991)。交联和硫化剂包括硫、氧化锌和脂肪酸。也可以使用过氧化物硫化体系。
更特别地,在本发明组合物的一个所需实施方案中,在组合物中存在“含硫硫化体系”。本发明的含硫硫化体系包括至少一种或多种含硫化合物如元素硫,并可包括硫类促进剂。一般情况下,三元共聚物组合物也可以包括其它硫化组分,例如硫、金属氧化物(如氧化锌)、有机金属化合物、自由基引发剂等,随后加热。特别地,以下是在本发明中起作用的常用硫化剂ZnO、CaO、MgO、Al2O3、CrO3、FeO、Fe2O3和NiO。这些金属氧化物可以与以下物质结合使用相应的金属络合物、或与相应的试剂如C6-C30脂肪酸如硬脂酸等(如Zn(硬脂酸)2、Ca(硬脂酸)2、Mg(硬脂酸)2、和Al(硬脂酸)3)、或和含硫化合物或烷基过氧化物化合物。(也参见,Formulation Design and CuringCharacteristics of NBR Mixes for Seals(“用于密封的NBR胶料的配方设计和硫化特性”),RUBBER WORLD 25-30(1993)。可以促进此方法并且此方法通常用于弹性体组合物的硫化。本发明的含硫硫化体系至少包括硫,典型地是元素硫,并也可包括金属氧化物,促进剂和在此公开的酚类树脂。
促进剂包括胺、胍、硫脲、噻唑、秋兰姆、次磺酰胺、次磺酰亚胺、硫代氨基甲酸酯、黄原酸酯等。可以通过向组合物加入一定数量的促进剂完成硫化工艺的促进。天然橡胶促进硫化的机理包括在硫化剂,促进剂,活化剂和聚合物之间的复杂相互作用。理想地,在有效交联的形成中消耗所有可利用的硫化剂,该交联将两个聚合物链结合在一起并增强聚合物基质的总体强度。大量促进剂是本领域已知的并包括,但不限于以下物质硬脂酸、二苯基胍(DPG)、二硫化四甲基秋兰姆(TMTD)、4,4’-二硫代二吗啉(DTDM)、二硫化四丁基秋兰姆(TBTD)、2,2’-苯并噻唑基二硫化物(MBTS)、六亚甲基-1,6-二硫代硫酸二钠盐二水合物、2-(吗啉基硫代)苯并噻唑(MBS或MOR),90%MOR和10%MBTS的组合物(MOR90)、N-叔丁基-2-苯并噻唑次磺酰胺(TBBS)、和N-氧联二亚乙基硫代氨基甲酰基-N-氧联二亚乙基次磺酰胺(OTOS)、2-乙基己酸锌(ZEH)、N,N’-二乙基硫脲。
本发明的组合物也可包括加工油和树脂如链烷烃类、聚丁烯、环烷烃类或脂族树脂和油。加工助剂包括,但不限于增塑剂、增粘剂、增量剂、化学调节剂、均化剂和塑解剂如硫醇、石油和硫化植物油、蜡、树脂、松香等。助剂典型地在一个实施方案中存在量为1-70phr,在另一个实施方案中为5-60phr,和在仍然另一个实施方案中为10-50phr。加工助剂的一些商业例子是SUNDEXTM(Sun Chemicals)、FLEXONTM和PARAPOLTM(ExxonMobil Chemical)、和CALSOLTM(R.E.Carroll)。其它合适的添加剂由Howard L.Stevens在RUBBER TECHNOLOGY,第20-58页(1995)中,特别是在表2.15和2.18中描述。
在本发明的一个实施方案中,至少一种硫化剂存在量为0.2-15phr,在另一个实施方案中为0.5-10phr,和在仍然另一个实施方案中为2-8phr。硫化剂包括促进或影响弹性体硫化的上述那些组分,如金属、促进剂、硫、过氧化物、和本领域通常的其它试剂。
可以根据任何常规硫化工艺由任何合适的方法,如使用热或辐射对组合物进行硫化(固化)。热或辐射的量(“热量”)是在组合物中进行硫化所要求的量,并且本发明在此并不限于在形成原材料或制品过程中硫化组合物所要求的方法和热量。典型地,在一个实施方案中在约100℃-约250℃的温度,在另一个实施方案中在150-200℃的温度下进行硫化约1-150分钟。
可以通过使用常规混合技术制备用于制品如轮胎内衬层或内胎的合适的弹性体组合物,该混合技术包括,如捏合、辊炼、挤出机混合、密炼(如采用BanburyTM混合机)等。混合的顺序和采用的温度是熟练的橡胶混炼者所公知的,其目标是在聚合物基体中分散填料、活化剂和硫化剂而不产生过度的热积累。一个有用的混合步骤是采用BanburyTM混合机,其中加入聚合物橡胶、炭黑和增塑剂并将组合物混合所需的时间或混合到特定的温度,以达到组分的适当分散。或者,将橡胶和一部分炭黑(如三分之一到三分之二)短时间混合(如约1-3分钟),随后混合剩余的炭黑和油。在高转子速度下混合持续约1-10分钟,在此期间混合的组分达到约140℃的温度。在冷却之后,在第二步骤中将组分在开炼机上或在BanburyTM混合机中混合,在此期间在相对低温,如约80℃-约105℃,充分和均匀地分散硫化剂和非必要的促进剂,以避免组合物的过早硫化。混合中的变化方案对本领域技术人员是显而易见的并且本发明并不限于任何特定的混合工序。进行混合以充分和均匀地分散组合物的所有组分。
然后由以下方式制备内衬层原料压延或挤出混炼的橡胶组合物成厚度大约为40-100mil厚度的片并切割片材成为具有适当宽度和长度的条,用于轮胎构造操作中的内衬层应用。然后可以将衬里硫化同时与其中放置它的轮胎胎体和/或胎侧接触。
由以下方式制备内胎原料挤出混炼的橡胶组合物成厚度为50-150mil厚度的管形并切割挤出的材料成适当尺寸的长度。然后将挤出材料形成的管子二次切割并将其末端接合在一起以形成内胎坯。然后通过从25℃加热到250℃,或曝露于辐射,或由本领域技术人员已知的其它技术,将内胎坯硫化以形成最终的内胎。
测试方法使用MDR 2000在指示温度和0.5度弧度下测量硫化性能。将试测试样品在指示温度,典型地150-160℃下硫化相应于T90+适当模具滞后的一段时间(以分钟计)。当可能时,标准ASTM测试用于测定硫化复合物的物理性能。在室温下使用Instron 4202或Instron 4204测量应力/应变性能(拉伸强度,断裂伸长率,模量值,断裂能量)。在室温下使用Zwick Duromatic测量肖氏A硬度。在室温下由重量差异,通过使用具有旋转样品夹具(5N托盘天平)和旋转鼓的APH-40磨耗测试仪测定磨耗损失。重量损失指出标准DIN复合物的重量损失,较低的损失指示较高的DIN耐磨性指数。重量损失可以具有±5%的测量误差。
使用Rheometrics ARES获得温度依赖的(-80~60℃)动态性能(G*,G’,G”和tanδ)。在1或10Hz和2%应变下测试矩形扭转样品的几何学。温度依赖的tanδ曲线(如在图1中显示的)可最大化地提供用于预测某温度下轮胎性能的信息。tanδ值具有±5%的测量误差,而温度具有±2℃的测量误差。在-10~10℃范围的实验室动态测试中测量的G”或tanδ数值可用作轮胎湿牵引力的预测,而-20~-40℃的数值可用于预测冬季牵引力。在实验室动态测试中在50~70℃范围中测量的tanδ数值可用作轮胎滚动阻力的预测值。
凝胶渗透色谱用于测量三元共聚物的分子量数据。获得的数均分子量(Mn),重均分子量(Mw)和峰值分子量(Mp)具有±20%的误差。测量分子量和分子量分布(MWD)的技术一般性地描述于Cozewith等的US4,540,753和其中引用的参考文献,并描述于Verstrate等的21MACROMOLECULES 3360(1988)。在典型的测量中,3柱装置在30℃下操作。使用的洗脱剂可以是稳定的四氢呋喃(THF)、或1,2,4-三氯苯(TCB)。使用已知精确分子量的聚苯乙烯标准校准柱子。从标准物获得的聚苯乙烯保留体积对测试的聚合物的保留体积的相关性得到聚合物分子量。
依赖于样品的溶解度,在CDCl3或甲苯-d8中在室温下使用250MHz的场强度(13C-63NMz),或在四氯乙烷-d2中在120℃下使用500MHz的场强度(13C-125NMz),进行1H-和去耦的13C-NMR光谱分析。通过比较甲基质子共振的积分与亚甲基质子共振和PMS特定共振的积分,确定异丁烯和异戊二烯在所有实施例的三元共聚物中的引入量(mol%)。
使用在氧气通过薄膜传送的动态测量原理下操作的MOCONOxTran(型号2/61)测量氧气的渗透性,如由R.A.Pasternak等在8JOURNAL OF POLYMER SCIENCEA-2部分467(1970)中所公开的。测量的单位是cc-mil/m2-天-mmHg。一般情况下,该方法如下将平膜或橡胶样品夹入渗滤池,使用无氧载气在60℃清除渗滤池的残余氧气。将载气送到传感器直到建立稳定的零位值。然后将纯氧或空气注入渗滤池腔室的外部。将通过薄膜扩散到内部腔室的氧气输送到传感器,由传感器测量氧气的扩散速率。
由以下方法测试透气性。将来自样品组合物的薄的硫化试样安装在渗滤池中并以65℃的油浴为条件。记录空气渗透穿过给定试样所需要的时间以确定其透气性。试件是具有12.7cm直径和0.38mm厚度的圆盘。测量透气性中的误差(2σ)是±0.245(×108)单位。其它测试方法描述于表2。
对SBR粘合性的测试。此测试方法,“对SBR的粘合性”或“粘合T-剥离”测试是以ASTM D413为基础。此测试用于测量在硫化之后,在相同或不同的两种橡胶复合物之间的粘附结合强度。一般情况下,将用于组成橡胶(弹性体)组合物的复合物在三辊混炼机上制备到2.5mm的厚度。将粘合剂衬里织物放置在每种复合物的背面上。典型地,大约500克共混的弹性体组合物原料可得到16个样品,其足以一式两份地用于8次粘合性测试,其中压延机设定到间隔11cm的2.5mm导向装置。
将两种复合物的表面彼此压挤和粘合。在一端将聚酯薄膜Mylar小标签放置在两种橡胶组合物(SBR和测试组合物)的层间以防止粘合,并使得标签区域为大约2.5英寸(6.35cm)。然后在硫化机中在规定的条件下硫化粘合样品。从每个模塑的硫化片中模切出1英寸(2.54cm)×6英寸(15.24cm)的试样。每个试样的标签由动力驱动的张力机(Instron 4104,4202或1101)保持并在180°下拉动直到在两个橡胶组合物之间发生分离。获得用于分离的力,然后报导观测值。
在表1中总结其它测试方法。
实施例尽管不意味着由以下实施例和表限制,但可以通过参考以下实施例和表更好地理解本发明。在整个描述中使用以下符号描述本发明的橡胶组分IBIMS{三元共聚物;聚(异丁烯-共-对甲基苯乙烯-共-异戊二烯)};BrIBIMS{溴化的三元共聚物;溴化的聚(异丁烯-共-对甲基苯乙烯-共-异戊二烯)};IBMS{聚(异丁烯-共-对甲基苯乙烯)};BrIBMS{聚(异丁烯-共-对甲基苯乙烯-共-对溴甲基苯乙烯)};SBB{溴化的星型支化的丁基橡胶(聚(异丁烯-共-异戊二烯))};BR{聚丁二烯};NR{天然橡胶};SBR{苯乙烯-丁二烯橡胶};和BIIR{溴化聚(异丁烯-共-异戊二烯)}。
在6样品间歇操作的装置中进行用于本发明的三元共聚物的合成。叔丁基氯(t-BuCl)是用于试验A-F的引发剂,其数据见表3A。
对于试验A-F,间歇试验是在氯代甲烷中在-93℃初始温度下250mL的反应。用于实施例的引发剂是叔丁基氯(Aldrich ChemicalCo.)和使用的路易斯酸催化剂是EADC(二氯化乙基铝)在庚烷中的25wt%溶液。将叔丁基氯引发剂和EADC催化剂以3/1的摩尔比在氯代甲烷中预混合并稀释到在氯代甲烷中约1wt%溶液的最终总浓度。
在使用之前,通过将异丁烯蒸气通过干燥塔而干燥用于实施例的异丁烯,然后在干燥箱中的清洁烧瓶中冷凝。在使用之前,将用于实施例的对甲基苯乙烯和异戊二烯单体在真空下蒸馏以除去水分和自由基引发剂。用于试验A-F的三元共聚物合成的单体进料共混物是在氯代甲烷中10wt%的总单体,其具有异丁烯/异戊二烯/对甲基苯乙烯的重量百分比(wt%)为80/10/10。
在500ml玻璃反应器中在装配有用于低温反应的冷却浴的标准氮气气氛箱(干燥箱)中,进行三元共聚试验。每个聚合批次使用250ml单体进料共混物,该共混物包含在氯代甲烷中重量百分比为80/10/10的异丁烯/异戊二烯/对甲基苯乙烯的10wt%总单体。在将单体溶液冷却到所需的反应温度(<-90℃)之后,将预冷却的引发剂/催化剂混合物溶液缓慢加入到反应器中以引发聚合。控制催化剂溶液的加入速率以避免反应器中的过度温度增加。因此,将催化剂递增地加入到反应器中的本体相里。在其它因素中,根据与反应器中消耗的单体含量关联的累积温度增加,调节加入的总催化剂溶液含量。当达到所需的单体转化率(如至少50%转化率)时,向反应器中加入少量甲醇以猝灭聚合反应。然后将三元共聚物分离并在真空烘箱中干燥用于分析。
由本领域已知的(上述)标准凝胶渗透色谱(GPC)技术分析获得的三元共聚物的分子量和分子量分布(Mw/Mn)。三元共聚物的GPC分析结果见表3。由标准质子NMR技术获得的最终三元共聚物中单体衍生单元的摩尔%比例也见表3A。在试验A-F的三元共聚物中不饱和基团的组合含量(也相应于异戊二烯{IP}的水平)是4.14摩尔%。试验A-F的最终三元共聚物中PMS的组合含量是4.64摩尔%。
在标准圆底烧瓶中使用环己烷中的5wt%三元共聚物溶液,进行A-F三元共聚物复合材料的溴化。为使自由基溴化最小化,将反应器完全隔绝光并在聚合物溶液中加入少量(基于聚合物装料的约200ppm)BHT自由基引发剂。制备环己烷中的10wt%溴溶液并转移入连接到反应器的刻度加料漏斗中。然后将所需数量的溴溶液滴加入剧烈搅拌的三元共聚物溶液中。在完成溴加入之后,采用过量苛性碱溶液猝灭溴化反应2-5分钟。然后在分液漏斗中将中和的三元共聚物中过量苛性碱用新鲜水洗涤数次。将溴化的三元共聚物通过在甲醇中的溶剂沉淀而分离,然后在真空烘箱中在适度温度下干燥过夜。
溴化主要导致三元共聚物主链上不饱和部分的溴化,与PMS的一些溴化。复合物样品主链上的溴水平是0.80摩尔%,和PMS上的0.06摩尔%,该溴水平由NMR测定(总计0.86摩尔%的溴)。此样品用于实施例3。对另一批次的三元共聚物进行与上述相似的溴化,导致1.1摩尔%(±10%)的复合物的溴水平。此样品用于实施例7。
在展示IBIMS的硫化特性中,使用Haake RheomixTM600密炼机,在实施例1-3中将A-F复合材料,和其它对比复合物在两个阶段中混合。在第一步骤中混合弹性体、填料和加工油。组分列于表3。第二步骤由混合第一步骤母料和加入所有其它化学成分组成。混合持续三分钟或直到达到110℃的温度。在每个Haake混合步骤之后使用开放式两辊混炼机将原料成片。
用于研究三元共聚物硫化特性的组合物(1-7)的实施例示于表4,其性能总结于表5。样品1-7表示与其它已知橡胶比较的三元共聚物。每个样品1-7包括60phr N666炭黑;4phr SP-1068树脂;7phrSTRUKTOL 40 MS;1phr硬脂酸;8phr CALSOL 810加工油;0.15phrMAGLITE-K;1phr KADOX 911氧化锌;0.5phr硫;和1.25phr MBTS。硫化性能总结于表5,物理特性总结于表6。样品4-7的老化性能,和对SBR的粘合性测试总结于表7。最后,实施例4-7的动态性能(tanδ)数值总结于表8和图1。
表5-7中概括的物理研究结果显示BrIBIMS复合物7具有与以下所研究的其它异丁烯类聚合物相似的硫化性能溴化丁基橡胶、星型支化的溴化丁基橡胶和BIMS。获得稍微较低的机械性能(100%和300%模量,拉伸和断裂能量数值),主要认为是由于BrIBIMS三元共聚物较低的分子量(参见表6),如由获得的内衬层复合物较低的门尼粘度值所示。BrIBIMS内衬层复合物7具有与其它异丁烯弹性体同样所需的低透气性。然而,出乎意料地是,尽管分子量低,BrIBIMS复合物7具有比溴化丁基橡胶(5)或星型支化的溴化丁基橡胶(4)内衬层更高的耐磨性数值并可与BIMS复合物6相容。此外,BrIBIMS复合物7具有对SBR胎体复合物的更高粘合性和比BIMS复合物6更高的撕裂强度。
动态性能测试显示BrIBIMS三元共聚物复合物7在+30~-20℃的温度具有更高的tanδ数值,表明其具有潜在改进的干燥,湿和冬季牵引力性能,参见图1。此性能可用于牵引力或抓牢力是重要性能特性的橡胶产品,如轮胎胎面、鞋底和动力传输带。表8是图1所示结果的总结。
使用集合(几个批次的结合)数均分子量为约90,000的BrIBIMS三元共聚物进行以上实施例3和7。给定此相对较低的分子量,出乎意料地发现表7中对SBR粘合力的数值高至70N/mm。因此,尽管相对于,例如,BIIR,实施例7BrIBIMS的拉伸强度和断裂能量数值较低,但对于实施例7BrIBIMS中所显示的具有相对低的数均分子量的聚合物而言,这是可以预期的。在预期的实施例BrIBIMS中,三元共聚物的数均分子量为300,000-800,000,或在另一个实施方案中为300,000-600,000。可以通过调节反应条件如引发剂的特性和/或数量,反应器温度,和其它因素获得这种三元共聚物。预期此300,000-800,000数均分子量的BrIBIMS三元共聚物显示80-300N/mm或更高的对SBR进一步改进的粘合力数值。此具有更高MW的三元共聚物的DIN磨耗指数在一个实施方案中大于60,在仍然另一个实施方案中大于70,和在仍然另一个实施方案中大于80。最后,具有300,000-800,000数均分子量的BrIBIMS三元共聚物的门尼粘度(100℃,ML(1+4))为50-70个单位。
因此,在一个所需的实施方案中,含有填料和可选择的含有其它另外的橡胶和其它组分的本发明的三元共聚物,在100℃显示出大于70N/mm的对SBR的粘合力数值,在另一个实施方案中大于80N/mm,在仍然另一个实施方案中大于100N/mm,和在仍然另一个实施方案中大于200N/mm,在一个实施方案中为70-400N/mm,和在仍然另一个实施方案中为80-300N/mm。
与合适的填料,和可选择的,与一种或多种另外的第二橡胶结合的本发明的三元共聚物可以由任何合适的方法硫化以形成各种有用的制品。特别地,本发明硫化的三元共聚物适用于汽车轮胎组件如胎面、胎侧,并特别适用于轮胎内衬层、内胎和其中需要空气屏蔽性能的其它应用。三元共聚物,或三元共聚物的组合物也可以适于制品如带子和软管、振动阻尼装置、药物塞子和活塞、鞋底和其它鞋组件、以及其中不透气性和柔韧性重要的其它器具。
本发明的组合物可用于生产机动车辆轮胎的内衬层如卡车轮胎、公共汽车轮胎、载客车辆轮胎、摩托车轮胎、越野轮胎等。本发明硫化组合物的氧气渗透率(MOCON)在65℃下在一个实施方案中小于10×10-8cm3·cm/cm2·sec·atm,在65℃下在另一个实施方案中小于9.5×10-8cm3·cm/cm2·sec·atm,在65℃下在仍然另一个实施方案中小于9.0×10-8cm3·cm/cm2·sec·atm,和在65℃下在仍然另一个实施方案中小于8.5×10-8cm3·cm/cm2·sec·atm;和氧气渗透率范围在65℃下在一个实施方案中可以为0.1×10-8-10×10-8cm3·cm/cm2·sec·atm,和在65℃下在另一个实施方案中为1×10-8-9×10-8cm3·cm/cm2·sec·atm,和在65℃下在仍然另一个实施方案中为1.5×10-8-9×10-8cm3·cm/cm2·sec·atm。
与合适的填料,和可选择地,另外的橡胶和其它组分结合的本发明的硫化组合物的DIN磨耗指数在一个实施方案中可大于45,在另一个实施方案中大于50,和在仍然另一个实施方案中大于52;和DIN磨耗指数在仍然另一个实施方案中为30-80,在仍然另一个实施方案中为40-70,和在仍然另一个实施方案中为45-65。
同样,与合适的填料,和可选择地,另外的橡胶和其它组分结合的本发明的硫化组合物在-30℃的tanδ(G”/G’)数值在一个实施方案中大于0.60,在另一个实施方案中大于0.70,在仍然另一个实施方案中大于0.80,在仍然另一个实施方案中为0.50-1.2,在仍然另一个实施方案中为0.60-1.1,和在仍然另一个实施方案中为0.70-1.1。硫化组合物在0℃的tanδ(G”/G’)数值在一个实施方案中大于0.20,在另一个实施方案中大于0.25,在仍然另一个实施方案中大于0.30,和在仍然另一个实施方案中为0.20-0.80,在仍然另一个实施方案中为0.25-0.70,和在仍然另一个实施方案中为0.25-0.65。根据60℃的tanδ数值,相对于,例如,轮胎的其它组分,预期三元共聚物的组合物具有相似的热积累。因此,预期在内衬层和内胎中使用本发明的三元共聚物中不会发生滞后。
本发明包括以上所述和表征的三元共聚物在各种组合物中的用途,和制备该三元共聚物和组合物的方法。本发明的一个实施方案是由C4-C8异烯烃衍生单元,C4-C14多元烯烃衍生单元,和对烷基苯乙烯衍生单元形成的卤化三元共聚物。在该三元共聚物的一个实施方案中,硫化的三元共聚物在100℃对SBR的粘合力数值大于70N/mm。
三元共聚物组合物在另一个实施方案中可包括第二橡胶,其中第二橡胶选自天然橡胶、聚丁二烯橡胶、丁腈橡胶、硅橡胶、聚异戊二烯橡胶、聚(苯乙烯-共-丁二烯)橡胶、聚(异戊二烯-共-丁二烯)橡胶、苯乙烯-异戊二烯-丁二烯橡胶、乙烯-丙烯橡胶、溴化丁基橡胶、氯化丁基橡胶、卤代异戊二烯、卤化异丁烯共聚物、聚氯丁二烯、星型支化的聚异丁烯橡胶、星型支化的溴化丁基橡胶、聚(异丁烯-共-异戊二烯)橡胶、卤化聚(异丁烯-共-对甲基苯乙烯)、及其混合物。
在弹性体组合物的仍然另一个实施方案中,三元共聚物是溴化的。弹性体组合物的三元共聚物的溴水平在一个实施方案中可以为0.1-2.5摩尔%,基于三元共聚物中单体衍生单元的总摩尔数,和另一个实施方案中为0.2-2摩尔%,基于三元共聚物中单体衍生单元的总摩尔数。
在弹性体组合物的仍然另一个实施方案中,三元共聚物的数均分子量为300,000-800,000,和在另一个实施方案中为300,000-1,000,000。
三元共聚物的DIN磨耗指数在一个实施方案中大于45个单位,和在另一个实施方案中tanδ数值在-30℃大于0.60,和在仍然另一个实施方案中tanδ数值在0℃大于0.20。三元共聚物因此适用于如轮胎内衬层和胎面、胎侧等的制品。
本发明也包括制备BrIBIMS三元共聚物的改进方法。生产弹性体三元共聚物组合物的方法包括在路易斯酸和至少一种引发剂存在下,在稀释剂中结合C4-C8异烯烃单体,C4-C14多元烯烃单体,和对烷基苯乙烯单体以生产三元共聚物。
在制备三元共聚物方法的一个实施方案中,引发剂由以下通式描述 其中X是卤素;R1选自氢、C1-C8烷基和C2-C8链烯基、芳基、和取代芳基;R3选自C1-C8烷基、C2-C8链烯基、芳基和取代芳基;和R2在一个实施方案中选自C4-C200烷基和在另一个实施方案中选自C4-C50烷基、C2-C8链烯基、芳基、和取代芳基、C3-C10环烷基,和 其中X是卤素;R5选自C1-C8烷基和C2-C8链烯基;R6选自C1-C8烷基、C2-C8链烯基、芳基、和取代芳基;和R4选自亚苯基、联苯、α,ω-二苯基烷烃和--(CH2)n--,其中n是1-10的整数;和其中R1、R2和R3也可形成金刚烷基或冰片基的环体系。
在制备三元共聚物方法的另一个实施方案中,路易斯酸选自卤化芳基铝、烷基取代的卤化芳基铝、卤化烷基铝、及其混合物。
路易斯酸在一个实施方案中选自卤化二烷基铝、二卤化单烷基铝、三卤化铝、倍半氯化乙基铝、及其混合物,和在另一个实施方案中选自AlCl3、EtAlCl2、Et1.5AlCl1.5、Et2AlCl、及其混合物。
在制备三元共聚物和组合物的方法的仍然另一个实施方案中,稀释剂的介电常数在20℃大于6,和在另一个实施方案中在20℃大于9。在另一个实施方案中,稀释剂选自甲基环己烷、环己烷、甲苯、二硫化碳、氯乙烷、氯代甲烷、二氯甲烷、CHCl3、CCl4、氯代正丁烷、氯苯、及其混合物。
该方法在另一个实施方案中进一步包括卤化三元共聚物的步骤。
在制备三元共聚物方法的另一个实施方案中,聚合温度在-10℃和聚合体系的凝固点之间。
尽管通过参考特定的实施方案描述和举例说明本发明,本领域技术人员会理解本发明自身可导致未在此说明的许多不同变化。由于这些原因,则仅参考所附的权利要求以用于确定本发明真实范围的目的。
对于其中允许这样引入的所有司法权,所有的优先权文献在此完全引入作为参考。此外,对于其中允许这样引入的所有司法权,其中引用的包括测试步骤的所有文献在此完全引入作为参考。
表1.测试方法
表2.组分和商业来源
表3.对于试验A-F使用叔丁基氯作为引发剂以生产三元共聚物的反应条件和结果
*催化剂溶液是在氯代甲烷中1.0wt%的EADC和t-BuCl混合物,其中EADC/t-BuCl摩尔比是3∶1。
表4.实施例的组分1
1.每个样品1-3也包括60phr N666炭黑;4phr SP-1068树脂;7phrSTRUKTOL 40 MS;1phr硬脂酸;8phr CALSOL 810加工油;0.15phrMAGLITE-K;1phr KADOX 911氧化锌;0.5phr硫;和1.25phr MBTS。
表5.实施例的硫化性能
表6.实施例的物理性能
表7.实施例4-7的老化性能,和对SBR胎体的粘合力
表8.图1中弹性体的代表性tanδ数值(实施例4-7)
权利要求
1.一种卤化三元共聚物,其由C4-C8异烯烃衍生单元,C4-C14多元烯烃衍生单元,和对烷基苯乙烯衍生单元形成。
2.权利要求1的卤化三元共聚物,其中C4-C8异烯烃是异丁烯。
3.权利要求1的卤化三元共聚物,其中C4-C14多元烯烃选自环戊二烯和异戊二烯。
4.权利要求1的卤化三元共聚物,其中对烷基苯乙烯是对甲基苯乙烯。
5.权利要求1的卤化三元共聚物,其中三元共聚物是溴化的。
6.权利要求5的卤化三元共聚物,其中三元共聚物中的溴存在范围是0.1-2.5摩尔%,基于三元共聚物中单体衍生单元的总摩尔数。
7.权利要求5的卤化三元共聚物,其中三元共聚物中的溴存在范围是0.2-2摩尔%,基于三元共聚物中单体衍生单元的总摩尔数。
8.权利要求1的卤化三元共聚物,其中三元共聚物的数均分子量为300,000-800,000。
9.权利要求1的卤化三元共聚物,其中三元共聚物的数均分子量为300,000-1,000,000。
10.权利要求1的卤化三元共聚物,其中硫化的卤化三元共聚物在100℃对SBR的粘合力数值大于70N/mm。
11.权利要求1的卤化三元共聚物,其中硫化的卤化三元共聚物在100℃对SBR的粘合力数值大于100N/mm。
12.权利要求1的卤化三元共聚物,其中硫化的卤化三元共聚物在100℃对SBR的粘合力数值大于200N/mm。
13.权利要求1的卤化三元共聚物,其中硫化的卤化三元共聚物的DIN磨耗指数大于45个单位。
14.权利要求1的卤化三元共聚物,其中硫化的卤化三元共聚物在-30℃的tanδ数值大于0.60。
15.权利要求1的卤化三元共聚物,其中硫化的卤化三元共聚物在0℃的tanδ数值大于0.20。
16.权利要求1的卤化三元共聚物,其中三元共聚物中多元烯烃衍生单元的存在量为三元共聚物重量的0.2-30wt%,和对烷基苯乙烯衍生单元是三元共聚物重量的0.5-30wt%。
17.一种内衬层,其包括权利要求1的卤化三元共聚物。
18.一种内胎,其包括权利要求1的卤化三元共聚物。
19.一种气密层,其包括权利要求1的卤化三元共聚物。
20.一种生产弹性体三元共聚物的方法,其包括在路易斯酸和引发剂存在下,在极性稀释剂中结合C4-C8异烯烃单体,C4-C14多元烯烃单体,和对烷基苯乙烯单体以生产三元共聚物。
21.权利要求20的方法,其中引发剂由以下通式描述 其中X是卤素;R1选自氢、C1-C8烷基、和C2-C8链烯基、芳基、和取代芳基;R3选自C1-C8烷基、C2-C8链烯基、芳基、和取代芳基;和R2选自C4-C200烷基、C2-C8链烯基、芳基、和取代芳基、C3-C10环烷基,和 其中X是卤素;R5选自C1-C8烷基、和C2-C8链烯基;R6选自C1-C8烷基、C2-C8链烯基、芳基、和取代芳基;和R4选自亚苯基、联苯、α,ω-二苯基烷烃和--(CH2)n--,其中n是1-10的整数;和其中R1、R2、和R3也可形成金刚烷基或冰片基的环体系。
22.权利要求20的方法,其中路易斯酸选自卤化芳基铝、烷基取代的卤化芳基铝、卤化烷基铝、及其混合物。
23.权利要求20的方法,其中路易斯酸选自卤化二烷基铝、二卤化单烷基铝、三卤化铝、倍半氯化乙基铝、及其混合物。
24.权利要求20的方法,其中路易斯酸选自AlCl3、EtAlCl2、Et1.5AlCl1.5、Et2AlCl、及其混合物。
25.权利要求20的方法,其中稀释剂的介电常数在20℃大于6。
26.权利要求20的方法,其中稀释剂的介电常数在20℃大于9。
27.权利要求20的方法,其中稀释剂选自甲基环己烷、环己烷、甲苯、二硫化碳、氯乙烷、氯代甲烷、二氯甲烷、CHCl3、CCl4、氯代正丁烷、氯苯、及其混合物。
28.权利要求20的方法,其进一步包括卤化三元共聚物的步骤。
29.权利要求20的方法,其中三元共聚物中的卤素存在范围是0.1-2.5摩尔%,基于三元共聚物中单体衍生单元的总摩尔数。
30.权利要求20的方法,其中三元共聚物中的卤素存在范围是0.2-2摩尔%,基于三元共聚物中单体衍生单元的总摩尔数。
全文摘要
本发明包括适用于气密层的异丁烯类三元共聚物,如需要对轮胎胎体材料(如SBR)具有粘合性和柔韧性,以及低透气性的内衬层。在一个实施方案中的三元共聚物是由C
文档编号C08F8/22GK1602319SQ02824596
公开日2005年3月30日 申请日期2002年12月9日 优先权日2001年12月10日
发明者W·H·瓦德尔, D·Y·楚恩格 申请人:埃克森美孚化学专利公司