专利名称:流感疫苗的利记博彩app
技术领域:
本发明涉及一种重组的流感神经氨酸酶,一种可在宿主细胞内表达该重组神经氨酸酶的表达载体,生成和纯化重组神经氨酸酶的方法,抗流感的疫苗和本发明重组神经氨酸酶的用途。
甲型和乙型流感病毒的流行会引起被感染者极大的不适并对社会和经济生活造成很大的影响。在老年人和患有慢性疾病的病人中,它们会导致很高的死亡率。自从40年代它们被人类认识后,培养在鸡蛋中的以病毒物质为基础的灭活疫苗被发现具有明显的抗流感功效并显著降低了高发病率群体中的死亡率。
在支气管的病毒中,流感病毒是独特的,因为它们在其两个表面抗原,即血凝素(HA)和神经氨酸酶(NA)中发生了明显的抗原性变异(即所谓的“遗传漂变”)。
另外,尤其是甲型流感因为“遗传转变”现象而能避过流行性免疫。此处出现在人中的病毒具有来自流感基因动物贮主的NA基因。1957年,在该时间之前流行的NA1型病毒被NA2型所取代。自1977年起,NA1型病毒又回到了人群中。所以,现在较好的疫苗必须能同时针对NA1和NA2型病毒。
另外,NA催化糖基的末端唾液酸残基的去除,从而破坏了HA的潜在受体(Gottschalk,1957;Burnet和Stone,1947)。据假设,NA可主要防治病毒聚集并在细胞与细胞之间有效扩散。(Colman和Ward,1985)。
每种NA分子(Mr=240,000)具有伞菌样结构,由四条相同的多肽链组成,四条多肽链由两个与二硫键相连的二聚体组成并靠非共价键结合在一起(Bucher和Kilbourne,1972;Laver和Valentine,1969;Varghese等,1983;Ward等,1983)。与HA不同,NA通过非剪切的、NA末端的、亲脂性序列(Fields等,1983;Block等,1982),即所谓的膜锚着点,锚定在脂质膜中。完整结构的绝大部分突出在细胞膜上,就此形成位于延长的“茎”区顶端的一远端、盒形“头”部(Wrigley等,1973)。头部中的每个单体有其自身的催化部位并至少含有4个NA-连接的糖基(Colman等,1983;Ward等,1982)。至今还未证明有O-糖基化存在。
由于位于胞外,HA和NA抗原代表了宿主免疫系统的最重要的病毒靶结构。与HA特异性结合的抗体被认为通过阻断早期感染来中和病毒传染力(Hirst,1942;Kida等,1983)。NA特异性抗体一般不能防治靶细胞的早期感染(Jahiel和Kilbourne,1966;Kilbourne等,1986;Johanssen等,1988),但恰能防治病毒的扩散。另外,由于竞争作用机制,对NA的免疫反应被部分抑制,主要是有那些较经常出现的HA抗原(Johanssen等,1987,Kilbourne,1976)。作为净结果,NA免疫的作用常通过中和HA抗体被掩盖。因此,疫苗的设计长期以来几乎只集中于HA。
一系列的试验性观察表明,HA在建立对流感的保护性免疫中起着重要作用(Schulman等,1968;Johansen和kilbourne,1990;Johansen等,1993)。对NA免疫原能力的基础研究要求得到足量的高纯度的具有正确三维构象的抗原。至今,已能通过用去垢剂处理病毒外壳(Gallagher等,1984;Kilbourne等,1968),或通过蛋白酶解切割蛋白质头部(通常是利用链霉蛋白酶)(Seto等,1966;Rott等,1974),然后纯化NA,由此制备NA。虽然具有某种程度的可用性,但这些方法在产率和纯度方面有所限制。
所以,本发明的目的之一是提供一种重组流感神经氨酸酶,它具有与天然神经氨酸酶相应的抗原特性,并具有正确的折叠方式。
根据本发明,这种基本分离状态的神经氨酸酶可如下获得a)将用神经氨酸酶表达载体转化或经已用神经氨酸酶表达载体转化的病毒感染的宿主细胞培养在合适的培养基中,其中的表达载体至少含有某种流感病毒神经氨酸酶基因编码区减去膜锚着点编码区后的部分区段或其修饰形式,在同相位前面有一段信号序列;b)从培养基中分离出表达产物神经氨酸酶。
分泌在培养基中的本发明的重组神经氨酸酶可用于例如基础研究,其中,进行NA接种以测试疫苗中NA的作用。实际中,重组NA还可能与HA结合使用以提高保护度(接种群体中有效抵抗感染的百分比)和保护持续性(抵抗以后的流行病毒株)。
更特别的是,本发明提供了一种重组流感NA2神经氨酸酶,它可通过将宿主细胞培养在合适的培养基中并从培养基中分离出表达产物来获得。这需要在实际操作中将来自pAc2IVNAs的一段重组表达序列组件杂交在野生型杆状病毒或其衍生体中。然后用这种重组杆状病毒感染宿主细胞。
用于产生重组流感神经氨酸酶的宿主细胞最好来自较低级的真核生物,如昆虫(最好是昆虫细胞系sf9),但也可以是酵母细胞(如(酵母属Saccharomvces)或毕赤氏酵母属(Pichia))。
本发明还涉及用于表达可分泌流感神经氨酸酶的两种载体,它们含有复制起点和至少流感神经氨酸酶基因编码区减去膜锚着点编码区后的部分区段或其修饰形式,在编码区5’端同相位地偶联着一段信号序列,启动子位于信号序列5’端,转录终止子位于编码区3′端。更特别的是,本发明提供了一种用于表达可分泌流感NA2神经氨酸酶的载体,它有一个复制起点和A/Victoria/3/75病毒株的流感NA2神经氨酸酶基因编码区减去膜锚着点编码区后的区段或其修饰形式。
为了在昆虫细胞中表达,该载体连同野生型杆状病毒或其衍生体被置于细胞中。由于发生了双同源重组而产生了重组杆状病毒,重组中,载体的表达序列组件被引入病毒的基因组。噬菌斑纯化后可获得重组杆状病毒的储备液,然后可用该储备液感染(例如)sf9-细胞。
信号序列最好来自流感NA2病毒株A/Victoria/3/75(H3N2)的血凝素基因。本发明中最好含有载体pAc2IVNAs,于1994年1月3日在Laboratoriumvoor Moleculaire Biologie-Plasmidencollectie(LMBP),K.L.Ledeganck-straat 35,B-9000 Ghent,Belgium申报,保藏号为LMBP2976,它被用于通过双同源重组转化如杆状病毒之类的病毒。本文中,该载体中由转录调控信号,信号序列和编码区构成的病毒表达序列组件被置于病毒的基因组中。
在本发明的另一实施例中使用了本发明的另一种载体。该载体被用在酵母中,含有复制起点、A/Victorea/3/75病毒株的流感NA2神经氨酸酶基因编码区减去分别编码NA的膜锚着点和茎部分区后的区段或其修饰形式、在编码区5’端同相位偶联的信号序列,位于信号序列5’端的启动子和位于编码区3’端的转录终止子。
启动子和终止子序列最好是同源的而且来自甲基营养酵母Pichia pastoris,如乙醇氧化酶I-基因序列。信号序列可以是例如酿酒酵母(Saccharomvcescerevisiae)的早前接合因子α的分泌信号。
该载体pPP1IVNAfls于1995年1月3日在Laboratorium voor Molecu-laire Biologie-Plasmidencollectie(LMBP),K.L.Ledeganckstraat 35,B-9000 Ghent,Belgium申报,保藏号为LMBP3223。
本发明的重组神经氨酸酶被发现能产生对流感病毒,尤其是对NA2型的预防免疫。所以本发明还涉及包含了重组神经氨酸酶的抗流感疫苗。
本发明还涉及重组神经氨酸酶的生成和纯化方法。
本说明和权利要求书中,“NAs”指可分泌(重组)神经氨酸酶。“pNA″指用链霉蛋白酶处理后的天然神经氨酸酶。“NA”指神经氨酸酶。
本发明将结合以下实施例进一步进行说明,这些实施例仅以说明为目的而不对本发明的范围进行任何限定。实施例1重组流感NA2神经氨酸酶的表达、纯化和鉴定材料和方法1.编码分泌的神经氨酸酶基因的构建及其在杆状病毒表达系统中的整合a.质粒质粒pV6/21是质粒pBR322的一种衍生体,含有单拷贝的A/Victorea/3/75(H3N2)流感病毒株的神经氨酸酶基因(Van Rompuy等,1982)。pSV51以及pSV23m和pSV24m两者分别是较新和较早的SV40置换载体,在其它文献中有所描述(Huylebroeck等,1988)。pSR S-8是pPLa2311基础上的一种质粒,含有A/Victoria/3/75(H3N2)血凝素(HA)基因的起始序列(Huylebroeck等,1988)。杆状病毒转化载体pVL941由Iuckow和Summers(1988)设计。b.HA信号肽序列(pIVprsHA)的亚克隆利用Klenow酶补平pSRS-8中1830bp BstNI片段。然后接入PvuII接头(GCAGCTGC)。用PvuI和PvuII消化所得的片段和pBR322,分离出731bp和1699bp片段。将两者连接后产生pIVpreHA,其中含开始于G-16(ATG=+1、+2、+3)的HA基因5’端非翻译区,其后是完整的HA信号肽序列和成熟HA的开头几个密码子。c.编码可分泌NA的嵌合序列的构建pATIVNAs用PvuI切开pV6/21并用Bal31核酸外切酶处理。在该混合物中连接HindIII接头,然后用HindIII消化。挑选约1500bp的NA片段并克隆入pSV23m的单一HindIII位点中(pSV23mIVNA)。然后用FnudII和SalI消化含有逆时针方向插入片段的质粒,回收含NA基因减去膜锚着点序列后的1291bp片段。接种,将pIVpreHA与PstI和PvuII一起孵育,保留含有HA信号序列的861bp片段。通过PvuII-FnudII钝端连接作用融合上述两片段,并将其插入pAT153的2253bp SalI/PstI片段中,得到pATIVNAs。该质粒携有包括成熟NA开头几个氨基酸在内的HA信号肽编码序列,其后紧跟缺失了信号肽和膜锚着点的NA序列,并跟有部分“茎”编码区。HA和NA片段的连接只产生了一个单氨基酸取代(Gly变为Ala),对应于成熟HA的第5位。基于MinJou等(1988)和Van Rompuy等(1982)公开的信息,在图2中给出预期的NAs中连接位置侧翼的DNA和氨基酸序列。d.NAs在杆状病毒转化载体中的整合将pATIVNAs的1368bp XbaI/SalI片段与pSV51的5562bp SslI/EcoRI片段和pSV24的624bp EcoRI/XbaI片段连接。然后将单拷贝的含NAs基因的1647bp BamHI片段和SV40聚腺苷酸位点插入pVL941的单一限制性酶切位点,同时考虑与多角体蛋白启动子有关的正确取向,由此产生pAc2IVNAs。该构建物可与野生型AcNPV DNA在共转染sf9细胞后发生同源重组。利用Summers和Smith(1987)所述连续的噬菌斑纯化法分离重组的病毒子代。2.昆虫细胞培养-NAs的产生为了常规培养,sf9细胞在含10%胎牛血清和50μg/ml庆大霉素的TC100培养基中以铺满的单细胞层保持。为了用重组杆状病毒感染,将培养物转移至200ml悬浮液中,在850cm2的滚瓶(25rpm)中生长。在对数期末(2×106细胞/m1),用1.0moi(“感染复数”,即每个细胞中转染病毒颗粒的个数)的重组杆状病毒感染悬浮细胞。2小时后,将感染的细胞转移至新鲜无血清的TC100培养基中,再悬浮培养48小时。如下文所述从培养基中纯化NAs。3.流感X-47病毒的生长流感毒株X-47被用作制备经链霉蛋白酶处理后的A/Victoria/3/75天然NA的来源。将X-47病毒培养在11天的含胚胎鸡蛋的卵黄囊腔中。在25.5℃培养2天后,将鸡蛋在4℃冷却过夜,然后收获卵黄囊液以备后用。4.缓冲体系以下为常用缓冲液缓冲液A20mM二乙醇胺/HClpH8.5;缓冲液B50mM NaAcpH5.5;缓冲液C10mM NaPpH7.4,150mM NaCl;缓冲液A和C另含4%丁醇(除非另外说明)和2mMCaCl2。5.NAs的纯化a.硫酸铵分级分离接种(见上文)后收获sf9悬浮培养物(一般约1L),离心(4000×g)15分钟沉淀出细胞残留物。其后的所有处理均在4℃进行。在第一步纯化步骤中,在溶液中加入5mM NaN2。澄清后的原培养基在pH7.5进行硫酸铵分级分离。离心(10,000×g,60分钟)收集在20%和60%(NH4)2SO4之间沉淀出的物质并溶解在1/10th起始体积的缓冲液A(不含丁醇)+20mM NaCl中。用50倍体积的同种缓冲液透析重溶的沉淀(mwco(“分子量截断”)25kd(千道尔顿)24小时,期间相继更换3次缓冲液。离心(20,000×g)15分钟去除不溶性物质。b.Sepharose Q-阴离子交换色谱透析后的溶液先补至含4%丁醇,然后上样于Sepharose Q-柱(2.5cm×10cm),柱用缓冲液A+20mM NaCl以25ml/小时的流速平衡。用同一缓冲液洗柱后进行梯度洗脱,洗涤缓冲液中的线性NaCl浓度梯度直至250mM(250ml;25ml/小时)。取每份2.5ml含NAs的组分通过测定酶活性和ELISA水平进行鉴定。由柱上洗脱的NA活性为单一峰。c.N-(对氨基苯基)草氨酸琼脂糖亲和色谱该亲和基质的用途据说可用于纯化(非重组的)流感NA和细菌NA酶(Cuatrecasas和Illiano,1971;Bucher,1977)。只有采用原先推荐的缓冲液条件才能发挥该亲和基质的正确作用。收集Sepharose Q分离后的活性组分,加入等体积pH5.5的200mM NaAc。然后将活性组分上样于N-(对氨基苯基)草氨酸琼脂糖柱(1.5×5cm),该柱平衡在缓冲液B,100mM NaCl中。然后柱用平衡缓中液洗涤,用缓冲液B脱盐。再用缓冲液A洗涤一次。最后,用补以1M NaCl的缓冲液A以10ml/小时的流速洗脱NAs(收集每组分2ml洗脱液)。d.Superdex 200凝胶过滤色谱利用CentriprepTM浓缩器(Amicon;mwco30kd)将亲和柱色谱的洗脱液浓缩至2.0ml。浓缩液以每组份1.0ml样品体积在Superdex 200凝胶过滤柱(1.5cm×60cm)上色谱,柱被平衡在含4%丁醇的缓冲液C中。用平衡缓冲液10ml/小时流速洗脱,收集每组分1.0ml洗脱液。为了在-20℃长期保存,如前所述,收集有关的组分,并补以终浓度为50%的甘油。
为了估计纯化蛋白的分子量,用取自马脾的脱铁铁蛋白(443kd)、取自甘薯的β淀粉酶(200kd)、取自酵母的乙醇脱氢酶(150kd)、牛血清白蛋白(67kd)和碳酸酐酶(29kd)(全部来自Sigma Chemical Co.)标定凝胶过滤柱。6.pNA的制备与纯化a.链霉蛋白酶处理先低速离心(1,000×g,10分钟)澄清以X-47感染的鸡蛋卵黄囊液,然后以13,000×g离心16小时沉淀病毒。将病毒沉淀重悬在10ml缓冲液C中,每等份100个感染的鸡蛋,加入链霉蛋白酶至2mg/ml,不再有任何进一步的病毒纯化。将该混合物在20℃轻微振荡孵育16小时。4℃超速离心(100,000×g,1小时)去除残留的病毒核心和不溶性的链霉蛋白酶。然后柱色谱纯化含有释放的NA头部的上清液。b.SepharoseS-阳离子交换色谱色谱分析在4℃进行。将粗pNA样品稀释5倍,并加入50mM NaCl pH5.5,2mM CaCl2和1%丁醇。然后将溶液上样于以缓冲液B+1%丁醇和50mMNaCl平衡的Sepharose S柱(1.5cm×10cm)。在同种缓冲液中形成最高至500mM NaCl的浓度梯度,以此洗脱被结合的物质。收集显示出峰值酶活性的洗脱组份并在CentriprepTM浓缩管中浓缩至2.0ml。d.Superdex 200凝胶过滤色谱Superdex 200的凝胶过滤进行方式与用于NAs纯化的相同(所不同的是丁醇浓度为1%)。纯的pNA于-20℃保存于50%的甘油中。7.NA的酶学分析NA催化活性的分析以Potier等(1979)的方法为基础。简而言之,在含200mM NaCl pH6.5,2mM CaCl2和1%丁醇的100μl反应液中,以1mM 2’-(4-甲基繖形酰基)-α-D-N-乙酰-神经氨酸为底物进行酶活性测试。在37℃孵育30至60分钟后,加入0.5ml 133mM的甘氨酸、83mM NaHCO3、60mM NaCl pH10.7终止反应。读取365nm处的吸收值测定游离的4-甲基繖形酮。将一个单位定义为每分钟释放出1nmol 4-甲基繖形酮所需的酶量。8.免疫学技术a.多克隆抗pNAIgG的制备抗纯的pNA的多克隆抗血清取自在3月龄的新西兰系兔。初次免疫为从四爪肌肉各注射含50μgpNA/剂量和75%Freund完全佐剂的500μl剂量。六周后,在两后爪接受强化注射。为了制备IgG组份,通过蛋白ASepharose(Phar-macia LKB)吸附纯化收集到的血清。b.ELISA微量滴定板各孔被涂以兔的抗pNA IgG。待测样品被稀释在含0.1%牛血清白蛋白的PBS中。用生物素标记的免抗pNA IgG,再用链霉亲和素-碱性磷酸酶共轭物(Boehringer)来检测被结合的抗原。将试验板与对-硝基苯磷酸(Sigma Chemical Co.)一起孵育进行酶反应。在一微量滴定板读数器中测定405nm处的吸收值。9.分析方法根据Laemmli法(1970)在10%的分离凝胶(另作说明的除外)上进行SDS/PAGE。全部样品用β-巯基乙醇变性,除非另作说明。用作10%凝胶电泳中的标准蛋白是磷酸化酶b(94kb)、牛血清白蛋白(67kd)、卵清蛋白(43kd)、碳酸酐酶(29kd)和胰蛋白酶抑制剂(20.1kd,经常无法目测到)(Pharmcia LKB)。用以下质量标准物进行梯度凝胶电泳肌球蛋白(22kd)、β-半乳糖苷酶(116kd)、磷酸化酶b、牛血清白蛋白和卵清蛋白(购自BioRad)。利用改进后的Morrisey(1981)所述的方法进行凝胶的银染色。以鸡卵清蛋白为标准物,按Bradford(1976)法测定蛋白质浓度。10.交联分析在10mM Hepes pH7.4中新鲜制备1.0mM的交联分子BS3溶液。加入BS1至0.5mM,进行蛋白质的交联,反应体积为30微升。室温下反应1小时。然后加入5微升1.0M Tris pH8.0终止反应。利用SDS/PAGE分析多肽格局。11.碳水化合物分析蛋白质样品(0.1微克至1微克)在500mM Tris/HCl pH8.0,0.5%SDS,50mMβ巯基乙醇中煮沸变性。加入NA-辛基葡糖苷至2.5%,该浓度至少要超出最终SDS浓度的7倍,然后加入NA-聚糖酶(约0.5单位;单位定义根据厂商说明),反应混合物在37℃孵育16小时。通过SDS/PAGE分析消化物格局。结果1.pNA的纯化在此报道的一个典型实验中,总共处理了186个感染的鸡蛋。将不同的各步纯化概括在表1中。收获卵黄囊液并沉淀出病毒后,加入链霉蛋白酶至2mg/ml,反应混合物在20C孵育16小时。超速离心后,约60%的NA活性存在于上清液中。在所述条件下,活性的损失被发现主要是因为未完全去除病毒颗粒的NA头部。较高的链霉蛋白酶浓度,较长的孵育时间或较高的温度并不提高回收率,因为NA逐渐地进一步降解(未给出数据)。接着稀释粗制pNA并调至pH5.5。然后进行SepharoseS阳离子交换色谱。为获取pNA最大收率,此后的全部溶液中均含有1%丁醇。大多数蛋白质并不在SepharoseS柱上快速滞留,梯度洗脱后只在约400mM NaCl时记录有单一峰(未示出)。该物质基本上为纯的pNA,因为SDS/PAGE后未发现有污染条带(图3A,第3泳道)。另外,银染色显示在Sepharose S-集合物和附加的Superdex 200凝胶过滤步骤之间完全没有差别(图3A,比较泳道3和4)。最终的柱色谱在组份60产生单一的钟形峰(未示),该峰对应于约210kd的分子量。连续的纯化步骤如图3A中所示。
在SDS/PAGE上,单体pNA实际上是(分别对应于约54kd和约52kd,后者最常出现)可见的一对双带,这取决于银染色的相对强度。这一矛盾现象很可能是由于链霉蛋白酶在茎区两个位置的优先性切割作用。与化学试剂BS3的交联证实了回收的pNA的确是四聚体蛋白质(图3B)。2.NAs的构建和表达流感NA2毒株A/Victoria/3/75的NA基因与其本身的NA末端膜锚着点分离,与A/Victoria/3/75HA基因的含一个信号肽剪切位点的5’端序列偶联。由此使可分泌、可溶性产物的合成成为可能。形成的嵌合基因由包括成熟HA前4个末端氨基酸密码子在内的HA信号序列、紧跟其后的缺失了跨膜区(锚结构)和部分茎区(氨基酸1至45)的NA序列构成。两段DNA序列的阅读框架相同,没有引入附加的氨基酸。连接后,只在对应于成熟HA蛋白的位置5产生一个单氨基酸取代(图2)。利用pVL941为转移质粒,将主要编码可分泌蛋白的该嵌合基因的一份拷贝整合在AcNPV杆状病毒的多角体蛋白启动子之后。接种Sf9昆虫细胞后,迅速测定培养基中的NA活性,该活性显示实际产出的可溶性蛋白。
在图4中可以看到,培养基中的NAs活性在感染约48小时后达到一平台稳定值。继续培养是不利的,因为总蛋白浓度急剧下降,可能是过量溶胞的结果。研究发现,将亲代Sf9单层细胞与维持大量悬浮培养之间的中间过渡时间限制在最小值时表达量最大(数据未示)。根据多种纯化实验后的测定,NAs的表达水平在6至8mg/l之间,此生成能力较低,但仍与有报道的该系统中产生其它可分泌复合糖蛋白的产率相当(Jarvis等,1990)。3.NAs的纯化感染后48小时,在可溶性蛋白的特异性酶活性达到峰值时(图4)收获TC100培养基。表1中概括了NAs纯化的不同各步。原培养基的20%至60%饱和度硫酸铵沉淀产生中等的两倍富集,由此可进行物质的浓缩。多次透析并去除了不溶性产物后,加入丁醇至4%。研究发现,加入丁醇对大量回收NAs十分有利,由其是在蛋白质浓度较低时。培养基可能需要有一定程度的疏水性以避免形成不溶性的凝聚体。接着用Sepharose Q-阴离子交换色谱进行溶液的分级分离(图5)。在盐浓度梯度开始时洗脱的NA活性为一较对称的峰。根据ELISA测试,剩余洗脱组份中不含NA相关物质。在此阶段除去了约97.5%的蛋白起始量,使比活性提高约20%。为了上样于N-(对氨基苯基)草氨酸琼脂糖柱,将溶液的pH降至5.5。早期研究中已知,NA取代的草氨酸是流感NA的强、可逆性抑制剂(Edmond等,1966)。Cuatrecasas和Illiano(1971)最早论证了将N-(对氨基苯基)草氨酸琼脂糖用作流感病毒或细菌的神经氨酸酶的选择性吸附剂,其后Bucher(1977)也已证实。根据原初的方法,神经氨酸酶是用高pH缓冲液(100mM NaHCO3,pH9.1)洗脱的。但据我们的经验,这样的条件只能缓慢释放部分NAs。但是,高pH与高盐浓度相结合可产生有效的解吸附作用。在洗脱前进行一附加的pH8.5低盐浓度洗脱步骤,以去除柱中大量的非特异性结合蛋白。通过优选二乙胺替代NaHCO3作为缓冲液,使无沉淀的2mM CaCl2吸附成为可能。经常有报道说NA活性的保留在某种程度上依赖于Ca2+离子(Chong等,1966;Dimmock,1971)。在本研究中,该情况是否确实如此未作具体的探索。
为了去除痕量的残留污染物,超滤浓缩洗脱液并进行Superdex 200凝胶过滤(图6)。A280检测产生了3个不同的吸收峰,分别洗脱于约220kd,约130kd和约54kd。由ELISA测定的洗脱液的免疫活性格局完全再现了A280检测中三峰中的每一峰,由此表明所有物质都是NAs特异性的。峰值组分的SDS/PAGE分析显示了预计约55kd位置的一条强条带,但在其后的洗脱组份中观察到分子量略有下降(图7A)。通过与BS3的交联分析,220kd峰被鉴定为四聚体NAs,而分子量较小的两个峰被发现分别是二聚体和单体的NAs,后者的表现量有限(图7B)。研究者认为,由于二聚体NAs的杆状结构,与四聚体和单体的NAs(它们被认为是近环状的)相比,它的洗脱位置略高于其实际分子量。更值得注意的是,催化活性要求NAs具有装配完善的四聚体结构。可能四聚体的形成会诱发对酶活性来说是关键性的几处局部构象改变。
表2显示了纯化过程的流程。4.NAs的特性在β-巯基乙醇存在下与SDS共同煮沸变性,使NAs完全分散为分子量近55kd的单体链(图7A)。由SDS/PAGE的银染色判断,四聚体和二聚体的NAs是被纯化均一的。单体NAs的纯化质量较差,因可看到一些痕量的污染物。当它们在无还原剂存在下变性时,四聚体和二聚体的NAs的迁移同于约110kd的二聚体链(未显示)。这些结果表明,NAs二聚体实际上通过二硫键内部连接,并能通过非共价相互作用进一步结合成相应于天然NA结构的四聚体蛋白。
经常有报道称昆虫细胞产生一种在某种程度上不同于哺乳动物或其它高级动物细胞产生的NA糖基化形式(Hsieh和Robbins,1984;Butter和Hughes,1981;Butters等,1981;Kuroda等,1990)。所以在与天然pNA的比较中研究了与重组NAs结合的NA连接糖的量。代表性的蛋白质样品用NA聚糖酶处理,接着利用SDS/PAGE进行分析(图9)。由相关的条带分布可以推断,与NAs结合的NA连接糖的总量略少于天然分子(比较图9A和B),此发现与该系统中表达的其它糖蛋白的情况一致(Kuroda等,1986;Domingo和Trowbridge,1988;van Drunen Littel等,1991)。还进一步确定变性的、酶法去糖基的NAs形式的电泳迁移率相同,与它们原来的寡聚体结构无关,这证实了合成的原初NAs是单一链长的多肽(图9B,比较泳道3,5,9)。用NA聚糖酶处理的多肽链的分子量估计为47.5kd,这与由预期氨基酸序列计算而得的理论质量47,717d一致。有趣的是,NA糖基化的程度似乎与形成四聚体的能力有关,因为对应于糖基化二聚体和单体NAs的条带在凝胶中的移动略快于由糖基化四聚体NAs产生的条带(图9B,相对于泳道2的泳道4和6;同时参见图7)。实际上已有人提出NA连接的糖,尤其是与Asn200连接的寡糖链通过参与与邻近亚基的相互反应在建立四聚体结构中具有一定作用(Varghese等,1983;Varghese和Col-man,1991)。
只有四聚体蛋白可产生NAs的催化性能。分离的四聚体NAs表现出的活性特异性水平几乎与纯化的pNA完全一致(表1和2)。较低级结构的NAs形式无酶活性,即使每个单体都有催化活性,该发现可能反映了四元间的相互作用在流感病毒NA功能性方面的重要作用。
为了证实NAs的抗原特性,浓度相同的蛋白质样品两倍连续稀释后进行以多克隆抗pNA IgG为基础的夹层ELISA测试(
图10)。四聚体NAs给出的滴定曲线与pNA参照图完全一致,这表明两者具有相同或非常相似的抗原特性。虽然没有可证实的酶活性,二聚体和单体NAs基本保留了完整的抗原活性,但可观察到抗原性的略微转变。这一细微的抗原性差异在凝胶过滤图(图6)中同样明显,四聚体峰的抗原活性/A280的比值略微突出。可能有些抗天然四聚体结构的抗体分子不能与装配不完全的NAs有效结合,例如识别邻近亚基间接触位置的那些抗体。四聚体的形成所诱导的局部构象改变也可能导致一些细微的抗原性差异。讨论本发明主要目的是合成可分泌的、正确折叠的流感神经氨酸酶抗原蛋白,同时测试一种为获取可用作接种剂的均一产物的方法。由NA2流感毒株A/Vic-toria/3/75的NA基因构建了一种嵌合基因,其中含有组合在一起的信号序列-膜锚着点功能区的原始NA末端区域被流感病毒HA基因的5′序列部分所取代。所得的构建物由于HA的可剪切信号肽而基本编码了一种可分泌的NA(NAs),该构建物接着被整合在杆状病毒表达载体中,受强多角体蛋白启动子的转录调控。感染Sf9昆虫宿主细胞后,NAs果真分泌在培养基中。根据纯化的结果,估计表达水平在6至8mg/l之间。可证明,在杆状病毒感染过程中,宿主细胞通过分泌产生蛋白的能力急剧下降(Jarvis和Summers,1989)。但所述的生成系统仍可用于实验室范围的接种研究,并适合适当的扩大规模。
NAs的纯化主要由四步构成首先是硫酸铵分级分离,然后是连续的三步色谱分析。就酶活性产率而言,估计约回收了25%的NAs纯蛋白。通过凝胶过滤柱色谱分析,NAs被亚分级分离为不同分子量大小的三类,经交联分析鉴定分别为四聚体、二聚体和单体的NAs,后者只有很少的量。由SDS/PAGE后银染色判断,两种主要形式,即四聚体和二聚体NAs的获得量相等而且都是均质的。
为了评估NAs的酶学及免疫学特性,有必要分离出天然NA作为参照蛋白。通过链霉蛋白酶处理切去X-47病毒的A/Vicotria/3/75头部,然后通过阳离子交换和凝胶过滤色谱纯化。交联后,pNA被证实保留了完整膜结合的NA的四聚体结构。
NAs的催化性能十分惊人,因为只有四聚体的蛋白质才表现出酶活性。四聚体NAs的比活性几乎与pNA的相等。简单地认为二聚体和单体的NAs因为是变性蛋白而不具有酶活性是不正确的,因为在纯化过程中,这些形式也能被以底物结合位置为基础的亲和色谱快速滞留,这说明酶活性在功能上是完整的,但其后的催化转换显然不能发生。
NA聚糖酶处理揭示,NAs的糖含量总体上比pNA略低,该系统中表达的其它糖蛋白也可观察到该特性(Kuroda等,1986;Domingo和Trowbridge,1988;van Drunen Littel等,1991)。糖基化不足对二聚体和单体的NAs而言更为显著。
利用X射线衍射分析进行的结构研究表明,与Asn200相连的糖链与邻近的亚基紧密接触,该研究表明这种接触可能发生附加的相互作用而加强四元结构(Varghese等,1983;Varghese和Colman,1991)。
四聚体NAs与抗纯化的pNA多克隆IgG的反应性基本完全,这表明两种蛋白具有非常相似的抗原特性。在二聚体和单体的NAs中可能观察到抗原性的细微转变。由此可以推断,应该有可能分离出只结合在四聚体结构的流感NA上的单克隆抗体。这样的抗体可能介入与来自相邻亚基的表面决定基的相互作用,或者可能识别在四聚体形成过程中构象重排后形成的决定基。另外,糖组份的差异也可能改变抗原特性。实施例2重组神经氨酸酶通过PICHIA PASTORIS的分泌介绍为了研究除了昆虫细胞以外酵母能否作为重组流感神经氨酸酶生成的宿主细胞,构建了一个含有神经氨酸酶的酶“帽”部分的表达载体。材料和方法1.载体和宿主Pichia Pastoris质粒pPIC9(Invitrogen)被用于构建表达盒。该质粒包括一个复制起点、一个氨苄青霉素抗性基因、以及P.pastoris诱导型乙醇氧化酶I(AOX I)基因的启动子和终止子区域、酿酒酵母α因子早前分泌信号和P.pas-toris HIS4标记。
甲基营养酵母Pichia pastoris(Invitrogen)被用作宿主。
2.表达盒的构建通过定点突变的方法,一个StuI限制性位点被引入A/Victoria/3/75神经氨酸酶基因的cDNA序列。限制性位点被置于脯氨酸79的位置。通过这一限制性位点,含有酶活性中心的神经氨酸酶基因的免疫原性的“帽序列”可以被作为一个StuI/HindIII片段而分离并被克隆于P.pastoris质粒pPIC9的SnaBI限制性位点。图15显示了pPIC9质粒的图解。图16则显示了早前信号序列和重组神经氨酸酶基因间的融合区域。经内源的KEX2蛋白酶作用,肽原在后期高尔基体中被断裂。(谷氨酸-丙氨酸)2二肽被一个STE13型的二肽氨基肽酶除去。额外的酪氨酸残基不被断裂并保留于重组神经氨酸酶的N末端,但它不是必需的。
通过SalI的消化作用,得到的质粒在HIS4选择标记的位置被线性化,随后在聚乙二醇存在下再被转化到P.pastoris GTS115(his4)原生质体中。对从转化体中分离的DNA进行Southern分析。这显示了表达载体的整合是通过内部的(但缺陷的)his4基因座的同源重组。大多数转化体有1至2个拷贝该质粒,但是,已经发现在较高分泌能力的转化体中,有许多拷贝以串联结构头尾相接地整合于宿主基因组。拷贝数目提高到每个转化体25个。
3.神经氨酸酶的表达转化体置于缓冲的甘油基本培养基(pH6.0)中预生长,并在48小时后被转移到含0.5%甲醇的缓冲基本培养基中。在这里,诱导乙醇氧化酶I启动子并表达神经氨酸酶“帽”。应用本身已知的Northern分析,可对细胞中神经氨酸酶mRNA的数量有一个估计。这显示出发生了一个非常有效的诱导。
细胞上清液的一个Western分析显示,分子量约70千道尔顿的重组神经氨酸酶被分泌(参见图17)。
分泌产物用PNGase F去糖基化。这一步骤生成一个“核心”产物,具有期望的43千道尔顿的分子量。根据拷贝数量,确定培养基中重组神经氨酸酶的产量在1至1.5毫克/升之间波动。实施例3免疫接种材料和方法1.动物在免疫接种操作的开始,使用8周大小的雌性近亲杂交Balb/c鼠(SCKMol,比利时)。在被动免疫接种实验中,受体鼠为12周大小。鼠以每笼3个为一组来供应,并对其任意提供食物和水。2.病毒流感病毒株由Dr.A Douglas和Dr.J.Skehel(MCR实验室,Mill Hill,伦敦)制得。这些实验室病毒X-31和X-47有H3N2抗原结构,且通过相应地带有A/Aichi/2/68(H3N2)和A/Victoria/3/75(H3N2)的A/PR/8/34(H1N1)的基因重排得到。通过肺内的一系列通道来适应这两种病毒种系并在鼠中引起死亡。3.重组可分泌的NA(NAs)如实施例1所述,流感NA A/Victoria/3/75作为由杆状病毒昆虫细胞病毒系统生成的纯化重组蛋白质来给药。用于本文所述免疫接种实验的纯化NAs制备物在磷酸盐缓冲液中(PBS)含有一个四聚体和二聚体分子的混合物。4.佐剂合适佐剂的选择是根据我们本实验室中对重组流感HA的一个免疫接种研究。根据制造商的说明(Ribi Immunochem Research),将Ribi佐剂(单磷酰脂A(MPLA)、海藻糖-6,6-二霉菌酸酯(TDM)和吐温80)和鼠伤寒杆菌(Salmonella typhimurium)MPLA瓶被灌满。胞壁酰二肽(TDM)从Sigma化学公司购得。
5.免疫接种方案以3周的间隔对鼠皮下注射每剂含1微克NAs的200微升剂量共3次。对于第一次免疫接种,NAs以正常Ribi鼠剂量(相应为25微克MPLA、25微克TDM、2微升角鲨烯和0.1%吐温80)的一半乳化。加强注射是通过在NAs中加入25微克MPLA和25微克MDP。对照动物接受溶于PBS的佐剂。6.被动免疫接种在接受第三次免疫接种的3周后,通过心脏刺穿术从供体鼠取得血液,并收集相应处理的鼠血清制备物。受体鼠接受单一的400微升免疫或对照血清的腹腔内注射。7.流感攻击在最后一次加强注射后3周或被动免疫接种后1天,经轻度乙醚麻醉,用20 LD50特定的病毒鼻内接种鼠。在接种后10天的时间里测量直肠体温和体重观察感染过程。8.血清学方法在接种操作(预免疫血清)开始前的1天和每一次免疫接种后的2周,从尾动脉取得血液样品。通过酶联免疫吸附测定,针对NA特异性抗体单个测试血液样品。用纯化的NAs(50纳克/孔)涂铺微量滴定板,并以1/5的级数稀释血清。特殊抗体结合的定量是通过加入共轭碱性磷酸酶(Sigma化学公司)的兔抗-(鼠IgG)抗体,并续之以平板和p-硝基苯酚底物溶液(Sigma化学公司)一起的温育。在微量滴定平板读出器中测量405纳米的OD值。NA抗体的效价以log5血清稀释度的倒数来表示,得到的吸光率比对照孔(以预免疫血清处理)要高0.05。结果1.研究设计根据上述的免疫接种方案,对3组每组12个的鼠用NAs进行接种。相同数量的对照鼠用PBS进行平行处理。接种和对照鼠的配对组随后受鼠适应的X-47或X-31攻击。在另一个情况下,它们作为被动免疫接种实验的血清供体。2.血清学反应在随机选择(每笼一个)的12个接种和12个对照动物血清中,对于NAs的抗体反应通过酶联免疫吸附测定观察(图11)。在鼠中使用NAs免疫接种引起血清中NAs抗体的稳定增加。第一次加强注射引起NAs抗体约3log5数量的增加,而第二次加强注射仍能使NAs抗体效价增加约5倍。在对照鼠中,单一佐剂的给药不能使与Nas反应的非特异抗体显著生成。3.NAs的同源变异体保护接种3周以后,接种和对照鼠都通过20 LD50同源NA变异体病毒X-47的给药来检测免疫性(图12)。所有的对照鼠都严重患病,这一点可通过测得体温急剧降低和体重减轻来确定。在感染后的4天,出现了第一例死亡,而在接种的9天内,所有的对照鼠都死亡。反之,NAs接种鼠的这些临床参数只是暂时地降低且仅仅在一个很小的范围之内。所有的接种动物从感染中存活下来。
还研究了,是否可以在不进行第三次免疫接种而以更高剂量的NAs和/或佐剂为补偿时,达到保护性免疫的相同水平。这些测试有基本相同的实验设计。虽然,用这个方法免疫的鼠显示了良好的抗性,但有一些个别的例子严重患病并偶尔有接种鼠死亡,即使存活的百分比高于80%。但是,通过3步免疫接种所达到的保护性免疫的水平优于所有其他方法。4.NAs的异源变异体保护免疫和对照鼠的平行组用20 LD50异源-NA-变异体病毒X-31检测免疫性,该病毒有一个从来自经7年抗原遗传漂变的A/Vivtoria/3/75的NAs中分离的NA(图13)。与X-47免疫接种研究中观察到一样,对照组中感染的临床结果是明显的。对照动物在感染后的第5天已经开始死亡。死亡率在第8天达到最高,其后,只有一个幸存者被保留。用NAs免疫的鼠在通常为致命的异源变异体感染后显示了100%的存活率。恰如同源变异体免疫研究,免疫鼠在这里也能将它们的体温保持在合理的正常水平。体重的降低更明显一些,但所有的鼠从6天后开始复原。5.能通过NAs免疫血清的被动转移获得保护性免疫为了确定是否是体液防御机制引起保护性免疫,测试被动免疫接种动物的保护。为了这一目的,参照标准操作免疫供体鼠。从动物中获取血液提供了每一个体约400微升血清的平均值。一方面收集对照血清,另一方面收集免疫血清之后,受体鼠被腹膜内注射入一剂400微升的血清。在用20 LD50适应的X-47病毒攻击之前,插入24小时的一段时间,使鼠中的抗体分子进行系统扩展。接受对照血清的动物随后出现急性体温过低和严重的体重减轻并最终死亡,而NAs免疫血清的注入能以如活性免疫动物中所证明的基本相同的程度保护鼠(图14)。由此,可得出结论,循环的NA抗体能够且足以提供完全的保护。讨论对流感的免疫性几乎专门以HA抗体的功能被研究了很长一段时间,而NA在免疫性中的重要性则基本被忽略。导致这一状况的部分原因是观察到只有能结合HA的抗体才能直接中和病毒颗粒(Hirst,1942;Davenport等,1964;Kida等,1983),而针对NA的抗体在很大的浓度范围内没有显示出预防最初感染的能力(Jahiel和Kilbourne,1966;Kilbourne等,1968;Johansson,1989)。这一耐受力可能反映了NAs在流感病毒生活史的晚期发挥作用以阻止新生病毒聚集于被感染细胞的表面(Colman和Ward,1985;brown和Laver,1968)。另外还发现,不同于HA,NA是流感被膜较次要的成份,这一事实可进一步解释为什么NA抗体没有中和效应(Schulman等,1968)。以摩尔数存在的这一区别同样地影响了针对单个抗原的相关抗体反应。由于持续对抗完整流感病毒而出现的涉及NA的HA的重复超量提呈可导致NA抗体生成的抑制,这可能是NA特异的T细胞帮助作用被减弱的结果(Kilbourne,1976;Johansson等,1987;Kilbourne等,1987;Johansson等,1987)。为了研究保护性NA免疫性,需要在随后发展出的体系中中和HA抗体的干扰被消除,且HA和NA抗原的竞争对NA免疫反应的抑制被避免。经典的方法可以是根据分离天然NA成份(Schulman等,1968;Johansson和Kilbourne,1990;Gallagher等,1984),或者根据在其他的情况中限定的一系列具有不同血清学HA和NA抗原的流感毒株复合给药(Rott等,1974;Kilbourne,1976)。但是,这里所描述的结果直接证明了一个通过纯化的、重组NA蛋白质的保护性免疫接种。通过以流感血细胞凝集素基因的信号序列替换膜锚着点编码区将A/Victoria/3/75(H3N2)病毒的NA基因转化成一个编码可分泌蛋白质的基因(参见实施例1)。
已经建立了在体外使NA抗体通过抑制病毒颗粒释放和扩散来有效抑制病毒生长产量的技术(Jahiel和Kilbourne,1968;Kilbourne等,1968)。通过测定肺中病毒效价的降低和肺损伤的减弱,可以从被NA免疫接种的动物中得到类似的结论(11、12、13)。虽然已经有相当多的注意力集中在NA免疫性对肺中病毒复制的影响,但是,对于用纯NA蛋白质的免疫接种是否能预防临床的疾病症状和提高潜伏致死流感感染后的生存机会仍然存在疑问。这一问题目前还没有令人满意的答案。但是,本文所显示的结果清楚地证明了对一般致死流感感染的完整保护能通过纯重组NAs的免疫接种来实现,在这里,排除了来自回忆性抗HA免疫机制的任何可能作用或者针对保守的内部病毒蛋白的细胞介导的免疫记忆效应。
在本文所述的实验中,用3剂1微克的NAs以3周的间隔来免疫鼠。接种动物完全能够生存于流感病毒的致命感染中,其中病毒表达同源或异源变异体NA。从高剂量感染病毒的角度来看,免疫动物根据体温和体重的变化所表现出来的无临床疾病症状是非常吸引人的。需要重点注意的是,与NAs一起给药的佐剂都有低的反应原性特性,由此,本文所述的免疫接种过程可直接应用于人体接种。另外本发明的疫苗也可用于其他哺乳动物和鸟类。
将用NAs免疫的鼠血清被动转移到首次用于实验的受体鼠,导致相同水平的保护作用,这显示了NAs免疫接种的保护效应能够以循环NA抗体为依据来解释。
关于本文所述的异源变异体保护作用,考虑疫苗A/Victoria/3/75 NA抗原和变异体感染病毒X-31中A/Aichi/2/68 NA之间的结构联系是很重要的。不幸地,还不能得到关于A/Aichi/2/68(H3N2)的序列数据,虽然能够与和Aichi病毒株在同一年被分离的A/NT/60/68(H3N2)的NA序列作一个比较(Bentley和Brownlee,1982)。仔细检查这两种NA变异体的开头区域,可以在第28位点发现氨基酸的置换,该位点大多数处于分子的表面。
本发明的疫苗也可能提供针对进一步切除的遗传漂变变异体的保护作用。更为可信的是,通过NA基因的遗传修饰方法,NA基因变异可以涉及其抗原结构中。于是,就可能来制备不同NA形式的“混合体”,由此,可获得针对不同流感病毒株的扩展保护作用。1显示了分泌型NA基因的构建策略和它在一个杆状病毒转移载体中的整合。仅指出相关的限制性位点,单条线显示了细菌质粒序列,而其中密度较大的部分表示HA特异性(涂满部分)成NA特异性(打点部分)序列。单影线表示HA信号序列。双影线表示NA信号序列/膜锚着点序列。
图2显示了正cNDA链的核苷酸序列和在HA信号肽和除去NA膜锚着点的NA之间连接位点侧翼区域的氨基酸序列。
图2A详细显示了在Ala16和Gln17之间有信号肽酶限制位点的未加工HA(垂直点线)。用于NAs分泌的NA终止片段用箭头标示。
图2B详细显示了NA“茎”区。涉及NAs构建的截短序列用一个箭头标示。
图2C显示了如何从A和B构建NAs的序列。此处详细显示了在HA和NA特异序列之间的融合区域。NAs可能以成熟HA的4个NA终止氨基酸为起始,后接一个突变密码子(用下划点线表示)。
图3显示了纯化的pNA SDS聚丙烯酰胺凝胶电泳分析。图3A是关于在纯化pNA的不同步骤中取得的蛋白质样品的分析。泳道1显示标记蛋白质;泳道2显示粗制pNA物质(1微克;pNA条带低于可测水平);泳道3显示SephasoseS-集合物(1微克);泳道4显示Superdex 200-集合物(1微克)。图3B显示了5.0%至7.5%的梯度凝胶中以BS3方式偶联的1微克pNA。泳道1显示标记蛋白质;泳道2显示偶联后的pNA。在约105千道尔顿(二聚体)、约160千道尔顿(三聚体)和约210千道尔顿(回聚体)的位置出现额外的条带。
图4显示了,在用重组杆状病毒接种Sf9细胞后,在培养基中检测到的比活性(□)的时间进程,其来自酶活性水平(○)和总蛋白质浓度(◇)。
图5显示了Sepharose Q阴离子交换色谱。在溶解和透析了(20-60)%(NH4)2SO4沉淀后,溶液(37.5毫克蛋白质,117,000U)上样于Sepharose Q柱。洗涤除去未结合的物质后,在起始缓冲液中形成最高至250mM的线性NaCl梯度,以此线性NaCl梯度(---)洗脱。洗脱物中蛋白质浓度用A280测定(__)。以2.5毫升体积收集组份并测定酶活性(○)和ELISA中的抗原性(△)。
图6显示了在Superdex 200上NAs的凝胶过滤。在N-对-氨基苯基草氨酸琼脂糖分离后的洗脱物(2.63毫升蛋白质,49,100U)被浓缩至2.0毫升,随后,在一个Superdex 200柱中以10毫升/小时流速的每组份1.0样品体积进行色谱,并连续测A280(__)。对单独的组份(1.0毫升)测定酶活性(○)和抗原活性(△)。箭头指示了标准蛋白质的洗脱体积(参见正文)443千道尔顿(1)、200千道尔顿(2)、150千道尔顿(3)、67千道尔顿(4)和29千道尔顿(5)。
图7显示了纯化的NAs的SDS聚丙烯酰胺凝胶电泳分析。每个泳道对应于Superdex 200凝胶过滤的特定组份序号。图7A显示了10微升变性样品(加入β-巯基乙醇)的SDS聚丙烯酰胺凝胶格局。泳道A和B表示标记蛋白质。图7B中,蛋白质样品用BS3偶联并随之以5.0%至7.5的梯度凝胶电泳分离,其中加入SDS但为非还原条件。57至68组份显示10微升样品体积;70至70组份显示25微升样品体积。四聚体的NAs有条带在约220千道尔顿(四聚体)和约110千道尔顿(二聚体)处。二聚体和单体NAs相应地在约110千道尔顿和55千道尔顿处。
图8显示了NAs纯化程序中从不同步骤获得的蛋白质样品的SDS聚丙烯酰胺凝胶电泳结果。泳道1显示标记蛋白质;泳道2显示培养基原液(5微克);泳道3显示(20-60)%(NM4)2SO4沉淀物(5微克);泳道4显示Sepharose Q集合物(2.5微克);泳道5显示N-(对-氨基-苯基)草氨酸琼脂糖分离后的集合物(1微克);泳道6显示Superdex 200凝胶过滤后四聚体和二聚体NAs组分的集合物(1微克)。
图9显示了结合于pNA和NAs的碳水化合物含量的比较分析结果,如同NA聚糖酶消化作用和SDS聚丙烯酰胺凝胶电泳估计的一样。NA聚糖酶长约35千道尔顿的可见条带。图9A中,泳道1显示标记蛋白质;泳道2显示未消化pNA(1微克);泳道3显示NA聚糖酶处理的pNA(1微克)。图9B中,泳道1和8显示标记蛋白质;泳道2显示未消化四聚体NAs;泳道3显示经NA聚糖酶处理的四聚体NAs;泳道4显示未消化的二聚体NAs;泳道5显示经NA聚糖酶处理的二聚体NAs;泳道6显示未消化的单体NAs;泳道7显示经NA聚糖酶处理的单体NAs。
图10介绍了NAs和pNA之间的抗原近似性。将pNA和NAs的样品调节至一个相等的蛋白质浓度并随后在一个ELISA中连续地稀释1至2倍。该图显示了针对特定抗原而测得的S形曲线。图○表示pNA;用◇表示四聚体NAs;用□表示二聚体NAs以及用△表示单体NAs。
图11介绍了针对NAs的抗体反应。在每一次免疫接种后的14天(用箭头方式表示),从鼠体内获得血液样品,并以ELISA测定NAs抗体的存在(实验细节参见正文)。粗黑柱条和影线柱条相应地表示接种和对照动物的平均血清效价(±S.D)。图12显示了同源变异体保护。被疫苗接种的动物〔(A)中---;(B)和(C)中〕和对照动物〔(A)中______;(B)和(C)中●〕用20LD50同源变异体、鼠适应的X-47病毒进行攻击。通过记录鼠的存活率(A)和测量鼠的直肠体温(B)及体重(C)来观察感染过程(实验细节参见正文)。数据点给出了平均值±S.D。
图13介绍了异源变异体保护。被疫苗接种的动物〔(A)中---;(B)和(C)中●〕和对照动物〔(A)中_____;(B)和(C)中●〕用20LD50异源变异体、鼠适应的X-31病毒进行攻击。通过记录鼠的存活率(A)和测量鼠的直肠体温(B)和体重(C)来观察感染进程。数据点给出了平均值±S.D。
图14显示了被动免疫接种的保护。通过皮下注射NAs的免疫血清〔(A)中---;(B)和(C)中●〕或对照血清〔(A)中______;(B)和(C)中●〕来被动免疫一组鼠。24小时后,它们接受了20LD50鼠适应的X-47病毒的攻击(实验细节参见正文)。存活率、直肠体温和体重相应由(A)、(B)和(C)显示。数据点表示平均值±S.D。
图15显示了pPIC9质粒的一个示意图,其中除了AOXI启动子和终止子序列以外,还含有P.pastoris的标记和酿酒酵母α因子基因的早前分泌信号。有一个为克隆位点位于分泌信号之后。
图16给出了神经氨酸酶的早前分泌信号和重组“帽”部分之间的融合区域的示意序列。“KEX2”表示肽原在后期高尔基体中被内源、KEX-2蛋白酶切割的位置。(Glu-Ala)2二肽经STE13型二肽基氨肽酶作用而被除去。酪氨酸残基并非来自神经氨酸酶,但不被除去。接下来的一个脯氨酸相应于X-47神经氨酸酶的79位置。
图17是各个转化体的5个培养液样品的12.5%聚丙烯酰胺凝胶的West-ern印迹。泳道1含有一个非转化的P.pastoris菌株的培养液样品。经TCA沉淀的1毫升培养液的蛋白质物质上样于再一泳道。表1pNA的纯化
本表与一单独典型的纯化实验相关(详见正本)。Superdex 200凝胶过滤后的体积是两次色谱的集合值。表2Sf9昆虫细胞产生的NAs的纯化
本表包括了一个单独典型的纯化实验的数据(详见正本)。Superdex 200凝胶过滤后的体积是两次色谱收集的NAs组份的集合值。参考文献Bentley,D.R.en Brownlee,G.G.Sequence of the N2 neuraminidase from influenzavirus A/NT/60/68. Nucl. Acids Res.10,5033(1982)Blok,J.,Air,G.M.,Laver,W.G.,Ward,C.W.,Lilley,G.G.,Woods,E.F.,Roxburgh,C.M.& Inglis A.S.(1982) Studies on the size,chemical composition andpartial sequence of the neuraminidase(NA) from type A influenza show that the N-termi-nal region of the NA is not processed and serves to anchor the NA in the viral membrane,Virology 119,109-121.Bradford,M.M.(1976) A rapid and sensitive method for the quantitation of microgramquantities of protein utilizing the principle of protein-dye binding,Anal.Biochem.72,248-254.Bucher,D.J.(1977) Purification of neuraminidase from influenza viruses by affinity chro-matography,Biochim. Biophys. Acts 482,393-399.Bucher,D.J.& Kilbourne,E.D.(1972)A2(N2) neuraminidase of the X-7 influenzavirus recombinantDetermination of molecular size and subunit composition of the active u-nit,J.Virol.10,60-66.Burnet,F.M.Stone,J.D. (1947) The receptor destroying enzyme of V. xholerae,Aust.J.Exp.Biol.Med.Sci.25,227-233.Butters.T.D.& Hughes.R.C.(1981) Isolation and characterization of mosquito cellmembrane glycoproteins,Biochim. Biophys. Acta 640,655-671.Butters,T.D.,Hughes,R.C.& Vischer,P.(1981) Steps in the biosynthesis ofmosquito cell membrane glycoproteins and the effects of tunicamycin,Biochim.Biophys.Acta 640.Chong,A.K.J.,Pegg,M.S.& Itzstein,M.(1991) Influenza virus sialidaseeffect ofcalcium on steady-state kinetic parameters,Biochim. Biophys.Acta 1077,65-71.Colman,P.M.Varghese,J.N.& Laver,W.G.(1983) Structure of the catalytic andantigenic sites in influenza virus neuaminidase,Nature 303,41-44.Colman,P.M.& Ward,C.W.(1985) Structure and diversity of influenza neuraninidase,Curr.Top.Microbiol.Immunol.114,177255.Cuatrecasas,P.& Illiano,G.(1971) Purification of neuraminidases from Vibio cholerae,Clostridium perfringens and influenza virus by affinity chromatography,Biochem. Bio-phys.Res.Cummun.44,178-184.Dimmock,N.J.(1971) Dependence of the activity of an influenza virus neuraninidase up-on Ca++,J.Gen.Virol.13,481-483.Domingo,D.L.& Trowbridge,S.I.(1988) Characterisation of the human transferrin re-ceptor produced in a baculovirus expression system,J.Biol.Chem.263,13386-13392.Edmond,J.D.,Johnston,R.G,Kidd,D.m Rylance,H.J.& Sommerville,R.G.(1966) The inhibition if neuraminidase and antiviral action,Br.J.Pharmacol.27,415-421.Fields,S.,Winter,G.& Brownlee,G.G.(1981) Structure of the neuranimidase in hu-man influenza virus A/PR/8/34,Natrre (Lond) 290,213-217.Gallagher,M.,Bucher,D.J.,Dourmashkin R.,Davis,J.F.,Rosenn,G.& Kil-bourne,E.D.(1984) Isolation of immunogenic neuraminidase of human influenza virusesby a combination of genetic and biochemical procedures,J.Clin.Microbiol.20,89-93.Gottschalk,A.(1957) The specific enzym of influenza virus and Vibio cholerase,Biochem.Biophys.Acta 23,645-646.Griffin,J.A.& Compans,R.W.,(1979) Effect of cytochalasin B on the maturation ofenveloped viruses,J.Wxp.Med.150,379-391.Griffin,J.A.Basak,S.& Compans,R.W.(1983) Effects of hexose starvation and therole of sialic acid in influenza virus release,Viroligy 125,324-334.Hirst,G.K.(1942) The quantitative determination of influenza virus and antibodies bymeans of red cell agglutination,J.Exp.Med.75,47-64.Hsieh,P.& Robbins,P.W.(1984) Regulation of asparasgine-linked oligosaccharide pro-cessing,J.Biol.Chem.259,2375-2382.Jahiel,R.I.& Kilbourne,E.D.(1966) Reduction in plaque size and reduction in plaquenumber as differing indices of influenza virus-antibody reaction,J.Bacteriol.92,1521-1534.Jarvis,D.L.,Fleming,J.A.G.W.,Kovacs,G.R.,Summers M.D.& Guarino,L.A.(1990) Use of early baculovirus promoters for continuous expression and deficient pro-cessing of foreign gene products in stably transformed Lepidopteran cells,Bio/Technology8,950-955.Jarvis,D.L.& Summers,M.D.(1989) Glycosylation and secretion of human tissue plas-minogen activator in recombinant baculovirusinfected insect cells,Mol.Cell.Biol.9,214-223.Johansson,B.E.,Moran,T.M.& Kilbourne,E.D.(1987) Antigen-presenting Bcells and heoper T cells cooperatively mediate intravirionic antigenic competition betweeninfluenza A virus surface glycoproteins,Proc.Natl.Acad.Sci.USA 84,6869-6873.Johansson,B.E.,Bucher,D.J.& Kilbourne,E.D.(1989) Purified influenza virushemagglutinin and neuraminidase are equivalent in stimulation of antibody response but in-duce contrasting types of immunity to infection,J.Virol.63,1239-1246.Johansson,B.E.& Kilbourne,E.D.(1990) Comparative longterm dffects in a mousemodel system of influenza whole virus and purified neuraminidase vaccines followed by se-quential infections,J.Infect.Dis.162,800-808.Johansson,B.E.,Grajower,B.& Kilbourne,E.D.(1993) Infection-permissive immu-nization with inflenza virus nieraminidase prevents weight loss in infected mice,vaccine 11,1037-1041.Kendal,A.P.,Pereira,M.S.&Skehel,J.J.(1982) Concepts and Procedures for Labo-ratory-based Influenza Surveillance,World Health Organization Collaborating Centers forRefernce and Recearch on Influenza.Kida,H.,Webster,R.B.& Yanagawa,R.(1983) Inhibiton of virus-induced hemolysiswith monoclonal antibodies to different antigenec areas on the hemagglutinin molecule ofA/Seal/Massachusetts/1/80(H7N7) influenza virus,Arch.Virol.76,91-99Kilbourne,E.D.(1976)Comparative dfficacy of neuraminidasespecific and conventional in-fluenza virus vaccines in induction of antibody to neuraminidase in humans,J.Infect.Dis.134,384-394Kilbourne,E.D.,Laver,W.G.,Schulman,J.L.&.Webster,R.G.(1968) Antiviralactivity of antiserum specifec for an influenza virus nieraminidase,J.virol.2,281-288.Kuroda,K,Harser,C.,Rott,R.,Klenk,H.D.& Doerfler,W.(1986) Expression ofthe influenza virus haemaglutinin n insect cells by a baculovirus vector,EMBO J.5,1359-1365Kuroda,K.,Geyer,H.,Geyer,R.,Doerfler,W.& Klenk,H.D.(1990) The oligosac-charides of influenza virus hemagglutinin ewpressed in insect cells by a baculovirus vectorVirololy 174,418-429Laemmli U.K.(1970) Cleavage of Structural proteins during the assembly of the head ofbacterioghage T4,Natrue (London) 227,680-685Laver,W.G.(1978) Crystallisation and peptide maps of neuraminidase″heads″fromH2N2 and H3N2 influenza virus strains,Virology 86 78-87.Laver,W.G.& Valentine,R.C.(1969) Morphology of the isolated haemagglutinin andneuraminidase subunits of influenza virus,virology 38,105-119.Luckow,V.A.&-Summers,M.D.(1988) Trends in the development of baculovirus ex-pression vectors,Bio/Technology 6,47-55.Luckow,V.A.& Summers,M.D.(1989) High level ewpression of nonfused foreigngenes with Autographa californica nuclear polyhedrosis virus espression vectors,Virology170,31-39.Mayron,L.W.Robert,B.,Winzler,R.J.&Rafelson,M.E.(1961) Sudies on the neu-raminidase of influenza virus.I.Separation and xome properties of the enzyme from Axianand PR8 strains,Arch.Biochem.Biophys.92,475-483Min Jou,W.,Verhoeyen,M.,Devos,R.,Saman,E.,Fang,R.,Huylebroech,D.&Fiers,W.(1980) Complete structure of the hemagglutinin gene from the human influenzaA/Victoria/3/75 (H3N2) strain as deternined from clined DNA,Cell 19,683-696.Morrisey,J.H.(1981) Silver stain for proteins in polyacrylamide gelsa modified proce-dure with enhanced uniform sensitivity,Anal.Biochem.117,307-310.Potier,M.,Mameli,L.,Belisle,M.,Dallaire,L.& Melancon,S.B.(1979) Fluoro-metric assay of neuraminidase with a sodium (4-methylumbelliferyl-α-D-N-acetyl-neuraminate) substrate,Anal.biochem.94,287-296.Rott,R.,Becht,H.& Orlich,M.(1974) The significance of influenza virus neu-raminidase in immunity,J.Gen.Virol.22,35-41.Schulman,J.L.,Khakpour,M.& Kilbourne,E.D.(1968) Protective dffects of specificimmunity to viral neuraminidas on influenza virus infection of mice,J.Virol.2,778-786,Seto,J.T.,Drzeniek,R.& Rott R.(1966) Isolation of a low molecular weight sialidase(neuraminidase) from influenza virus,Biochim.Biophys,Acta 113,402-404Summers,M.D.& Smith,G.E.(1987) A Manual of Methods for Baculovirus Vectorsand Insect Cell Culture Procecures,Texas Agricultureal Experiment stations Bulletins No.1555.Van Drunen Littel,S.,Parker,M.D.,Fitapatrick,D.R.,Zamb,T.J.,van den Hurk,J.V.Campos,M.,Harland,R.& Babiuk,I.A.(1991) Expression of bovine her-persvirus 1 glycoprotein gIV by recombinant baculovirus and analysis of its immunogenicproperties,J.Virol.65,263-271.Van Rompuy,L.,Min Jou,W.,Huylebroeck,D.& Fiers,W.(1982) Complete nu-cleotide sequence of a human influenza gene og subtype N2 (A/Vic/3/75),J.Mol.Biol.161,1-11.Varghese,J.N.Laver,N.G.& Colman,P.M.(1983) Structure of the influenza virusglycoprotein antigen neuraminidase at 2.9 resolution,Nature (lond.) 303,35-40.Varghese,J.N.& Colman,P.M.(1991) Three-dimensional structure of the neu-raminidase of influnza virus A/Tokyo/3/67 at 2.2 resolution,J.Mol.Biol.221,473-486.Ward,C.W.,Colman,P.M.& Laver,W.G.(1983) The disulphide bonds of an Asianinfluenza virus neuraminidase,FEBs Lett.153,29-30Ward,C.W.,Elleman,T.C.& Azad,A.A.(1982) Amino Acid sequence of thepronase-released heads of neuraminidase subtype N2 from the Asian strain A/Tokyo/3/67of influenza virus,biochem.J.207,91-95.Webster,R.G.,Hinshaw,V.S.& Laver,W.G.(1982) Selection and analysis of anti-genic variants of the neuramindase of N2 influenza viruses with monoclonal antibodies,Vi-rology 117,93-104Webster,R.G.,Reay,P.A.& Laver,W.G.(1988) Protection against lethal influenzaviruses with neuraminidase,Virology 164,230-237Wison,V.W.& Rafelson M.E.(1963) Isolation of neuraminidase from influenza virus,Biochem.Prep.10,113-117.Wrigley,N.G.,Laver,W.G.& Downie,J.C.(1977) Binding of antibodies to isolatedhaemagglutinin and neuraminidase molicules of influenza virus observed in the electron mi-croscope,J.Mol.Biol.109,405-421Wrigley,N.G.,Skehel,J.J.,Charlwood,P.A.& Brand,C.M.(1973) The size andshape of nifluenza vurus nieraminidase,virology 51,525-529Couch,R.B.,Douglas,R.G.Jr.,Fredson,D.S.& Kasel,J.A.Correlation studies ofa recombinant influenza-virus vaccine.IIL Protection against experimental virus in man.J.Infect.Dis.1971,124,473Ogra,P.L.,Chow,T.,Beutner,K.R.,Rubi,E.,Strussenberg,J.,DeMsllo S.&Rizzone C.Clinical and immunological evaluation of neuraminidase-specific influeza Avirus in humans.J.Infect.Dis.1977,135,499Kilbourne,E.D.comparative dfficacy of neuramindase-specific and conventional influen-za virus vaccine in the induction of antibody to neuraminidase in humans.J.Infect.Dis.1976,134,384Kilbourne,E.D.,Cerini,C.P.,Khan,M.W.,Mitchell,J.W.Jr.& Ogra,P.L.Immunologic response to the influenza virus neuraminidase is influenced by prior experiencewith the associated viral hemagglutinnin.I.Studies in human vaccinees.J.Immunol.1987,138,3010Johansson,B.E.,Moran,T.W.,Bona,C.B.,Popple,S.W.& Kilbourne,E.D.Im-munologic response to influenza virus neuraminidase is influenced by prior experience withthe associated viral hemagglutinin.II.Sequential infection of mice simulates human experi-ence.J.Immunol.1987,139,2010Johansson,B.E.,Moran,T.M.,Constantin,A.B.& Kilbourne,E.D.Immunologicresponse to influenza virus neuraminidase is influenced by prior experience with the associ-ated viral hemagglutinin.III.Reduced generation of nruraminidase-specific helper T cellsin hemagglutinin-primed mice.J.Immunol.1987,139,2015Hirst,G.K.The quantitative determination of influenza virus and antibodies by means ofred cell agglutination.J.Exp.Med.1942,75,47Davenport,F.M.,Hennessy,A.V.,Brandon,F.M.,Webster,R.G.,Barrett,C.D.& Lease,G.O.Comparisons of serological and bebrile responses in humans to vaccinationwith influenza A viruses of their hemagglutinins.J.Iab.Clin.Med.1964,63,5Kida,H.,Webster,R.G.& Yanagawa,R.Inhibition of virus-induced hemolysis withmonoclonal antibodies to different antigenic areas on the hemagglutinin molecule of A/Seal/Massachusetts/1/80(H7N7) influenza virus.Arch.Virol.1983.76.91Jahiel,R.I.&-Kilbourne,E.D.Reduction in plaque size and reduction in plaque numberas differing indices of influenza virus-antibody reactions.J.Bacteriol.1966,92,1521Kilbourne,E.D.,Laver,W.G.,Schulman,J.L.& Webster,R.G.Antiviral activity ofantiserum specific for an influenza virus neuraminidase,J.Virol.1968,2,281Johansson,B.E.,Bucher,D.J.& Kilbourne,E.D.Purified influenza virus hemagglu-tinin and neuraminidase are eqyuvalent in stimulation of antibody response but induce con-trasting types of immunity.J.Virol.1989,63,1239Schulman,J.L.,Khakpour,M.& Kilbourne,E.D,protective effects of specific immu-nity to viral neuraminidase on influenza virus infection of mice.J.Virol.1968,2,778Johansson,B.E.& Kilbourne,E.D.Comparative long-term effects in a mouse modelsystem of influenza whole virus and purified neuraminidase vaccines follwoed by sequentialinfections.J.Infect.Dis.1990,162,800Johansson,B.E.,Moran,T.M.& Kilbourne,E.D.Antigen-presenting B cells andhelper T cells cooperatively mediate intravirionic antigenic competition between influenza Avirus surface glycoproteins,Proc.Natl.Acad.Sci.1987,84,6869Rott,R.,Becht,H.& Orlich,M.The signification of influenza virus in immunity.J.Gen.Virol.1974,22,35Webster,R.G.,Reay,P.A. &laver,W.G.Protection against lethal influenza with neu-raminidase.Virology 1988,164 230Johansson,B.E.,Grajower,B.& Kilbourne,E.D.Infection-permissive immunizationwith influenza virus neuraminidase prevents weight loss in infected mice.Vaccine 1993,11,1037Kilbourne,E.D.,Palese,P.& Schulman J.L.Inhibition of viral neuraminidase as newapproach to the prevention of influenza.In Perspective in virology.Vol 9(Ed.Pollard,M.) New York,Academic Press,1975,99-113Kilbourne,E.D.,Immunization strategyinfection-permissive vaccines for the modula-tion of infection.In Modern approaches to vaccines (Eds.Chanock R.M.,Lerner,R.A.)Cold Spring Harbor Laboratory,Cold Spring Harbor,NY,1984,269-274Vanlandschoot,P.,Maertens,G.,Min Jou,W.& Fiers,W. Recombinant swcretedhemagglutinin protects mice against a lethal challenge of influenza virus.Vaccine 1993,11,1185Brown,J.& Lwver,W.G.The effect of antineuraminidase antibody on the elution of in-fluenza virus from cells.J.Gen.Virol.1968,2,291Gallagher,M.,Bucher,D.J.,Dourmashkin,R.,Davis,J.F.,Rosenn,G.& Kil-bourne E.D.Isolation of immunogenic neuraminidase of human influenza viruses by a com-bination of genetic and biochemical procedures.J.Clin.Microbiol.1984,20,89Colman,P.M.& Ward,C.W.Structure and diversity of influenza neuraminidase.Curr.Top.Microbiol.Immunol.1985,114,177Kilbourne,E.D.Influenza.Plenum,New York,1987Van Rompuy,L.,Min Jou,W.,Huylebroeck,D.& Fiers,W.Complete nucleotide se-quece of a human influenza neuraminidase gene of subtype N2(A/Vic/3/75).J.Mol. Biol.1982,161,1Lentz,M.R.,Air,G.M.,Laver,W.G.& Wbster,R.G.Sequence of the neuraminidasegene from influenza virus A/Tokyo/3/67 and previously uncharacterised monoclonal vari-ants.Virology 1984,135,257Kawaoka,Ylk Yamnikova,S.,Chambers,T.M.,Lvov,D.K.& Webster,R.G.Molec-ular characterization of a new hemagglutinin,subtype 14,of influenza A virus.Virology1990,179,759Baea,M.,Palese,P.& Kilbourne,K.D.Gene composition of high-yeilding influenzavaccine strains obtained by recombination.J.Infect.Dis.1980.141,36权利要求
1.基本分离的重组神经氨酸酶,其特征在于,它通过如下制取a)将用神经氨酸酶表达载体转化或用神经氨酸酶表达载体转化的病毒感染的宿主细胞培养在合适的培养基中,其中的表达载体至少含有流感病毒神经氨酸酶基因编码区减去膜锚着点编码区后的部分区段或其修饰形式,在同相位前面有一段信号序列;b)从培养基中分离出表达产物神经氨酸酶。
2.基本分离的重组流感NA2神经氨酸酶,其特征在于,它通过如下制取将用病毒感染的宿主细胞培养在合适的培养基中,该病毒通过重组表达质粒pAc2IVNAs(LMBP 2976)与其基因组的双同源重组而被转化。然后从培养基中分离出神经氨酸酶表达产物。
3.重组的流感NA2神经氨酸酶,其特征在于,它通过如下制取将用重组表达载体pPP1VNAfls(LMBP 3223)转染的宿主细胞培养在合适的培养基中,然后可选地从培养基中分离出神经氨酸酶表达产物。
4.根据权利要求1、2或3所述的重组流感神经氨酸酶,其特征在于,宿主细胞来自某种低级真核生物。
5.根据权利要求1、2或4所述的重组流感神经氨酸酶,其特征在于,宿主细胞是昆虫细胞。
6.根据权利要求5所述的重组流感神经氨酸酶,其特征在于,昆虫细胞是Sf9昆虫细胞。
7.根据权利要求1、3或4所述的重组流感神经氨酸酶,其特征在于,宿主细胞是酵母细胞。
8.根据权利要求1至7所述的重组流感神经氨酸酶,其特征在于,它用于抗流感疫苗中。
9.根据权利要求2至7中任一项所述的重组流感神经氨酸酶,其特征在于,它用于抗NA2型流感疫苗中。
10.表达可分泌流感神经氨酸酶的载体,其特征在于,它具有a)至少流感神经氨酸酶基因编码区减去膜锚着点编码区后的部分区段,或其修饰形式;b)同相位偶联于编码区5’端的信号序列;c)位于信号序列5’端的一个启动子;d)位于编码区3’端的一个转录终止子。
11.表达可分泌的NA2流感神经氨酸酶的载体,其特征在于,它具有a)A/Victoria/3/75病毒株的流感NA2神经氨酸酶基因编码区减去膜锚着点编码区后的区段或其修饰形式;b)同相位偶联于编码区5’端的信号序列;c)位于信号序列5’端的一个启动子;d)位于编码区3’端的转录终止子。
12.根据权利要求10或11所述的载体,其特征在于,信号序列源自流感NA2病毒A/victoria/3/75(H3N2)的血凝素基因。
13.根据权利要求10、11或12所述的载体,其特征在于,启动子是多角体蛋白启动子。
14.根据权利要求10至13中任一项所述的载体,其特征在于,转录终止子源自SV40和/或多角体蛋白基因。
15.保藏号为LMBP 2976的载体pAc2IVNAs。
16.在酵母中表达可分泌流感神经氨酸酶的载体,其特征在于,它具有a)流感神经氨酸酶基因编码区减去分别编码神经氨酸酶的膜锚着点编码区和至少部分茎区的区域后的区段或其修饰形式;b)同相位偶联于编码区5’端的信号序列;c)位于信号序列5’端的一个启动子;d)位于编码区3’端的转录终止子。
17.在酵母中表达可分泌的流感NA2神经氨酸酶的载体,其特征在于,它具有a)A/Victoria/3/75病毒株的流感神经氨酸酶基因编码区减去分别编码神经氨酸酶的膜锚着点编码区和至少部分茎区的区域后的区段或其修饰形式;b)同相位偶联于编码区5’端的信号序列;c)位于信号序列5’端的一个启动子;d)位于编码区3’端的转录终止子。
18.根据权利要求16或17所述的载体,其特征在于,信号序列是酿酒酵母(Saccharomyces cerevisiae)的α因子的早前信号序列。
19.根据权利要求16、17或18所述的载体,其特征在于,启动子是Pichiapastoris的乙醇氧化酶I启动子。
20.根据权利要求16至19中任一项所述的载体,其特征在于,终止子取自Pichia pastoris的乙醇氧化酶I基因。
21.保藏号为LMBP3223的载体pPP1IVNAfls。
22.含有权利要求1所述的重组流感神经氨酸酶的疫苗。
23.含有权利要求2至9中任一项所述的重组流感NA2神经氨酸酶的疫苗。
24.权利要求1所述的重组流感神经氨酸酶的用途,其特征在于,它用于抗流感疫苗中。
25.权利要求2至9所述的重组流感神经氨酸酶的用途,其特征在于,它用于抗NA2型流感疫苗中。
26.生产重组流感神经氨酸酶的方法,其特征在于,它包括下列步骤a)构建一表达载体,它具有一段信号序列,该序列同相位偶联于流感神经氨酸酶基因编码区减去神经氨酸酶的膜锚着点编码区和(可选的)茎部分编码区后的区段或其修饰形式的5’端,它们受合适的启动子和终止子的调控;b)用以上获得的表达载体转化宿主细胞;c)将转化的宿主细胞在能够表达重组神经氨酸酶的条件下培养在培养基中;d)从培养基中分离出重组神经氨酸酶。
27.生产重组流感神经氨酸酶的方法,其特征在于,它包括下列步骤a)构建含有一表达序列组件的表达载体,该序列组件具有一段信号序列,该序列同相位偶联于流感神经氨酸酶基因编码区减去膜锚着点编码区后的区段或其修饰形式的5’端,它们受合适的转录启动子和终止子的调控;b)通过双同源重组将载体的表达序列组件引入病毒的基因组;c)用以上获得的转化病毒感染宿主细胞;d)将感染的宿主细胞在能够表达重组神经氨酸酶的条件下培养在培养基中;e)从培养基中分离出重组神经氨酸酶.
28.生产重组流感NA2神经氨酸酶的方法,其特征在于,它包括以下步骤a)构建含有一表达序列组件的表达载体,该序列组件具有一段信号序列,该序列同相位偶联于A/Victoria/3/75病毒株的流感NA2神经氨酸酶基因编码区减去膜锚着点编码区后的区段或其修饰形式的5’端,它们受合适的转录启动子和终止子的调控;b)通过双同源重组将载体的表达序列组件引入野生型或由其衍生的杆状病毒的基因组以获取重组杆状病毒;c)用重组杆状病毒感染宿主细胞;d)将感染的宿主细胞在能够表达重组神经氨酸酶的条件下培养在培养基中;e)从培养基中分离出重组神经氨酸酶.
29.生产重组流感NA2神经氨酸酶的方法,其特征在于,它包括以下步骤a)通过双同源重组用保藏号为LMBP2976的载体pAc2IVNAs的表达序列组件转化杆状病毒;b)用以上获得的重组杆状病毒感染宿主细胞;c)将感染的宿主细胞在能够表达重组神经氨酸酶的条件下培养在培养基中;d)从培养基中分离出重组神经氨酸酶.
30.生产重组流感NA2神经氨酸酶的方法,其特征在于,它包括以下步骤a)构建含有一表达序列组件的表达载体,该序列组件具有一段信号序列,该序列同相位偶联于A/Victoria/3/75病毒株的流感NA2神经氨酸酶基因编码区减去神经氨酸酶的膜锚着点和茎部分的编码区后的区段或其修饰形式的5’端,它们受合适的转录启动子和终止子的调控;b)用以上获得的重组载体转化宿主细胞;c)将转化的宿主细胞在能够表达重组神经氨酸酶的条件下培养在培养基中;d)从培养基中分离出重组神经氨酸酶.
31.生产重组流感NA2神经氨酸酶的方法,其特征在于,它包括以下步骤a)用保藏号为LMBP 3223的载体pPP1IVNAfls转化Pichia pastorisb)用该载体转化宿主细胞;c)将转化的宿主细胞在能够表达重组神经氨酸酶的条件下培养在培养基中;d)从培养基中分离出重组神经氨酸酶。
32.从培养基中纯化重组神经氨酸酶的方法,其特征在于,该方法利用了硫酸铵分级分离,并在其后至少进行一次色谱处理。
33.根据权利要求32所述的方法,其特征在于,色谱处理为一次阴离子交换色谱和其后的一次亲和柱色谱和一次凝胶过滤。
34.根据权利要求33所述的方法,其特征在于,色谱处理为Sepharose Q阴离子交换色谱和其后的一次N-(对氨基苯基)草氨酸琼脂糖柱色谱和一次Su-perdex 200凝胶过滤。
全文摘要
本发明涉及一种重组神经氨酸酶,它的获得是通过将用神经氨酸酶表达载体转化或用一种已用神经氨酸酶表达载体转化的病毒感染的宿主细胞培养在合适的培养基中,其中的表达载体至少含有流感病毒神经氨酸酶基因编码区减去膜锚着点编码区后的部分区段或其修饰形式,在同相位前面有一段信号序列;从培养基中分离出表达产物神经氨酸酶。本发明还涉及一种使用了重组神经氨酸酶的疫苗及其生产和纯化的方法。
文档编号C07H21/04GK1149888SQ9519201
公开日1997年5月14日 申请日期1995年1月6日 优先权日1994年1月11日
发明者W·C·菲尔斯, T·M·德罗, W·A·明茹 申请人:福拉姆斯大学生物技术研究所