2'-氟代核苷的利记博彩app

文档序号:3578840阅读:1686来源:国知局
专利名称:2'-氟代核苷的利记博彩app
技术领域
本发明属于药物化学领域,具体地讲包括2′-氟代核苷及其制备方法和用途。
背景技术
一些年来,合成核苷如5-碘-2′-脱氧尿苷和5-氟-2′-脱氧尿苷已用于治疗癌症和疱疹病毒。从20世纪80年代开始,合成核苷还已是有利于治疗HIV,肝炎和EB病毒。
在1981年,获得性免疫缺陷综合征(AIDS)被确认为严重危害人免疫系统的一种疾病,且其几乎毫无例外地导致死亡。在1983年,AIDS的病因确定为人类免疫缺陷病毒(HIV)。在1985年,有报告称合成核苷3′-叠氮基-3′-脱氧胸苷(AZT)抑制人类免疫缺陷病毒的复制。从那时起,已证明一些其它合成核苷,包括2′,3′-二脱氧肌苷(DDI),2′,3′-二脱氧胞苷(DDC)及2′,3′-二脱氧-2′,3′-二脱氢胸苷(D4T),对HIV有效。由细胞激酶通过细胞磷酸化作用产生5′-三磷酸盐后,这些合成核苷掺入病毒DNA的生长链中,由于不存在3′-羟基而引起链终止。它们也可抑制病毒逆转录酶。
多种合成核苷在体内或活体外抑制HIV的成功已使一些研究者设计和检测核苷,其在核苷的3′-位用碳原子代替杂原子。欧洲专利申请No.0337713和美国专利No.5,041,449(授予BioChem Pharma,Inc.),公开了外消旋2-取代-4-取代-1,3-二氧杂环戊烷,其表现出抗病毒活性。美国专利No.5,047,407和欧洲专利申请No.0382526(也是属于BioChcm Pharma,Inc.),公开了一些具有抗病毒活性的外消旋的2-取代-5-取代-1,3-氧杂硫杂环戊烷核苷,并特别指出2-羟甲基-5-(胞嘧啶-1-基)-1,3-氧杂硫杂环戊烷(下文中称为BCH-189)与AZT具有近乎相同的抗HIV活性,且毒性很小。外消旋混合物BCH-189的(-)-对映异构体,称为3TC,其被Liotta等的美国专利No.5,539,116公开,目前在美国销售,其与AZT联合治疗HIV。
还已公开了顺-2-羟甲基-5-(5-氟胞嘧啶-1-基)-1,3-氧杂硫杂环戊烷(“FTC”)具有强的抗HIV活性。Schinazi等,“用顺-5-氟-1-[2-羟甲基-1,3-氧杂硫杂环戊烷-5-基]胞嘧啶的外消旋混合物和对映异构体选择性抑制人免疫缺陷病毒”Antimicrobial Agents andChemotherapy,1992年11月,pp.2423-2431。也可见美国专利No.5,210,085;WO 91/11186及WO 92/14743。
引起人的严重健康问题的其它病毒是乙肝病毒(下文中称为“HBV”)。HBV是仅次于吸烟的引起人类癌症的原因。HBV诱发癌症的机理尚不清楚。据推测其直接引起肿瘤的恶化,或通过慢性炎症、肝硬化及与感染有关的细胞再生间接引起肿瘤的恶化。
在2至6个月的潜伏期后,此时被感染对象尚未察觉感染,HBV感染可导致肝炎和肝损伤,其引起腹部疼痛、黄疸及血液中某些酶的浓度增高。HBV可引起暴发性肝炎,这是一种快速恶化常导致死亡的疾病,患此病时大部分肝脏被破坏。
一般来说,急性肝炎患者是可以康复的。但是,在一些患者中,高浓度的病毒抗原长期或无限期保留在血液中,引起慢性感染。慢性感染可以导致慢性迁延性肝炎。慢性迁延性HBV患者在发展中国家最普遍。到1991年年中,仅在亚洲就有约2.25亿慢性HBV携带者,而全世界有近3亿携带者。慢性迁延性肝炎可以引起疲劳,肝硬化和肝细胞癌,一种主要的肝癌。
在西方工业化国家,HBV感染危险性高的人群包括与HBV携带者或其血液样本接触的那些人。HBV的流行病学类似于获得性免疫缺陷综合征,这就是在HIV感染或AIDS患者中常见HBV感染的原因。但是,HBV较HIV更易接触感染。
FTC和3TC都表现出抗HBV活性。Furman等,“顺-5-氟-1-[2-(羟甲基)-1,3-氧杂硫杂环戊烷-5-基]-胞嘧啶的(-)和(+)对映异构体的抗乙型肝炎活性、细胞毒性及代谢特性”Antimicrobial Agents andChemotherapy,1992年12月,pp.2686-2692;及Cheng等,Journal ofbiological Chemistry,Volume 267(20),pp.13938-13942(1992)。
已开发了得自人血清的疫苗对患者进行免疫以抗HBV。虽然已发现其是有效的,但是该疫苗的生产有一些麻烦,这是因为从慢性携带者中获得人血清受到限制,而纯化步骤长且成本高。此外,从不同血清中制备的每批疫苗必须在黑猩猩中检测以确保安全。也已通过基因工程制备疫苗。每天用一种基因工程蛋白α-干扰素治疗也是有希望的。
丙肝病毒(“HCV”)是输血后感染和偶发的非甲非乙型肝炎的主要原因(Alter,H.J.(1990)J.Gastro.Hepatol.178-94;Dienstag,J.L.(1983)Gastro 85439-462)。尽管改进了筛检方法,在很多国家HCV仍是至少25%的急性病毒性肝炎的病因(Alter,H.J.(1990),出处同上;Dienstag,J.L.(1983),出处同上;Alter M.J.等,(1990a)J.A.M.A.2642231-2235;Alter M.J.等,(1992)N.Engl.J.Med.M1899-1905;Alter,M.J.等,(1990b)N.Engl.J.Med.3211494-1500)。HCV感染在慢性感染(及有传染性的)携带者中以高比例隐伏,他们可能很多年不表现出临床症状。急性感染向慢性感染(70-100%)和肝病(>50%)转变的高比例,其广泛的分布及疫苗的缺乏,使HCV是发病和死亡的显著原因。
肿瘤是细胞生长的不规则的、破坏组织的增殖。如果其具有侵染性和转移性,则肿瘤是恶性的或癌性的。侵染性指肿瘤进入周围组织,破坏限定组织边界的基层,于是进入常体循环系统的倾向。转移性指肿瘤迁移至身体的其它区域并在原出现位点以外建立增殖区域的倾向。
癌症是现在美国导致死亡的第二个原因。在美国已有8,000,000人被确诊患有癌症,预计在1994年新诊断出1,208,000。在此国家每年死于此疾病的超过500,000人。
在分子水平,人们并未充分认识癌症。已知细胞接触致癌物质如某些病毒、某些化学物质或辐射,导致DNA改变,这灭活“抑制”基因或活化“致癌基因”。抑制基因是生长调节基因,其突变后,再不能控制细胞生长。致癌基因开始是正常基因(称为原致癌基因),其通过突变或表达序列的改变变为转化基因。转化基因的产物引起不适当的细胞生长。通过基因的改变20多种正常细胞基因可以变为致癌基因。已转化的细胞与正常细胞有很多不同,包括细胞形态,细胞-与-细胞相互作用,膜组成,细胞骨架结构,蛋白分泌,基因表达和死亡(已转化的细胞可以无限生长)。
机体的所有不同的细胞类型可以转变为良性或恶性肿瘤细胞。最常见的肿瘤位点是肺,然后是结肠直肠、乳房、前列腺、膀胱、胰腺,再就是卵巢。其它较普遍的癌症类型包括白血病,中枢神经系统癌症,包括脑瘤、黑素瘤、淋巴瘤、红白血病、子宫癌及头和颈部癌症。
现在癌症主要用如下方法之一或其联合形式治疗三年手术、放疗及化疗。手术包括除去大多数患病组织。虽然,有时手术在除去位于某些位点如乳房、直肠和皮肤的肿瘤是有效的,但是它不能用于治疗位于其它区域如脊椎的肿瘤,也不能用于治疗散播的肿瘤病症如白血病。
化疗包括瓦解细胞的复制或细胞代谢。它最常用来治疗白血病及乳腺、肺和睾丸癌症。
目前用于治疗癌症的化疗剂有5个主要的种类天然产物及其衍生物;蒽环类;烷化剂;抗增殖药(也称为抗代谢药);及激素。化疗剂经常称为抗肿瘤剂。
据信烷化剂通过将鸟嘌呤及DNA中其它可能的碱基烷基化或交联起作用,阻止细胞分裂。典型的烷化剂包括氮芥,亚乙基亚胺化合物,烷基硫酸酯,顺铂以及多种亚硝基脲。这些化合物的缺点是它们不仅连接恶性细胞,也连接其它自然分裂的细胞,如骨髓、皮肤、胃肠粘膜和胎盘组织的细胞。
抗代谢剂一般是可逆的或不可逆的酶抑制剂,或干扰核酸复制、翻译或转录的化合物。
已确定若干合成核苷表现出抗癌症活性。具有强抗癌活性的熟知的核苷衍生物是5-氟尿嘧啶。5-氟尿嘧啶已用于临床治疗恶性肿瘤,例如,包括癌、肉瘤、皮肤癌、消化器官的癌症及乳腺癌。但是5-氟尿嘧啶引起严重的副反应如恶心、脱发、腹泻、口炎、白细胞性血小板减少症、厌食、色素沉着和水肿。具有抗癌活性的5-氟尿嘧啶的衍生物描述于美国专利No4,336,381,及日本专利申请Nos.50-50383,50-50384,50-64281,51-146482和53-84981。
美国专利No.4,000,137描述了肌苷、腺苷或胞苷与甲醇或乙醇经过氧化物过氧化的产物具有抗淋巴细胞白血病的活性。
阿糖胞苷(也称为Cytarabin,araC及Cytosar)是一种脱氧胞嘧啶的核苷类似物,其首先于1950年合成并于1963年作为临床药物。它是目前治疗急性骨髓白血病的最重要的药物。它对急性淋巴细胞白血病也有活性,而较少用于治疗慢性髓细胞白血病和非何杰金氏淋巴瘤中。阿糖胞苷的主要作用是抑制核酸DNA的合成。Handschumacher,R.和Cheng,Y.,“嘌呤和嘧啶抗代谢药”,Cancer Medicine,XV-1章,第3版,编者J.Holland等,Lea和Febigol出版。
5-阿扎胞苷属于胞苷类,它主要用于治疗急性髓细胞白血病和脊髓发育不良综合征。
2-氟腺苷-5′-磷酸盐(Fludara,也称为FaraA)是治疗慢性淋巴细胞白血病的最有效的药物之一。此化合物通过抑制DNA合成起作用。用F-araA处理细胞与在GI/S期边缘和在S期的细胞蓄积有关;因此,它是细胞循环S期的特异性药物。活性代谢物F-araATP的掺入,阻止了DAN链的延伸。F-araA还是核糖核苷酸还原酶的强抑制剂,该酶是负责形成dATP的关键酶。
2-氯脱氧腺苷用于治疗低级B细胞瘤如慢性淋巴细胞白血病、非何杰金氏淋巴瘤和毛细胞白血病。
在设计新的生物活性核苷时,人们几经尝试将氟取代基掺入核苷的碳水化合物环中。将氟建议为取代基,是因为它可能作为羟基的等极和等体积的模拟物,因为C-F键长(1.35埃)与C-O键长(1.43埃)非常接近,且因为氟是氢键的受体。氟用最小的空间干扰能使分子产生显著的电子变化。用氟取代分子中的其它基团可以引起底物代谢的变化,这是由于C-F键的高强度(116kcal/mol而C-H=100kcal/mol)。
一些参考文献报告了2′-阿糖基氟代核苷(即,2′-氟基团是“向上”构型的核苷)的合成和用途。已有若干报告报道了2-氟-β-D-呋喃阿糖基核苷表现出抗乙型肝炎和疱疹的活性。例如,参见美国专利No.4,666,892(Fox等);美国专利No.4,211,773(Lopez等);Su等,Nucleosides.136,“几种1-(2-脱氧-2-氟-β-D-呋喃阿糖基)-5-烷基尿嘧啶的合成和抗病毒作用”;“一些构效关系”,J.Med Chem.,1986,29,151-154;Borthwick等,“碳环2′-阿糖-氟-鸟苷一种强的新抗疱疹剂的合成和酶拆分,”J.Chem.Soc.,Chem.Commun,1988;Wantanabe等,“活性抗AIDS核苷3′-叠氮基-3′-脱氧胸苷(AZT)和2′,3′-二脱氧胞苷(DDC)的2′-”上“-氟类似物的合成和抗HIV活性”,J.Med.Chem.1990.33,2145-2150;Martin等,“抗人类免疫缺陷病毒(HIV-1)的嘧啶二脱氧核糖核苷的单氟和二氟代类似物的合成和抗病毒活性,”J Med,Chem.1990,33,2137-2145;Sterzycki等,“一些2′-氟代-含嘧啶核苷的合成和抗HIV活性,”J.Med.Chem.1990,及EPA0316017(由Sterzycki等申请);以及Montgomery等,“9-(2-脱氧-2-氟-β-D-呋喃阿糖基)鸟苷一类代谢稳定的2′-脱氧鸟苷细胞毒类似物”,美国专利No.5,246,924公开了治疗肝炎的方法,包括使用1-(2′-脱氧-2′-氟-β-D-呋喃阿糖基)-3-乙基尿嘧啶),也称为“FEAU”。美国专利No.5,034,518公开了2-氟-9-(2-脱氧-2-氟-β-D-呋喃阿糖基)腺嘌呤核苷类,其通过降低化合物作为胸苷底物的能力来改变腺嘌呤核苷的代谢而表现出抗癌活性。EPA 0292023公开了某些β-D-2′-氟代阿糖基核苷有抗病毒感染活性。
美国专利No.5,128,458公开了抗病毒剂β-D-2′,3′-二脱氧-4′-硫代核糖核苷。美国专利No.5,446,029公开了具有抗肝炎活性的2′,3′-二脱氧-3′-氟代核苷。
欧洲专利申请No.0409227A2公开了用于治疗乙型肝炎的某些3′-取代的β-D-嘧啶和嘌呤核苷。
还公开了L-FMAU(2′-氟-5-甲基-β-L-呋喃阿糖基尿嘧啶)是一种强抗-HBV和抗-EBV剂。见Chu等,“2′-氟-5-甲基-β-L-呋喃阿糖基尿嘧啶作为新的抗病毒剂治疗乙型肝炎病毒和EB病毒的用途”Antimicrobial Agents and Chemotherapy,1995年4月,979-981页;Balakrishna等,“用新的L-核苷,2′-氟-5-甲基-β-L-呋喃阿糖基尿嘧啶抑制乙型肝炎病毒”,Antimicrobial Agents and Chemotherapy,1996年2月,380-356页;美国专利Nos.5,587,362;5,567,688;及5,565,438。
美国专利Nos.5,426,183和5,424,416公开了制备2′-脱氧-2′,2′-二氟代核苷和2′-脱氧-2′-氟代核苷的方法。还可参见“2′,2′-二氟脱氧胞苷(吉西他滨)与纯化的人脱氧胞苷激酶和胞苷脱氨基酶的动力学研究”,BioChemical Pharmacology,Vol.45(No.9)4857-1861页,1993。
美国专利No.5,446,029(Eriksson等)公开了具有抗乙型肝炎活性的某些2′,3′-二脱氧-3′-氟代核苷。美国专利No.5,128,458公开了某些2′,3′-二脱氧-4′-硫代核苷,其中3′-取代基是H、叠氮化物或氟。WO94/14831公开某些3′-氟-二氢嘧啶核苷。WO92/08727公开了β-L-2′-脱氧-3′-氟-5-取代的尿苷核苷,用于治疗单纯疱疹1和2。
EPA公开号No.0352248公开了一大类用于治疗HIV、疱疹和肝炎的L-呋喃核糖基嘌呤核苷。虽然某些2′-氟代嘌呤核苷属于此大类中,但是在其说明书没有给出制备这些化合物的信息,且它们不在特别公开或说明书中列出的优选之列。该说明书没有公开如何制备3′-呋喃核糖基氟化核苷。类似的说明发现于WO 88/09001(Aktiebolaget Astra申请)。
欧洲专利申请0357571公开了一大组用于治疗AIDS的β-D和α-D嘧啶核苷,在此大组中一般性地包括2′或3′位可以被氟基团取代的核苷。但是,在此大组中没有特别公开2′-氟代核苷或其制备方法。
EPA 0 463 470公开制备(5S)-3-氟-四氢-5[(羟基)甲基]-2-(3H)-呋喃酮的制备方法,其是制备2′-氟-2′,3′-二脱氧核苷如2′-氟-2′,3′-二脱氧胞苷的一种已知的中间体。
U.S.S.N.07/556,713公开了β-D-2′-氟呋喃阿糖基核苷,及其制备方法,它们是合成2′,3′-二脱氧-2′-氟阿糖基核苷的中间体。
美国专利No.4,625,020公开了由1,3,5-三-O-酰基-呋喃核糖制备带有保护基的1-卤代-2-脱氧-2-氟呋喃阿糖基衍生物的方法。
对用于医疗用途包括治疗HIV、肝炎(乙型或丙型)或增殖病症的β-L-2′-氟-呋喃核糖基核苷的公开很缺乏。至少有关2′-呋喃核糖基核苷,这可能是由于以前感觉将氟基团置于2′-呋喃核糖基构型中是困难的。对于L-2′-氟-2′,3′-不饱和嘌呤核苷,可能是由于嘌呤核苷在酸性介质中不稳定,导致葡糖基键的断裂。
考虑到HIV获得性免疫缺陷综合征,AIDS-相关综合征和乙型肝炎及丙型肝炎病毒在全世界传播,并对感染的患者造成悲惨影响的事实,还存在为了治疗这些疾病提供新的、有效的、对所治疗的对象低毒的药剂的要求。此外,还存在提供新的抗增殖剂的需求。
因此,本发明的目的之一是提供治疗感染了乙型肝炎或丙型肝炎的病人的方法和组合物。
本发明的另一个目的是提供治疗感染了HIV的病人的方法和组合物。
本发明的另一个目的是提供新的抗增殖剂。
本发明又一个目的是提供制备2′-氟-呋喃核糖基核苷的新方法。
本发明的另一个目的是提供制备2′,3′-二脱氧-2′,3′-二脱氢-2′-氟-L-甘油基-戊-2-烯基-呋喃糖基核苷的新方法。
发明概述在本发明的一个实施方案中,提供了结构如下的2′-α-氟-核苷
其中碱基是如本文中进一步定义的嘌呤或嘧啶碱基;R1是OH、H、OR3、N3、CN、卤素包括F、或CF3、低级烷基、氨基、低级烷基氨基、二低级烷基氨基、或烷氧基,而碱基指嘌呤或嘧啶碱基;R2是H、磷酸根包括单磷酸根,二磷酸根,三磷酸根,或稳定的磷酸盐前药;酰基,或其它药用离去基团,当体内使用时该基团能提供R2是H或磷酸根的化合物;磺酸酯包括烷基或芳烷基磺酰基(包括甲基磺酰基)、苄基(其中苯基选择性被一个或多个上述芳基定义中所述的取代基取代)、脂类(包括磷脂)、氨基酸、肽或胆固醇;而R3是酰基、烷基、磷酸根或其它药用离去基团,即当体内使用时能裂解为母体化合物的基团。
在第二个实施方案中,提供了下式的2’-氟代核苷 其中取代基定义如上。
在第三个实施方案中,提供了下式的2’-氟代核苷
其中取代基定义如上。
在第四个实施方案中,提供了结构如下的2’-氟代核苷 其中取代基定义如上。
这些2’-氟代核苷可以是β-L或β-D构型。优选β-L构型。
此类2’-氟代核苷是生物活性分子,它们用于治疗乙型肝炎、丙型肝炎或HIV。这些化合物还用于治疗细胞异常增殖,包括肿瘤和癌症。通过本文中描述的检测方法或用其它确认检测方法评价该化合物,可以容易地确定活性谱。
在另一个实施方案中,为了治疗肝炎或HIV,此活性化合物或其衍生物或盐可以与其它抗病毒剂(例如抗HIV剂或抗肝炎剂,包括如上结构式所述的)联合或交替给药。一般来说,在联合治疗中,有效量的两种或多种试剂一起给药,而在交替治疗中,有效量的各种试剂按顺序给药。给药量取决于药物的吸收、灭活和排泄速度以及本领域技术人员已知的其它因素。需要提及的是该剂量也将随被治疗的病症的严重性变化。还应进一步理解对于任何特定的对象,特定的剂量方案和程序按照个体的需要和给药者或指导这些组合物给药的人凭借专业判断随时间进行调整。
可以与本文中公开的化合物联合的抗病毒剂的非限制性实例包括2-羟甲基-5-(5-氟胞嘧啶-1-基)-1,3-氧杂硫杂环戊烷(FTC);2-羟甲基-5-(胞嘧啶-1-基)-1,3-氧杂硫杂环戊烷(3TC)的(-)-对映异构体;卡波佛,阿昔洛韦,干扰素,泛昔洛韦,喷昔洛韦,AZT,DDI,DDC,D4T,abacavir,L-(-)-FMAU,L-DDA磷酸盐前药及β-D-二氧杂环戊烷核苷如β-D-二氧杂环戊烷基-鸟嘌呤(DG),β-D-二氧杂环戊烷基-2,6-二氨基嘌呤(DAPD),以及β-D-二氧杂环戊烷基-6-氯嘌呤(ACP),非核苷类RT抑制剂如奈韦拉平,MKC-442,DMP-266(sustiva)及蛋白酶抑制剂如indinavir,沙奎那韦,AZT,DMP-450等。
这些化合物还可以用于治疗马传染性贫血病毒(EIAV),猫免疫缺陷病毒及类人猿免疫缺陷病毒(Wang,S.,Montelaro,R.,Schinazi,R.F.,Jagerski,B.和Mellors,J.W.“核苷和非核苷逆转录酶抑制剂(NNRTI)抗马传染性贫血病毒(EIAV)的活性”,First NationalConference on Human Retro viruse and Related lnfections,Washington,DC,1993年12月12-16日;Sellon D.C.,“马传染性贫血”,Vet.Clin.North Am.Equine Pract.美国,9321-336,1993;Philpott,M.S.,Ebner,J.P.,Hoover,E.A.,“用定量聚合酶链反应评价9-(2-磷酰基甲氧基乙基)腺嘌呤对猫免疫缺陷病毒的治疗”,Vet.Immunol.Immunopathol.35155166,1992)。
还提供了将氟引入非碳水化合物糖环前体上的新的和彻底的非对映体选择性的方法。该方法包括手性的、非碳水化合物糖环前体(4S)-5-(保护的氧基)-戊-4-交酯(其可以由L-谷氨酸制备)与氟的亲电子来源包括但不限于N-氟-(双)苯磺酰亚胺反应,得到关键中间体氟代内酯6。将此氟代内酯还原为内半缩醛并乙酰基化得到端基异构的乙酸酯,然后用于合成-些新的β-L-α-2’-氟代核苷。也可用D-谷氨酸作为起始物合成相应的D-对映异构体。
在另一个可替换的实施方案中,制备脱氢的氟化的烯糖,然后转变为2’,3’-二脱氧-2’,3’-二脱氢-2’-氟代核苷或β-L或β-D-阿糖基-2’-氟代核苷,如下文所述。
还给出了制备2’,3’-二脱氧-2’,3’-二脱氢-2’-氟代核苷的简单方法,该方法包括将硅烷基化的6-氯代嘌呤与关键中间体直接缩合,该关键中间体由L-2,3-O-亚异丙基甘油醛(glyceraldenhyde)。
发明详述此处公开的本发明涉及一种治疗人或其它动物宿主的HIV、肝炎(乙型或丙型)或异常细胞增殖的化合物、方法及组合物,其中包括使用选择性存在于药用载体中的有效量的2’-氟-核苷,一种药用衍生物(包括在5′-位或在嘌呤或嘧啶上已进行了烷基化或酰基化的化合物),或其药用盐。本发明的化合物具有抗病毒(即抗HIV-1、抗HIV-2或抗肝炎(乙型或丙型))活性,或抗增殖活性,或代谢为具有这些活性的化合物。
概括地说,本发明包括下列特征(a)β-L和β-D-2’-氟代核苷,如本文所述,及其药用衍生物和药用盐,(b)β-L和β-D-2’-氟代核苷,如本文所述,及其药用衍生物和药用盐,它们用于药物治疗,例如,治疗或预防HIV或肝炎(乙型或丙型)感染或治疗异常细胞增殖;(c)2’,3’-二脱氧-2’,3’-二脱氢-2’-氟-L-甘油基-戊-2-烯基-呋喃糖基核苷,及其药用衍生物和药用盐,它们用于药物治疗,例如,治疗或预防HIV或肝炎(乙型或丙型)感染或治疗异常细胞增殖;(d)这些2’-氟代核苷及其药用衍生物和其盐在制备治疗HIV或肝炎感染或治疗异常细胞增殖的药物中的用途;(e)含2’-氟代核苷或其药用衍生物或其盐和药用载体或稀释剂的药物制剂;(f)制备β-L和β-D-2’-α-氟代核苷的方法,详见下文,及(g)制备2’,3’-二脱氧-2’,3’-二脱氢-2’-氟-L-甘油基-戊-2-烯基-呋喃糖基核苷的方法。
I.活性化合物,及其生理可接受的衍生物和盐提供结构如下的2’-α-氟-核苷 其中R1是OH、H、OR3、N3、CN、卤素(包括F)、或CF3,低级烷基、氨基、低级烷基氨基、二低级烷基氨基、或烷氧基,而碱基指嘌呤或嘧啶碱基;R2是H,磷酸根包括单磷酸根、二磷酸根、三磷酸根,或稳定的磷酸盐前药;酰基,或其它药用离去基团,当体内使用时该基团能提供R2是H或磷酸根的化合物;磺酸酯包括烷基或芳烷基磺酰基(包括甲基磺酰基)、苄基(其中苯基选择性被一个或多个上述芳基定义中所述的取代基取代)、脂类(包括磷脂)、氨基酸、肽或胆固醇;而R3是酰基、烷基、磷酸根或其它药用离去基团,即当体内使用时能裂解为母体化合物的基团。
在第二个实施方案中,提供了下式的2’-氟代核苷 在第三个实施方案中,提供了下式的2’-氟代核苷 在第四个实施方案中,提供了结构如下的2’-氟代核苷 在本文中,除非特别说明,术语烷基指饱和的直链、支链或环状伯、仲或叔C1至C10烃,并特别包括甲基,乙基,丙基,异丙基,环丙基,丁基,异丁基,叔丁基,戊基,环戊基,异戊基,新戊基,己基,异己基,环己基,环己基甲基,3-甲基戊基-2,2-二甲基丁基,及2,3-二甲基丁基。此烷基可以被一个或多个选自如下的部分选择性取代羟基,氨基,烷基氨基,芳基氨基,烷氧基,芳氧基,硝基,氰基,磺酸,硫酸根,膦酸,磷酸根或膦酸根,它们可以是未保护的或按照需要保护,如本领域技术人员已知的,例如Greene等,Protective Groups inOrganicSynthesis,John Wiley和Sons,第二版,1991所教导的,在此引入作为参考。
在本文中术语低级烷基,除非特别说明,指C1至C4的饱和直链、支链或环(如果适当,例如环丙基)烷基。
术语烷基氨基或芳基氨基指分别带有一个或两个烷基或芳基取代基的氨基。
术语“保护”在本文中除非另行限定,指加在氧原子、氮原子或磷原子上以防止进一步反应或为了其它目的而加的基团。氧原子或氮原子的多种保护基是有机合成领域技术人员已知的。本文中,术语芳基除非特别说明,指苯基、联苯基或萘基,并优选苯基。芳基可以被选自如下的一种或多种部分选择性取代羟基,氨基,烷基氨基,芳基氨基,烷氧基,芳氧基,硝基,氰基,磺酸,硫酸根,膦酸,磷酸根或膦酸根,它们可以是未保护的或按照需要保护,如本领域技术人员已知的,例如Greene等,Protective Groups in OrganicSynthesis,John Wiley和Sons,第二版,1991所教导的。
术语烷芳基或烷基芳基指带有芳基取代基的烷基。术语芳烷基或芳基烷基指带有烷基取代基的芳基。
术语卤素,在本文中,包括氯、溴、碘和氟。
术语嘌呤或嘧啶碱基包括但不限于腺嘌呤,N6-烷基嘌呤,N6-酰基嘌呤(其中酰基是C(O)(烷基,芳基,烷基芳基,或芳基烷基),N6-苄基嘌呤,N6-卤代嘌呤,N6-乙烯基嘌呤,N6-乙基嘌呤,N6-酰基嘌呤,N6-羟基烷基嘌呤,N6-硫代烷基嘌呤,N2-烷基嘌呤,N2-烷基-6-硫代嘌呤,胸腺嘧啶,胞嘧啶,5-氟胞嘧啶,5-甲基胞嘧啶,6-氮杂嘧啶(包括6-氮杂胞嘧啶),2-和/或4-巯基嘧啶,尿嘧啶,5-卤代尿嘧啶(包括5-氟尿嘧啶),C5-烷基嘧啶,C5-苄基嘧啶,C5-卤代嘧啶,5-乙烯基嘧啶,C5-乙炔基嘧啶,C5-酰基嘧啶,C5-羟基烷基嘌呤,C5-酰氨基嘧啶,C5-氰基嘧啶,C5-硝基嘧啶,C5-氨基嘧啶,N2-烷基嘌呤,N2-烷基-6-硫代嘌呤,5-氮杂胞嘧啶基,5-氮杂尿嘧啶基,三氮杂环戊并吡啶基,咪唑并吡啶基,吡咯并嘧啶基和吡唑并嘧啶基。嘌呤碱基包括但不限于鸟嘌呤,腺嘌呤,次黄嘌呤,2,6-二氨基嘌呤和6-氯嘌呤。碱基上的官能氧或氮原子基团可以按照需要或要求保护。适宜的保护基是本领域技术人员熟知的,并包括三甲基甲硅烷基、二甲基己基甲硅烷基、叔丁基二甲基甲硅烷基和叔丁基联苯基甲硅烷基、三苯甲基、烷基、酰基如乙酰基和丙酰基、甲磺酰基和对甲苯磺酰基。
对患者进行给药时,可以以能直接或间接提供母体化合物或其本身具有活性的任何衍生物的形式使用活性化合物。非限制性实例为药用盐(或者称为“生理可接受的盐”),或在5′-位或嘌呤或嘧啶碱基上已进行了烷基化或酰基化的化合物(或者称为“药用衍生物”)。此外,修饰可以影响此化合物的生物活性,在某些情况下增加母体化合物的活性。通过制备衍生物并按照本文中描述的方法或本领域技术人员已知的其它方法检测其抗病毒活性可以容易地评价该化合物。
术语酰基指羧酸酯,其中酯基的非羰基部分选自直链、支链或环烷基或低级烷基,烷氧基烷基包括甲氧基甲基,芳烷基包括苄基,芳氧基烷基如苯氧基甲基,芳基包括选择性地被卤素,C1至C4烷基或C1至C4烷氧基取代的苯基,磺酸酯如烷基或芳烷基磺酰基包括甲磺酰基,单、二或三磷酸酯,三苯甲基或单甲氧基三苯甲基,取代的苄基,三烷基甲硅烷基(例如二甲基叔丁基甲硅烷基)或二苯基甲基甲硅烷基。在酯中芳基最好包括苯基。
在本文中,术语“基本上没有”或“基本上缺乏”指核苷组合物含有至少95%至98%,或更优选99%至100%的此核苷的指定的对映异构体。
核苷前药制剂本文中描述的任何核苷可以以核苷前药的形式给药以增加该核苷的活性、生物利用度、稳定性或改变其性质。一些核苷酸前药配体是已知的。总的来说,对核苷的单、二或三磷酸盐进行烷基化、酰基化或其它亲酯性修饰会增加此核苷酸的稳定性。可替换磷酸根上的一个或多个氢原子的取代基的实例为烷基、芳基、甾类、碳水化合物,包括糖、1,2-二酰基甘油和醇。很多描述于R.Jones和N.Bischofberger,AntiviralResearch,27(1995)1-17。其中任何化合物可以与本文中公开的核苷联合使用以达到所需的效果。
此活性核苷还可以以5’-磷醚脂或5’-醚脂的形式提供,如下列文献中所公开的,将它们引入本文作为参考Kucera,L.S.,N.lyer,E.Leake,A.Raben,Modest E.K.,D.L.W.,及C.Piantadosi.1990,“抑制传染性HIV-1产生和诱发缺陷病毒形成的新的膜相互作用醚脂类”,AIDS Res.Hum.Retro Viruses.6491-501;Piantadosi,C.,J.MarascoC.J.,S.L.Morris-Natschke,K.L.Meyer,F.Gumus,J.R.Suries,K.S.Ishaq,L.S.Kucera,N.Iyer,C.A.Wallen,S.Piantadosi,及E.J.Modest.1991,“新的醚脂核苷共轭物的合成并评价其抗HIV活性”,J.Med Chem.341408,1414;Hosteller,K.Y.,D.D.Richman,D.A.Carson,L.M.Stuhmiller,G.M.T.van Wijk,及H.van den Bosch.1992,“用3′-脱氧胸腺嘧啶二磷酸盐二肉豆蔻酰基甘油,一种3′-脱氧胸腺嘧啶的脂类前药,极大地提高了对CEM和HT4-6C细胞中1型人类免疫缺陷病毒复制的抑制”,Antimicrob.Agents Chemother.362025.2029;Hosetler,K.Y.,L.M.Stuhmiller,H.B.Lenting,H.vanden Bosch,及D.D.Richman,1990,“叠氮基胸苷和其它抗病毒核苷的磷脂类似物的合成和抗逆转录病毒活性”,J.BioL Chem.26561127。
公开了可以共价键接在核苷上,优选在核苷的5’-OH位的适宜的亲脂取代基或亲脂制剂的美国专利的非限制性实例,包括美国专利Nos.5,149,794(1992年9月22日,Yatvin等);5,194,654(1993年3月16日,Hostetler等),5,223,263(1993年6月29日,Hostetler等);5,256,641(1993年10月26日,Yatvin等);5,411,947(1995年5月2日,Hostetler等);5,463,092(1995年10月31日,Hostetler等);5,543,389(1996年8月6日,Yatvin等);5,543,390(1996年8月6日,Yatvin等);5,543,391(1996年8月6日,Yatvin等);及5,554,728(1996年9月10日;Basava等),将所有内容引入本文作为参考。公开了可以连接本发明的核苷的亲脂取代基或亲脂制剂的外国专利,包括WO 89/02733,WO 90/00555,WO 91/16920,WO 91/18914,WO 93/00910,WO 94/26273,WO 96/15132,EP 0350287,EP 93917054.4,及WO 91/19721。
核苷酸前药的非限制性实例描述于下列文献Ho,D.H.W.(1973)“1β-D-呋喃阿糖基胞嘧啶的激酶和脱氨基酶在人和小鼠组织中的分布”,Cancer Res.33,2816-2820;Holy,A.(1993)等极磷修饰的核苷酸类似物“,见De Clercq(编辑),Advancesin Antiviral Drug DesignVol.1,JAI Press,pp.179-231;Hong,C.I.,Nechaev,A.,和West,C.R.(1979a)“氢化可的松和可的松的1-β-D-呋喃阿糖基胞嘧啶轭合物的合成和抗肿瘤活性”,Bicohem.Biophys.Rs.Commun.88,1223-1229;Hong,C.I.,Nechaev,A.,Kirisits,A.J.Buchheit,D.J.和West,C.R.(1980)“作为潜在的抗肿瘤剂的核苷轭合物,3.皮质类固醇和所选择的亲脂醇的1-(β-D-呋喃阿糖基)胞嘧啶轭合物的合成及抗肿瘤活性”,J.Med.Chem.28,171-177;Hosteller,K.Y.,Stuhmiller,L.M.,Lenting,H.B.M.van den Bosch,H.和Richman J.Biol.Chem.265,6112-6117;Hosteller,K.Y.,Carson,D.A.和Richman,D.D.(1991);“磷脂酰基叠氮基胸苷在CEM细胞中抗病毒的机理”,J.Biol.Chem.266,11714-11717;Hosteller,K.Y.,Korba,B.Sridhar,C.,Gardener,M.(1994a)“磷脂酰基-二脱氧胞苷在乙型肝炎感染的细胞中的抗病毒活性和在小鼠中提高的肝摄入”,Antiviral Res.24,59-67;Hosteller,K.Y.,Richman,D.D.,Sridhar.C.N.Felgner,P.L.Felgner,J.,Ricci,J.,Gardener,M.F.Selleseth,D.W.和Ellis,M.N.(1994b)“磷脂酰基叠氮基胸苷和磷脂酰基-ddC在小鼠淋巴组织的吸收和在人免疫缺陷病毒感染的细胞中及在rauscher白血病感染小鼠中抗病毒活性的评价”,Antimicrobial Agents Chemother.38,2792-2797;Hunston,R.N.,Jones,A.A.McGuigan,C.,Walker,R.T.,Balzarini,J.,和DeClercq,E.(1984)“得自2′-脱氧-5-氟尿苷的一些环磷酸三酯的合成和生物性质”,J.Med Chem.27,440-444;Ji,Y.H.,Moog,C.,Schmitt,G.,Bischoff,P.和Luu,B.(1990);“作为潜在的抗肿瘤剂的7-β-羟基胆固醇和嘧啶核苷的单磷酸酯合成及抗肿瘤活性的初步评价”,J.Med Chem.33 2264-2270;Jones,A.S.,McGuigan,C.,Walker,R.T.,Balzarini,J.和DeClercq,E.(1984)“一些核苷环磷酰胺的合成、性质及生物活性”,J.Chem.Soc.Perkin Trans.I,1471-1474;Juodka,B.A.和Smrt,J.(1974)“二核糖核苷磷(P→N)氨基酸衍生物的合成”,Coll.Czech.Chem.Comm.39,363-968;Kataoka,S.,Imai,J.,Yamaji,N.,Kato,M.,Saito,M.,Kawada,T.和Imai,S.(1989)“烷基化的cAMP衍生物;选择性合成和生物活性”,NucleicAcids Res,Sym.Ser.21,1-2;Kataoka,S.,Uchida,“(cAMP)苄基和甲基三酯”,Heterocycles 32,1351-1356;Kinchington,D.,Harvey,J.J.,O′Comor,T.J.,Jones,B.C.N.M.,Devine,K.G.,Taylor-RobinsonD.,Jeffiies,D.J.和McGuigan,C.(1992)“齐多夫定的氨基磷酸酯和二氨基磷酸酯衍生物体外抗HIV和ULV的抗病毒作用的比较”,Antiviral Chem.Chemother.3,107-112;Kodmna,K.,Morozumi,M.,Saithoh,K.I.,Kuninaka,H.,Yosino,H.和Saneyoshi,M.(1989)“1-β-D-呋喃阿糖基胞嘧啶-5’-硬脂基磷酸酯的抗肿瘤活性和药物学;一种1-β-D-呋喃阿糖基胞嘧啶的口服活性衍生物”,Jpn.J.Cancer Res.80,679-685;Korty,M.和Engels,J.(1979)“腺苷-和鸟苷3’,5’磷酸和苄基酯对豚鼠心室心肌的作用”,Naunyn-Schmiedeberg’s Arch。Pharmacol.310,103-111;Kumar,A.,Goe,P.L.,Jones,A.S.Walker,R.T.Balzarini,J.和DeClereq,E.(1990)“一些环氨基磷酸酯核苷衍生物的合成及生物评价”,J.Med.Chem,33,2368-2375;LeBec,C.和Huynh-Dinh,T.(1991)“5-氟尿苷的磷酸三酯衍生物,一种阿糖基作为抗癌前药的阿糖胞苷的合成”,Tetrahedron Lett.32,6553-6556;Lichtenstein,J.,Barner.H.D.和Cohen,S.S.(1960)“得自Escherichiacoli.的外源性核苷酸的代谢”,J.Biol.Chem.235,457-465;Lucthy,J.,Von Daeniken,A.,Friederich,J.Manthey,B.,Zweifel,J.,Schlafter,C.和Bem,M.H.(1981)“天然氰基表硫代烷烃的合成和毒性”,Mitt.Geg.Lebensmittelunters.Hyg.72,131-133(Chem.Abstr.95,127093);McGigan,C.Tollerfield,S.M.和Riley,P.a.(1989)“抗病毒药物Ara的一些磷酸三酯的合成和生物评价”,Nucleic Acids Res.17,6065-6075;McGuigan,C.,Devine,K.G.,O′Connor,T.J.,Galpin,S.A.,Jeffries,D.J.和Kinchington,D.(1990a)“抗HIV化合物3′-叠氮基-3′-脱氧胸苷(AZT)的一些新的氨基磷酸酯衍生物的合成和评价”,Antiviral Chem.Chemother.I 107-113;McGuigan,C.,O′Connor,T.J.,Nicholls,S.R.Nickson,C.和Kinchington,D.(1990b)“AZT和ddCyd的一些新的取代的二烷基磷酸酯衍生物的合成和抗HIV活性”,Antiviral Chem.Chemother.1,355-360;McGuigan,C.,Nicholls,S.R.,O′Connor,T.J.,和Kinchington,D.(1990c)“作为潜在的抗AIDS药物的3′-修饰的核苷的一些新的二烷基磷酸酯衍生物的合成”,Antiviral Chem.Chemother.1,25-33;McGuigan,C.,Devin,K.G.,O′Cornnor,T.J.,和Kinchington,D.(1991)“3’-叠氮基-3’-脱氧胸苷(AZT)的一些卤代烷基氨基磷酸酯衍生物的合成和抗HIV活性;三氯乙基甲氧基丙氨酰基化合物的强活性”,Antiviral Res.15,255-263;McGuigan,C.,Pathirana,R.N.,B,J.和DeCiercq,E.(1993 b)“通过AZT的芳基磷酸酯衍生物进行的生物活性AZT核苷酸的细胞内转运”,J.Med Chem.36,1048-1052。
抗HIV试剂AZT的烷基氢磷酸酯衍生物可能较母体核苷类毒性低。Antiviral Chem.Chemother.5,271-277;Meyer,R.B.,Jr.,Shuman,D.A.和Robins,R.K.(1973)“嘌呤核苷3′,5′-环氨基磷酸酯的合成”,Tetrahedron Lett.269-272;Nagyvary,J.Gohil,R.N.,Kirchner,C.R.和Stevens,J.D.(1973)“对环AMP中性酯的研究”,Biochem.Biophys.Res.Commun.55,1072-1077;Namane,A.Gouyette,C.,Fillion,M.P.,fillion,G.和HuynhDinh,T.(1992)“用葡糖基磷酸三酯前药改善AZT的脑转运”,J.Med Chem.35,3039-3044;Nargeot,J.Nerbome,J.M.Engels,J.和Leser,H.A.(1983)Natl.Acad.Sci.U.S.A.80,2395-2399;Nelson,K.A.,Bentrude,W.G.Stser,W.N.和Hutchinson,J.P.(1987)“核苷环3′,5′单磷酸的磷酸环的位置扭曲平衡问题.胸苷苯基环3′,5′-单磷酸的非对映异构体的1H NMR和X射线结晶学研究”,J.Am.Chem.Soc.109,4058-4064;Nerbonne.J.M.,Richard,S.,Nargeot,J.和Lester,H.A.(1984)“在环AMP和环GMP浓度方面新的光活化环核苷酸产生细胞内跳越”,Nature 301,74-76;Neumann,J.M.,Herve,M.,Debouzy,J.C.,Guerra,F.I.,Gouyette,C.,Dupraz,B.和Huyny-Dinh,T.(1989)“胸苷的葡糖基磷脂合成及用NMR进行其跨膜运输的研究”,J.Am.Chem.Soc.111,4270-4277;Ohno,R.,Tatsumi,N.,Hirano,M.,Imai,K.Mizoguchi,H.,Nakamura,T.,Kosaka,M.,Takatuski,K.,Yajnaya,T.,Toyarna K.,Yoshida,T.,Masaoka,T.,Hashimoto,S.,Ohshima,T.,Kimura,I.,Ywnada,K.和Kimura,J.(1991)“口服1-β-D-阿糖基铀酰基胞嘧啶-5′-硬脂基磷酸治疗脊髓发育不良综合征”,Oncology 48,451-455。Palomino,E.,Kessle,D.和Horwitz,J.P.(1989)“用于2’,3’二脱氧核苷向脑的持续转运的二氢吡啶载体系统”,J.Med Chem.32,22-625;Perkins,R.M.,Barney,S.Wittrock,R.,Clark,P.H.,Levin,R.Lambert,D.M.,Peneway,S.R.,Serafinowska,H.T.,Bailey,S.M.,Jackson,S.,Hamden,M.R.Ashton,R.,Sutton,D.,Harvey,J.J.和Brown,A.G.(1993)“BRL47923及其口服前药SB203657A抗小鼠的rauscher鼠白血病病毒感染的活性”,Antiviral Res.20(Suppl.I).84;Piantadosi,C.,Marasco,C.J.,Jr.,Norris-Natschke,S.L.,Meyer,K.L.,Gumus,F.,Surles,J.R.,Ishaq,K.S.,Kucera,L.S.lyer,N.,Wallen,C.A.,Piantadosi,S.和Modest,E.J.(1991)“新的醚脂核苷轭合物的合成及抗HIV-1活性的评价”,J.Med Chem.34,1408-1414;Pompon,A.,Lefebvre,I.,Imbach,J.L.,Kahn,S.和Farquhar,D.(1994).“在细胞提取物和组织培养基中叠氮基胸苷-5′-单磷酸的单和双(新戊酰氧基甲基)酯的分解路径;闭合线路ISRP-清洁HPLC技术的应用”,Antiviral Chem Chemother.5,91-98;Postemark,T.(1974)“环AMP和环GMP”,Annu.Rev.Pharmacol.14,23-33;Prisbe,E.J.,Martin,J.C.M.,McGhee,D.P.C.,Barker,M.F.,Smee,D.F.Duke,A.E.,Matthews,T.R.和Verheyden,J.P.J.(1986)“9-[(1,3-二羟基-2-丙氧基)甲基]鸟嘌呤的磷酸和膦酸衍生物的合成及抗疱疹病毒活性”,J.Med.Chem.29,671-675;Pucch,F.,Gosselin,G.,Lefebvre,I.,Pompon,a.,Aubertin,A.M.Dim,和Imbach,J.L.(1993)“通过还原酶介导的活化方法进行核苷单磷酸的细胞内转运”,Antivral Res.22,155-174;Pugaeva,V.P..Klochkeva,S.I.,Mashbits,F.D.和Eizengart,R.S.(1969).“在工业环境中环硫乙烷的毒性评价和健康标准等级”,Gig.Trf.Prof.Zabol.14,4748(Chem.Abstr.72,212);Robins,R.K.(1984)“核苷酸类似物作为逆转录病毒和肿瘤抑制剂的潜力”,Pharm.Res.11-18;Rosowsky,A.,Kim.S.H.,Ross和J.Wick,M.M.(1982)“1-β-D-呋喃阿糖基胞嘧啶的亲脂性5’(烷基磷酸)酯及其N4-酰基和2.2’-脱水-3’O-酰基衍生物作为潜在的前药”,J.Med Chem.25,171-178;Ross,W.(1961)“逐步加样设备对带有碱性侧链的芳香氮芥在葡萄糖预处理后敏感性的增加”,Biochem.Pharm.8,235-240;Ryu,E.K.,Ross,R.J.Matsushita,T.,MacCoss,M.,Hong,C.I.和West,C.R.(1982).“磷脂核苷轭合物。3.对1-β-D-呋喃阿糖基胞嘧啶5’二磷酸[-],2-二酰基甘油的合成和初步生物评价”,J.Med Chem.25,13221329;Saffhill,R.和Huine,W.J.(1986)“不同来源的血清对5-碘脱氧尿苷和5-溴乙氧基尿苷的降解以及用这些化合物掺入DNA的结果”,Chem.Biol.Interact.57,347-355;Saneyoshi,M.,Morozumi,M.,Kodama,K.,Machida,J.,Kuninaka,A.和Yoshino,H.(1980)“合成核苷和核苷酸,XVI.一系列1-β-D-呋喃阿糖基胞嘧啶5’-烷基或芳基磷酸酯的合成和生物评价”,Chem Pharm.Bull.28,2915-2923;Sastry,J.K.,Nehete,P.N.,Khan,S.,Nowak,B.J.,Plunkett,W.,Arlinghaus,R.B.和Farquhar,D.(1992)“膜透过性二脱氧尿苷5’-单磷酸类似物抑制人免疫缺陷病毒感染”,Mol.Pharmacol.41,441-445;Shaw,J.P.,Jones,R.J.Arimilli,M.N.,Louie,M.S.,Lee,W.A.和Cundy,K.C.(1994)“得自PMEA前药的PMEA在雄性Sprague-Dawley大鼠中的口服生物利用度”,9th Annual AIPS Meeting,San Diego,CA(文摘)。Shuto,S.,Ueda,S.,Imamura,S.,Fukukawa,K.Matsuda,A.和Ueda,T.(1987)“用酶两相反应容易地一步合成5’磷脂酰基核苷”,Tetrahedron Lett.28,199-202;Shuto,S.Itoh,H.,Ueda,S.,Imamura,S.,Kukukawa,K.,Tsujino,M.,Matsuda,A.和Ueda,T.(1988)Pharm.Bull.36,209-217。有利的磷酸酯前药类的实例是S-酰基-2-硫代乙基类,也称为“SATE”。
II.联合和交替治疗已认识到在长时间用抗病毒剂治疗可以出现HIV和HBV的抗药变体。抗药性最常通过编码用于病毒复制的酶的基因的突变产生,并在HIV的情况下,最普遍的是逆转录酶,蛋白酶或DNA聚合酶,而对于HBV,是DNA聚合酶。最近,已表明通过与主药引起不同突变的第二种,也许第三种抗病毒化合物联合或交替使用该化合物,药物抗HIV感染的效果可以延长、增加或保持。或者,通过此联合或交替治疗,该药物的药代动力学、生物分布或其它参数可以改变。总之,联合治疗一般较交替治疗更被优选,这是因为其对病毒引起多重刺激应力。
在一个实施方案中,治疗HIV用的第二种抗病毒剂可以是逆转录酶抑制剂(一种“RTI”),其可以是合成的核苷(一种“NRTI”)或非核苷化合物(一种“NNRTI”)。在一个实施方案中,对于HIV,第二种(或第三种)抗病毒剂可以是蛋白酶抑制剂。在另一个实施方案中,第二种(或第三种)可以是焦磷酸酯类似物或融合结合抑制剂。一些抗病毒化合物体外和体内的抗药性数据见Schinazi等,与抗药性有关的逆转录病毒基因突变,International Antiviral News,1997。
用于联合或交替治疗HBV的优选化合物包括3TC,FTC,L-FMAU,干扰素,β-D-二氧杂环戊烷基-鸟嘌呤(DXG),β-D-二氧杂环戊烷基2,6-二氨基嘌呤(DAPD)和β-D-二氧杂环戊烷基-6-氯嘌呤(ACP),泛昔洛韦,喷昔洛韦,BMS-200475,bis pom PMEA(adefovir,dipivoxil);lobucavir,更昔洛韦及利巴韦林。
可以与本文中公开的化合物联合或交替治疗的抗病毒剂的优选实例包括顺-2-羟甲基-5-(5-氟胞嘧啶-1-基)-1,3-硫杂环戊烷(FTC);2-羟甲基-5-(胞嘧啶-1-基)-1,3-氧杂硫杂环戊烷(3TC)的(-)-对映异构体;卡波佛,阿昔洛韦,磷卡萘替,干扰素,AZT,DDI,DDC,D4T,CS-87(3’-叠氮基-2’,3’-二脱氧-尿苷)和β-D-二氧杂环戊烷核苷如β-D-二氧杂环戊烷基-鸟嘌呤(DXG),β-D-二氧杂环戊烷基-2,6-二氨基嘌呤(DAPD)和β-D-二氧杂环戊烷基-6-氯嘌呤(ACP),MKC-442(6-苄基-1-(乙氧基甲基)-5-异丙基尿嘧啶。
优选的蛋白酶抑制剂包括crixivan(Merck),nelfinavir(Agouron),ritonavir(Abbott),沙奎那韦(Roche),DMP-266(Sustiva)和DMP-450(DuPont Merck)。
可以与任何公开的核苷联合或交替给药的化合物的更综合的列表包括(1S,4R)-4-[2-氨基-6-环丙基氨基)-9H-嘌呤-9-基]-2-环戊烯-1-甲醇琥珀酸酯(“1592”,一种卡波佛类似物;GlaxoWellcome);3TC(-)-B-L-2’,3’-二脱氧-3’-硫杂胞苷(GlaxoWellcome);a-APA R18893a-硝基-苯氨基-苯基乙酰胺;A-77003;C2对称的蛋白酶抑制剂(Abbott);A-75925C2对称蛋白酶抑制剂(Abbott);AAP-BHAP双杂芳基哌嗪类似物(Upjohn);ABT-538C2对称蛋白酶抑制剂(Abbott);AzddU3’-叠氮基-2’,3’-二脱氧尿苷;AZT3’-叠氮基-3’-脱氧胸苷(GlaxoWellcome);AZT-p-ddI3’-叠氮基-3’-脱氧胸苷基-(5’,5’)-2’,3’-二脱氧次黄嘌呤核苷酸(Ivax);BHAP双杂芳基哌嗪;BILA 1906N-{1S-[[[3-[2S-{(1,1-二甲基乙基)氨基]羰基}-4R-]3-吡啶基甲基)硫代]-1-哌啶基]-2R-羟基-1S(苯基甲基)丙基]氨基]羰基]-2-甲基丙基}-2-喹啉甲酰胺(Bio Mega/Boehringer-Ingelheim);BILA 2185N-(1,1-二甲基乙基)-1-[2S-[[2-2,6-二甲基苯氧基)-1-氧代乙基)氨基]-2R-羟基-4-苯基丁基]-4R-吡啶基硫代)-2-哌啶甲酰胺(BioMega/Boehringer-Ingelheim);BM+51.0836噻唑并-异二氢吲哚酮衍生物;BMS 186,318氨基二醇衍生物HIV-1蛋白酶抑制剂(Bristol-Myers-Squibb);d4API9-[2,5-二氢-5-(磷酰基甲氧基)-2-呋喃基]腺嘌呤(Gilead);d4C2’,3’-二脱氢-2’,3’-二脱氧胞苷;d4T2’,3’-二脱氢-3’-脱氧胸苷(Bristol-Myers-Squibb);ddC;2’,3’-二脱氧胞苷(Roche);ddI2’,3’-二脱氧肌苷(Bristol-Myers-Squibb);DMP-2661,4-二氢-2H-3,1-苯并嗪-2-酮;DMP-450{[4R-(4-a,5-a,6-b,7-b)]-六氢-5,6-双(羟基)-1,3-双(3-氨基)苯基]甲基)-4,7-双(苯基甲基)-2H-1,3-二氮杂环庚三烯-2-酮}-双甲磺酸酯(Avid);DXG(-)-β-D-二氧杂环戊烷鸟苷(Triangle);EBU-dM5-乙基-1-乙氧基甲基-6-(3,5-二甲基苄基)尿嘧啶;E-EBU5-乙基-1-乙氧基甲基-6-苄基尿嘧啶;DS硫酸葡聚糖;E-EPSeU1-(乙氧基甲基)-(6-苯基氢硒基)-5-乙基尿嘧啶;E-EPU1-(乙氧基甲基)-(6-苯硫基)-5-乙基尿嘧啶;FTCβ-2’,3’-二脱氧-5-氟-3’-硫杂胞苷(Triangle);HBY097S-4-异丙氧基羰基-6-甲氧基-3-(甲硫基-甲基)-3,4-二氢喹喔啉-2(1H)-硫酮;HEPT1-[(2-羟基乙氧基)甲基]-6-(苯硫基)胸腺嘧啶;HIV-1人类免疫缺陷病毒1型;JM27631,1’-(1,3-亚丙基)-双-1,4,8,11-四氮杂环十四烷(JohnsonMatthey);JM31001,1’-[1,4-亚苯基双-(亚甲基)]双-1,4,8,11-四氮杂环十四烷(Johnson Matthey);KNI-272含(2S,3S)-3-氨基-2-羟基-4-苯基丁酸的三肽;L-697,593;5-乙基-6-甲基-3-(2-苯二酰亚氨基-乙基)吡啶-2(1H)-酮;L-735,524羟基-氨基戊烷甲酰胺HIV-1蛋白酶抑制剂(Merck);L-697,6613-{[(-4,7-二氯-1,3-苯并唑-2-基)甲基]氨基}-5-乙基-6-甲基吡啶-2(1H)-酮;L-FDDC(-)-β-L-5-氟-2’,3’-二脱氧胞苷;L-FDOC(-)-β-L-5-氟-二氧杂环戊烷胞嘧啶;NMC4426-苄基-1-乙氧基甲基-5-异丙基尿嘧啶(I-EBU;Triangle/Mitsubishi);奈韦拉平11-环丙基-5,11-二氢-4-甲基-6H-二吡啶并1[3,2-b2’,3’-e]二氮杂环庚三烯-6-酮(Boehringer-Ingelheim);NSC6484001-苄氧基甲基-5-乙基-6-(α-吡啶硫基)尿嘧啶(E-BPTU);P9941[2-吡啶基乙酰基-IlePheAla-y(CHOH)]2(Dupont Merck);PFA磷酰基甲酸酯(膦甲酸钠;Astra);PMEA9-(2-磷酰基甲氧基乙基)腺嘌呤(Gilead);PMPA(R)-9-(2-磷酰基甲氧基丙基)腺嘌呤(Gilead);Ro 31-8959羟基乙胺衍生物HIV-1蛋白酶抑制剂(Roche);RPI-312肽基蛋白酶抑制剂,1-[(3s)-3-(正-α-苄氧羰基)-1-天冬酰胺酰基)-氨基-2-羟基-4-苯基丁酰基]-正-叔丁基-1-脯氨酸酰胺;27206-氯-3,3-二甲基4-(异丙烯氧羰基)-3,4-二氢-喹喔啉-2(1H)硫酮;SC-52151羟基乙基-脲电子等排物蛋白酶抑制剂(Searle);SC-55389A羟基乙基-脲电子等排物蛋白酶抑制剂(Searle);TIBO R82150(+)-(5S)-4,5,6,7-四氢-5-甲基-6-(3-甲基-2-丁烯基)咪唑并[4,5,1-jk][1,4]-苯并二氮杂环庚三烯-2(1H)-硫酮(Janssen);TIBO 82913(+)-(5S)-4,5,6,7-四氢-9-氯-5-甲基-6-(3-甲基-2-丁烯基)咪唑并[4,5,1jk]-[1,4]苯并-二氮杂环庚三烯-2(1H)-硫酮(Janssen);TSAO-m3T[2′,5’-双-O-(叔丁基二甲基甲硅烷基)-3’-螺-5’-(4’-氨基-1’,2’-氧杂硫羟基(thiole)-2’,2’-二氧化物)]-b-D-呋喃戊糖基-N3-甲基胸腺嘧啶;U901521-[3-[(1-甲基乙基)-氨基]-2-吡啶基]-4-[[5-[(甲基磺酰基)-氨基]-1H-吲哚-2-基]羰基]哌嗪;UC硫代酰基苯胺衍生物(Uniroyal);UC-781=N-[4-氯-3-(3-甲基-2-丁烯氧基)苯基]-2-甲基-3-呋喃硫代甲酰胺;UC-82=N-[4-氯-3-(3-甲基-2-丁烯氧基)苯基]-2-甲基-3-噻酚硫代甲酰胺;VB 11,328羟基乙基-磺酰胺蛋白酶抑制剂(Vertex);VX-478羟基乙基磺酰胺蛋白酶抑制剂(Vertex);XM 323环脲蛋白酶抑制剂(Dupont Merck)。
联合治疗增殖性病症在另一个实施方案中,当用作抗增殖药时,这些化合物可以与增加该治疗效果的另一种化合物联合使用,所谓的另一种化合物包括但不限于抗叶酸药,5-氟嘧啶(包括5-氟尿嘧啶),胞苷类似物如β-L-1,3-二氧杂环戊烷基胞苷或β-L-1,3-二氧杂环戊烷基5-氟胞苷,抗代谢药(包括嘌呤抗代谢药,阿糖孢苷,fudarabine,氟尿苷,6-巯基嘌呤,甲氨蝶呤和6-硫代鸟嘌呤),羟基脲,有丝分裂抑制剂(包括CPT-11,依托泊苷(VP-21),紫杉醇和长春花属生物碱如长春新碱和长春花碱,烷化剂(包括但不限于白消安,苯丁酸氮芥,环磷酰胺,异环磷酰胺,氮芥,美法仑和噻替派),非经典的烷化剂,含铂的化合物,博莱霉素,抗肿瘤抗生素,蒽环类抗生素如阿霉素和dannomycin,蒽二酮类,拓扑异构酶II抑制剂,激素制剂(包括但不限于皮质类固醇(地塞米松,泼尼松和甲基泼尼松),雄激素如氟甲睾酮和甲基睾酮,雌激素如己烯雌酚,抗雌激素如他莫昔芬,LHRH类似物如利普胺,抗雄激素如氟他胺,氨鲁米特,醋酸甲地孕酮和甲羟孕酮),天冬酰胺酶,卡莫司汀,罗氮芥,六甲基-三聚氰胺,达卡巴嗪,米托坦,链佐星,顺铂,卡铂,左旋咪唑和亚叶酸。本发明的化合物还可与酶治疗剂及免疫系统调节剂如干扰素、白细胞介素、肿瘤坏死因子、巨噬细胞集落刺激因子和集落刺激因子联合使用。
III.制备活性化合物的方法在本发明的一个实施方案中,提供了将氟引入新核苷类似物的糖部分上的非对映异构选择反应。此合成可以用来制备嘌呤和嘧啶衍生物。合成路线中的关键步骤是手性的、非碳水化合物糖环前体(4S)-5-(被保护的-氧基)-戊-4-交酯,例如,(4S)-5-(叔丁基二苯基甲硅氧烷基)戊-4-甲酯4使用亲电性的氟来源,包括但不限于,N-氟-(双)苯磺酰亚胺5。此类相对较新的N-氟磺酰亚胺试剂由Barnette在1984年首先开放,从此几经精制并作为便利和高反应性的亲电性氟(Barnette,W.E.J.Am.Chem.Soc.1984,106,452.;Davis,F.A.;Han;W.,Murphy,C.K.J.Org.Chem.1995,60,4730;Snieckus,V.;Beaulieu,F.;Mohri,K.;Han,W.;Murphy,C.K.;Davis,F.A.TetrahedronLett.1994,35(21),3465)。这些试剂最常用来将氟转运给亲核试剂如烯醇和金属化的芳香族化合物(Davis,F.A.;Han;W.,Murphy,C.K.J.Org.Chem.1995,60,4730)。具体地讲,N-氟-(双)苯磺酰亚胺(NFSI)是在空气中稳定的、易于处理的固体,对将甲硅烷基保护的内酯4的烯醇的立体选择性氟化有足够的立体位阻。作为此方法的非限制性实例,氟化内酯6的合成及其作为合成一些新的α-2′-氟代核苷中的普通中间体详述如下。根据本说明书,本领域普通技术人员可以按照需要常规修改此方法以完成要求的目的并制备需要的化合物。
可以用任何来源的亲电性氟将前体(4S)-5-(被保护的-氧基)-戊-4-交酯,例如(4S)-5-(叔丁基二苯基甲硅烷氧基)-戊-4-交酯氟化。亲电性氟的其它来源包括N-氟代氨基磺酸类(Differding等,Tet.Lett.Vol.29,No.47 pp.6087-6090(1988);Chemical Reviews,1992,Vol 92,No.4(517)),N-氟-O-苯二磺酰亚胺(Tet.Lett.Vol.35,3456-3468页(1994),Tet Lett.Vol 35.No.20,3263-3266页(1994));J.Org.Chem.1995,60,4730-4737),1-氟乙烯及合成的同等物(Matthews,Tet.Lett.Vol.35,No.7,1027-1030页(1994);Allied Signal,Inc.,Buffalo Research Laboratory,Buffalo,New York销售的Accufluor氟化试剂(NFTh(1-氟-4-羟基-1,4-二偶氮基-双环[2.2.2]辛烷双(四氟硼酸盐)),NFPy(N-氟吡啶吡啶七氟二硼酸盐)和NFSi(N-氟苯磺酰亚胺);Aldrich Chemical Company,Inc.销售的亲电性氟化试剂,包括N-氟吡啶盐((1-氟-2,4,6-三甲基吡啶三氟甲磺酸盐,3,5-二氯-1-氟吡啶三氟甲磺酸盐,1-氟吡啶三氟甲磺酸盐,1-氟吡啶四氟硼酸盐和1-氟吡啶七氟二硼酸盐),还可参见J.Am.Chem.Soc.,Vol 112,No.23 1990);N-氟磺酰亚胺和酰胺类(N-氟N-甲基-对-甲苯磺酰胺,N-氟-N-丙基-对-甲苯磺酰胺和N-氟苯磺酰亚胺);N-氟-喹宁丁氟化物(J.Chem.Soc.Perkin Trans I 1988,2805-2811);全氟-2,3,4,5-四氢吡啶和全氟-(1-甲基吡咯烷),Banks,Cheng和Haszeldine,杂环的多氟代-化合物部分II(1964);1-氟-2-吡啶酮,J.Org.Chem.,1983 48,761-762;带有氟原子的四元实体中心(J.Chem.Soc.Perkin.Trans.221-227页(1992));N-氟-2,4,6-吡啶三氟甲磺酸盐,Shimizu,Tetrahedron Vol 50(2),487-495页(1994);N-氟吡啶吡啶七氟二硼酸盐,J.Org.Chem.1991,56,5962-5964,Umemoto等,Bull.Chem.Soc.Jpn.,64 1081-1092(1991);N-氟代全氟烷基磺酰亚胺类,J.Am.Chem.Soc.,1987,109,7194-7196;Purrington等,Lewis酸介导的芳香族底物的氟化,J.Org.Chem.1991,56,142-145。
此方法的显著优点是能通过分别适当选择L-或D-谷氨酸起始物分别使用核苷的“天然”(1a)D或“非天然”(1b)L对映体。

通过方案1所示的路线由L-谷氨酸合成内酯4,如Ravid等所述(Tetrahedron 1978,34,1449)和Taniguchi等所述(Tetrahedron 1974,30,3547)。
方案1 已知内酯4的烯醇,在-78℃用LiHMDS在THF中制备,是稳定的.用此烯醇已进行了若干合成,包括以高收率加入亲电子试剂如二苯基二硒化物,二苯基二硫化物和烷基卤化物(Liotta,D.C.;Wilson,L.J.Tetrahedron Lett.1990,31(13),1815;Chu,C.K.;Babu,J.R.;Beach,J.W.;Ahn.S.K.;Huang,H.;Jeong,L.S.;Lee,.S.J.J.Org.Chem.,1990,55,1418;Kawakami,H.;Ebata,T.;Koseki,K.;Matsushita,H.;Naoi,Y.;ltoh,K.Chem.Lett.1990,1459)。但是,向4的烯醇中加入5的THF溶液得到的所需单氟代产物6的收率极差。形成了一些副产物包括所推测的二氟代内酯,其与其它杂质是不可分离的。为此,改变试剂的加入顺序,将内酯4和NFSi 5一起溶解于THF中并冷却至-78℃。缓慢加入LiHMDS,得到除了小量的未反应起始物(反应式1)以外的唯一产物。
反应式1 经硅胶柱色谱纯化和结晶后可以获得收率50-70%的氟内酯6。此反应得到6的单一非对映异构体,推测是由于立体位阻TBDPS基团和体积较大的氟化试剂5的相互作用。通过比较以前公开的、其对映异构体20的NMR数据和X射线晶体结构检测,确定氟代内酯6为α或“向下”的氟异构体。
如方案2所示将内酯6转变为端基异构体乙酸酯8。应注意邻位羟基内醚7只以β端基异构体的形式存在,而乙酸酯8没有表现出NMR可检测的α端基异构体,如Niihata等报告(Bull.Chem.Soc.Jpn.1995,68,1509)。
方案2 通过标准Vorbruggen方法偶联8与甲硅烷基化的嘧啶碱基(Tetrahedron Lett.1978,15,1339),用TMS三氟甲磺酸盐作为Lewis酸。或者,可以使用任何其它已知可以用来缩合碱基和碳水化合物以形成核苷的Lewis酸,包括氯化锡、氯化钛和其它锡或钛化合物.一些碱基以柱色谱纯化后72-100%的高收率成功地偶联(反应式2,表1)。
反应式2
表1.用8将取代的嘧啶类糖基化

质子NMR表明在所有情况下β和α核苷端基异构体的比率约为2∶1。甲硅烷基保护的核苷不能通过柱色谱拆分为分离的端基异构体.但是,用NH4F在甲醇中将5′-氧原子脱保护后(反应式3),可以容易地将α和β端基异构体分离,并总结于表2。
反应式3

表2.核苷的脱保护

α或β游离核苷的分类基于端基异构质子的化学位移(表3)和如通过薄层色谱观察到的核苷的极性。观察所有的游离核苷的α/β对的趋势,其中极性较小的化合物的端基质子的化学位移显然较极性较大的化合物在较高磁场。
表3.端基异构质子化学位移(ppm)

通过比较18a(Niihata,S.;Ebata,T.;Kawakami,H.;Matsushida,H.Bull.Chem.Soc.Jpn.1995,68,1509)和18b(Aerschot,A.V.;Herdewijn,P.;Balzarini,J.;Pauwels,R.;De Clercq,E.J.MedChem.1989,32,1743),用以前公开的波谱数据并通过14b和15b的X射线结晶结构测定,来证明端基异构质子化学位移与绝对结构的关系.此发现与核苷的通常趋势相反,其中在此二者中α端基异构体一般极性较小。大概在“向下”2′-氟化核苷中,C-F键的强偶极对抗β异构体中的C-N端基异构键偶极并降低整个分子的偶极性。相反,α端基异构体的几何构型使分子偶极通过加入C-F和C-N键偶极而加强。因此,对于α-2′-氟代核苷的情况,α端基异构体比β端基异构体更具极性。
α和β端基异构体17a和17b不能通过柱色谱分离,因为游离的氨基使核苷在硅胶上走的太快。因此,需要用N4乙酰基胞嘧啶来制备11并再拆分16a和16b。用氨的饱和甲醇溶液定量除去N4-乙酰基以便得到分离的17a和17b。当用5-氟胞嘧啶作为碱(化合物10)时,端基异构体15a和15b容易分离,且没有观察到在硅胶上形成斑点。
在表2列出的十种核苷中,似乎只有17b(Martin,J.A.;Bushnell,D.I.;Duncan,I.B.;Dunsdon,S.J.;Hall,M.J.;Machin,P.J.;Merrett,J.H.;Parkes,K.E.B.;Roberts,N.A.;Thomas,G.J.;Galpin,S.A.;Kinchington,D.J.Med.Chem.1990,33(8),2137;Zenchoff,G.B.;Sun,R;Okabe,M.J.Org.Chem.1991,56,4392),18a(Niihata.S.;Ebata,T.;Kawakami,H.;Matsushida,H.Bull.Chem.Soc.Jpn.1995,68,1509)和18b(Aerschot,A.V.;Herdewijn,P.;Balzarini,J.;Pauwels,R.;De Clercq,E.J.Med Chem.1989,32,1743)以前已合成。它们如同一些已知的2′-β或“向上”氟代核苷类似物14一样已由天然前体(即它们是β-D构型)合成。在本发明前的文献中似乎没有确定过β-L-2′-氟代呋喃核糖基核苷。
一般这些分子通过亲核攻击脱水核苷引入氟(Mengel,R.;Guschlbauer,W.Angew.Chem.,Int.Ed.Engl.1978,17,525)或通过将用三氟化二乙基氨基硫(DAST)立体化学固定的羟基置换或转化来引入氟(Herdewijn,P.;Aerschot,A.V.;Kerremans,L.NucleosidesNucleotides,1989,8(1),65)。本发明方法的优点之一是对于引入氟来说不需要羟基。因此,该方法不仅仅限于天然核苷或糖作为起始物,并使2′-氟代核苷的非天然对映异构体的使用变得简单易行。
因此,用此合成路线用D-谷氨酸19作为起始物(方案3)合成了若干非天然核苷。糖环前体20以上述方法氟化并与不同的甲硅烷基化的碱基偶联(表4)。
方案3
表4.非天然核苷类似物的收率

方案4

如方案4所示29的成功合成,利用了两类核苷。第一类是称为2’,3’-二脱氧-2’,3’-二脱氢-2-2’-氟-核苷,30,而第二类是核苷的“向上”-氟代或阿糖基类似物,31,如下列方案5所述。
方案5

由普通的中间体32可以合成化合物30和31,其可以通过氟代烯糖29的硒化得到。
方案6 通过用阮内镍还原可以将硒化的化合物32转变为“向上”氟代类似物31。或者,用NaIO4或过氧化氢将硒化物32氧化,随后通过此硒化物中间体的热消除反应得到30.对未氟化系统的这些转化已有详细报道(Wurster,J.A.;Ph.D.Thesis,Emory University,1995;Wilson,L.J.;Ph.D.Thesis,Emory University,1992)。
此外,核苷30和31的对映异构体的合成也是可能的,这是因为它们得自29的对映异构体。
制备30表示的化合物2’,3’-二脱氧-2’,3’-二脱氢-2’-氟-核苷的另一种路线见方案7。此路线提供了用大范围的甲硅烷基化的碱基来简单地、直接获得此类化合物的方法并已成功地完成。
方案7 由6形成甲硅烷基化的烯酮缩醛可立体选择性地加入苯基溴化硒以产生单个异构体化合物36。此化合物的还原和酰化反应进行得顺利且两步收率高,得到37。苯基氢硒基的α取向使随后的糖基化步骤中是立体选择性的,并以良好的收率完成了核苷38的β异构体的合成。化合物38可以用过氧化氢在二氯甲烷中氧化得到消除反应的产物39,但是以我们的经验,只需要将38吸附到硅胶上并让其停留若干小时,此后可以从活塞柱中以近乎定量的收率洗脱。如前所述除去39的保护基得到终产物30并得到收率良好(81%)的核苷产物。
方案8 用于合成30和31的一系列化学转变同样可用于合成34和35.
实验部分一般方法
N-氟-(双)苯磺酰亚胺5得自Allied Signal,并不经纯化直接使用。所有的其它试剂得自Aldrich Chemical Company并不经纯化直接使用。用Thomas Hoover毛细管熔点仪检测熔点并且没有校准。用Nicolet Impact 400 FT-IR光谱仪获得IR谱。1H NMR和1C NMR谱在NT-360或Varian 400MHz色谱仪上记录。TLC板为硅胶60 F254(0.25mm厚),购自EM Science。闪式色谱在购自EM Science的硅胶60(230-400目,ASTM)上进行。所有的反应在火焰干燥的玻璃反应器中在干燥的氩气氛下进行。通过旋转蒸发除去溶剂。由Atlantic Microlab,Inc,Atlanta,GA.进行元素分析。
(2S,4R)-5-(叔丁基二苯基甲硅烷基氧)-2-氟代戊-4-交酯(20)向反应瓶中加入存在于250mL无水THF中的(4R)-5-(叔丁基二苯基甲硅烷氧基)-戊-4-交酯(20.0g,0.0564mol,1.0eq.)和N-氟-(双)苯磺酰亚胺(NFSi)5(17.80g,0.0564mol,1.0eq.)。将此溶液冷却至-78℃,并在1小时内滴加68.0mL(0.0680mol,1.2eq.)LiHMDS的1.0M THF溶液。再将其在-78℃下搅拌2小时,然后升温至室温并再搅拌1小时。完成反应后,用10mL饱和氯化铵溶液停止该反应。用3个体积的乙醚稀释此混合物并倒入等体积的饱和碳酸氢钠中。用饱和碳酸氢钠再次洗涤有机层并用饱和氯化钠洗涤一次。用硫酸镁干燥此有机层,过滤并浓缩得到黄色油状物。将此油状物通过硅胶柱色谱用30%乙醚/70%己烷溶剂系统纯化。再将所得白色固体用热己烷结晶,得到13.04g(收率62%)的透明结晶固体Rf(30%乙醚/70%己烷)=0.26;mp115-116℃。
1H NMR(360MHz,CDCl3)d 7.63-7.60(m,4H),7.45-7.35(m,6H),5.49(dt,J=52.9和7.9Hz,1H),4.69(d,J=9.36Hz,1H),3.91(d,J=11.5Hz,1H),3.60(d,J=11.5Hz,1H),2.72-2.40(m,2H),1.05(s,9H);13C NMR(100MHz,CDCl3)d 172.1(d,J=20.5Hz),135.5,135.4,132.3,131.7,130.1,128.0,127.9,85.6(d,J=186.6Hz),77.3(d,J=5.3Hz),65.0,31.8(d,J=20.5Hz),26.7,19.1;IR(薄膜)2958,1796,1252,1192,1111,1016cm-1;HRMS[M+Li]C21H25O3FSiLi理论值379.1717。实测值379.1713。CHAFFS元素分析理论值C,67.71;H,6.76。实测值C,67.72;H,6.78。
5-O-(叔丁基二苯基甲硅烷基)-2,3-二脱氧-2-氟-(L)-赤糖(erythron)-呋喃糖(21)向反应瓶中加入内酯20(12.12g,0.0325mol,1.0eq.)和240mL无水THF。将此溶液冷却至-78℃并在30分钟内滴加65mL(0.065mol,2.0eq.)1.0M DIBALH的己烷溶液。并在-78℃下搅拌3小时,此后缓慢加入2.93mL(0.163mol,5.0eq.)水停止反应。将此反应升温至室温并搅拌1小时,之后在整个烧瓶中形成凝胶状透明固体。将此反应混和物用两个体积的乙醚稀释并倒入到Erlenmeyer烧瓶中等体积的饱和酒石酸钠钾水溶液中。搅拌20分钟直到此乳液被破坏。分离有机层并用250mL乙醚将水层萃取3次。将合并的有机层用硫酸镁干燥,过滤,并浓缩得到淡黄色油状物。将此产物通过硅胶柱色谱纯化,用6∶1己烷/乙酸乙酯溶剂系统洗脱。将所得清澈油状物用沸己烷结晶得到11.98g(收率98%)的白色结晶固体Rf(30%乙醚/70%己烷)=0.33;mp 66-67℃。1H NMR(360MHz,CDCl3)d 7.68-7.66(m,4H),7.55-7.38(m,6H),5.39(t,J=7.6Hz,1H),4.99(dd,J=52.2和4.3Hz,1H),4.52(m,1H),3.88(dd,J=10.8和2.5Hz,1H),3.65(d,J=7.9Hz,1H),3.49(dd,J=7.9和1.8Hz,IM,2.44-2.07(m,2H),1.07(s,9H);13C NMR(100MHz,CDCl3)d 135.7,135.5,132.2,132.1,130.2,130.0,129.8,127.9,127.7,99.8(d,J=31.1Hz),96.6(d,J=178.3Hz),79.4,64.8,29.9(d,J=21.2Hz),26.8,19.2;IR(薄膜)3423,2932,1474,1362,1113cm-1;HRMS理论值[M+Li]C21H27O3FSiLi381.1874.实测值381.1877.元素分析理论值.C21H27O3FSiC,67.35;H,7.27,实测值C,67.42;H,7.31。
1-O-乙酰基-5-O-(叔丁基二苯基甲硅烷基)-2,3-二脱氧-2-氟-(L)-赤糖-呋喃糖(22)向反应瓶中加入乳醇21(8.50g,0.0227mol,1.0eq.)和170mL无水二氯甲烷。然后加入DMAP(0.277g,0.00277mol,0.1eq.)和醋酸酐(13.5mL,0.143mol,6.3eq.)并在室温下搅拌过夜。反应完毕后,将此反应倒入饱和碳酸氢钠溶液中。分离有机层,并用氯仿将水层萃取3次。将合并的有机层用硫酸镁干燥,过滤,并除去溶剂得到淡黄色油状物。将此油状物通过硅胶柱色谱纯化,用8∶1己烷/乙酸乙酯溶剂系统洗脱得到9.85g(99%收率)清澈无色油状物Rf(30%乙醚/70%己烷)=0.44;1H NMR(360MHz,CDCl3)d 7.69-7.67(m,4H),7.43-7.38(m,6H),6.30(d,J=10.4Hz,1H),5.06(d,J=54.9Hz,1H),4.53(m,1H),3.81(dd,J=10.8和4.3Hz,1H),3.72(dd,J=10.8和4.3Hz,1H),2.38-2.12(m,2H),1.89(s,3H),1.07(s,9H);13C NMR(100MHz,CDCl3)d 169.4,135.6,135.5,133.2,133.1,129.8,129.7,127.8,127.7,99.3(d,J=34.1Hz),95.5(d,J=178.2Hz),81.4,65.3,31.6(d,J=20.5Hz),26.8,21.1,19.3;IR(薄膜)3074,2860,1750,1589,1229,1113cm-1;HRMS理论值[M-OCOCH3]C21H26O2FSi357.1686.实测值357.1695.元素分析理论值.C23H29O4FSiC,66.32;H,7.02.实测值C,66.30;H,7.04.
甲硅烷基化碱基与22偶联的代表性方法(L)-5’-O-(叔丁基二苯基甲硅烷基)-2’,3-二脱氧-2’-氟-5-氟胞苷(25)向装备有短颈蒸馏头的烧瓶中,加入5-氟胞嘧啶(2.01g,15.6mmol,5.0eq),35mL 1,1,1,3,3,3-六甲基乙硅氮烷和催化量的(约1mg)(NH4)2SO4。将此白色混悬液加热至沸腾,保持1小时直到该碱被甲硅烷基化而反应溶液变清澈。蒸馏掉过量的HMDS,将油状残余物抽真空1小时以除去最后痕迹量的HMDS。将所得白色固体在氩气氛下溶解于5mL无水1,2-二氯乙烷。向此清澈的溶液中加入乙酸酯22(1.30g,3.12mmol,1.0eq.)在5mL无水1,2-二氯乙烷中的溶液。室温下向其中加入三氟甲磺酸三甲基甲硅烷基酯(3.32mL,17.2mmol,5.5eq.)。通过TLC(10%甲醇/90%二氯甲烷)监控此反应,并且反应4小时时观察到反应彻底。将此反应混和物倒入饱和碳酸氢钠中。然后,分离有机层,并用氯仿将水层萃取3次。将合并的有机层用硫酸镁干燥,过滤并除去溶剂得到白色泡沫。将此化合物通过硅胶柱色谱纯化,用100%二氯甲烷至存在于二氯甲烷中的10%甲醇作为梯度溶剂系统。分离出1.51g该化合物(99%收率),为白色泡沫端基异构体的混合物Rf(100%EtOAc)=0.36;mp 74-80℃。1H NMR(400MHz,CDCl3)d 8.84(bs,1H),8.04(d,J=6.4Hz,0.67H),7.67-7.63(m,4H),7.51-7.39(m,6.33H),6.11(d,J=20Hz,0.33H),5.98(d,J=16.4Hz,0.67H),5.88(bs,1H),5.41(d,J=52.4Hz,0.33H),5.23(dd,J=50.4和4Hz,0.67H),4.56(m,0.33H),4.45(m,0.67H),4.23(dd,J=12.0和1.6Hz.0.67H),3.89(dd,J=11.2和3.2Hz,0.33H),3.74-3.66(m,1H),2.45-1.96(m,2H),1.09(s,6H),1.06(s,3H);13C NMR(100MHz,CDCl3)d 158.6(d,J=14.4Hz),158.4(d,J=14.4Hz),153.9,153.8,136.6(d,J=240.5Hz),136.3(d,J=239.7Hz),135.6,135.56,135.5,135.4,133.1,132.9,132.5,132.4,130.1,130.0,129.9,127.9,127.8,125.8(d,J=33.4Hz),124.6(d,J=32.6Hz),96.5(d,J=182.0Hz),91.7(d,J=185.1),90.7(d,J=35.6Hz),87.7(d,J=15.2Hz),81.5,79.5,64.9,63.0,33.5(d,J=20.5Hz),3 0.6(d,J=20.4Hz),26.9,26.8,19.22,19.18;IR(薄膜)3300,2960,1682,1608,1513,1109cm-1;HRMS理论值[M+Li]C25H29N3O3SiF2Li492.2106.实测值492.2085.元素分析理论值.C25H29N3O3SiF2·1/2 H2OC,60.71;H,6.11;N,8.50.实测值C,60,67;H,6.03;N,8.44。
甲硅烷基-保护的核苷脱保护的典型方法α-和β-(L)-2’,3’-二脱氧-2’-氟-5-氟胞苷(28a和28b)将核苷25(1.098g,2.26mmol,1.0eq.)溶解于15mL甲醇中,向其中加入氟化铵(0.838g,22.6mmol,10.0eq.)。将其剧烈搅拌24小时,之后的TLC(15%乙醇/85%乙酸乙酯)表明该反应完成。将此反应混和物用3体积的乙酸乙酯稀释并通过小(1cm)硅胶塞过滤。将此塞用200mL的15%乙醇/85%乙酸乙酯溶液清洗,并除去溶剂得到白色泡沫。将此混合物通过硅胶柱色谱纯化,用15%乙醇/85%乙酸乙酯溶剂系统洗脱,其也能将α和β端基异构体分离。得到白色泡沫0.190g(0.768mmol,34%收率),而得到白色泡沫形式的β0.290g(1.17mmol,52%收率)(28a)Rf(15%EtOH,85%EtOAc)=0.22;mp 199-203℃(分解).1H NMR(400MHz,CD3OD)d 7.78(d,J=6.8Hz,1H),6.07(d,J=19.2Hz,1H),5.37(d,J=54.0Hz,1H),4.60(m,1H),3.80(dd,J=12.0和3.2Hz,1H),3.56(dd,J=12.4和4.4Hz,1H),2.40-2.00(m,21i);13C NMR(100MHZ,DMSO-d6)d 157.7(d,J=13.6Hz),153.2,135.9(d,J=239.0Hz),126.2(d,J=31.1Hz),92.4(d,J=183.6Hz),86.7(d,J=15.2Hz),79.6,62.7,33.3(d,J=20.5Hz);IR(KBr)3343,3100,1683,1517,1104cm-1;HRMS理论值[M+Li]C9H11N3O3F2Li254.0929.实测值254.0919.元素分析理论值,C9H11N3O3F2·1/2 H2OC,42.19;H,4.72;N,16.40.实测值C,42.44;H,4.56;N,16.56.(28b)Rf(15%EtOH,85%EtOAc)=0.37;mp 182-186℃(分解).1H NMR(400MHz,DMSO-d6)d 8.32(d,J=7.6Hz,1H),7.79(bs,1H),7.53(bs,1H),5.81(d,J=16.8Hz,1H),5.37(t,J=4.8Hz),5.18(dd,J=51.6和3.2Hz,1H),4.32(m,1H),3.88(dd,J=12.0和2.8Hz,1H),3.59(dd,J=12.4和2.4Hz,1H),2.20-1.99(m,2H);13C NMR(100MHz,DMSO-d6)d 157.7(d,J=13.7Hz),153.2,136.1(d,J=237.4Hz),125.3(d,J=33.4Hz),97.3(d,J=176.8Hz),89.9(d,J=35.7Hz),81.6,60.2,30.3(d,J=19.7Hz);IR(KBr)3487,2948,1678,1509,1122cm-1,HRMS理论值[M+Li]C9H11N3O3F2Li254.0929.实测值254.0935.元素分析理论值.C9H11N3O3F2C,43.73;H,4.49;N,17.00.实测值C,43.69;H,4.53;N,16.92。
(D)-5′-O-(叔丁基二苯基甲硅烷基)-2’,3’-二脱氧-2′-氟-5-氟尿苷(9)端基异构体的混合物Rf(1∶1己烷/EtOAc)=0.48;mp65-70℃。1H NMR(400MHz,CDCl3)d 10.0(bm,1H),7.99(d,J=5.6Hz,0.63H),7.65(m,4H),7.42(m,6.37H),6.12(dd,J=18.0和1.6Hz,0.37H),6.00(d,J=16Hz,0.63H),5.37(dd,J=54.6和2.4Hz,0.37H),5.22(dd,J=50.4和4Hz,0.63H),4.57(m,0.37H),4.44(m,0.63H),4.22(dd,J=12.2和2.0Hz,0.63H),3.92(dd,J=11.2和3.2Hz,0.37H),3.70(m,1H),2.22(m,2H),1.09(s,5.67H),1.074(s,3.33H);13C NMR(100MHz,CDCl3)d 157.2(d,J=31.7Hz),157.1(d,J=25.8Hz),149.1,148.8,140.4(d,J=236.6Hz),140.1(d,J=235.2Hz),135.6,135.5,135.4,132.9,132.7,132.4,132.3,130.1,130.0,129.9,127.9,127.8,125.1(d,J=34.9Hz),123.6(d,J=34.1Hz),96.4(d,J=182.0Hz),92.0(d,J=185.9Hz),90.2(d,J=37.2Hz),87.0(d,J=15.2Hz),81.7,79.8,64.8,63.0,33.3(d,J=21.2Hz),31.0(d,J=21.2Hz),26.9,26.8,19.2;IR(薄膜)3185,1722,1117cm-1;HRMS理论值[M+1]C25H29N2O4SiF2487.1866.实测值487.1853.元素分析理论值C25H29N2O4SiF2C,61.71;H,5.80;N,5.76.实测值C,61.72;H,5.86;N,5.72。
(D)-5′-O-(叔丁基二苯基甲硅烷基)-2’,3′-二脱氧-2’-氟-5-氟胞苷(10)
端基异构体的混合物Rf(100%EtOAc)=0.36;mp 75-81℃。1H NMR(400MHz,CDCl3)d 8.50(bm,1H),8.05(d,J=6.0Hz,0.67H),7.67-7.63(m,4H),7.51-7.39(m,6.33H),6.10(d,J=20Hz,0.33H),5.98(d,J=16.4Hz,0.67H),5.62(bm,1H),5.41(d,J=52.4Hz,0.33H),5.23(dd,J=51.6和4Hz,0.67H),4.57(m,0.33H),4.48(m,0.67H),4.24(dd,J=12.4和2.0Hz,0.67H),3.89(dd,J=11.2和3.2Hz,0.33H),3.74-3.66(m,1H),2.39-1.95(m,2H),1.09(s,6H),1.06(s,3H);13C NMR(100MHz,CDCl3)d 158.4(d,J=14.4Hz),158.3(d,J=15.2Hz),153.8,153.7,136.5(d,J=240.5Hz),136.2(d,J=241.8Hz),135.59,135.56,135.4,133.0,132.9,132.5,132.4,130.1,130.0,129.9,127.9,127.8,124.8(d,J=31.9Hz),96.5(d,J=181.3Hz),91.8(d,J=175.2Hz),90.7(d,J=24.9Hz),87.8(d,J=21.2Hz),81.6,79.6,64.9,63.0,33.5(d,J=19.7Hz),30.6(d,J=21.3Hz),26.9,26.8,19.2,14.2;IR(薄膜)3304,2959,1680,1621,1508,1105cm-1;HRMS理论值[M+Li]C25H29N3O3SiF2Li492.2106.实测值492.2110.元素分析理论值.C25H29N3O3SiF2C,61.84;H,6.02;N,8.65.实测值C,61.86;H,6.09;N,8.55。
(D)-N4-乙酰基-5’-O-(叔丁基二苯基甲硅烷基)-2′,3′-二脱氧-2’-氟-胞苷(11)端基异构体的混合物Rf(15%EtOH,85%EtOAc)=0.75;mp 81-86℃。1H NMR(400MHz,CDCl3)d 10.58(bs,1H),8.40(d,J=7.2Hz,0.61H),7.86(d,J 7.6 Hz,0.38H),7.67-7.65(m,4H),7.51-7.41(m,6H),7.27(d,J=8.4Hz,1H),6.12(t,J 15.8Hz,1H),5.51(d,J=52.6Hz,0.38H),5.21(dd,J=50.8和2.9Hz,0.61H),4.62(m,0.38H),4.54(m,0.61H),4.28(d,J=11.5Hz,0.61H),3.95(dd,J=11.9和3.2Hz,0.38H),3.79-3.70(m,1H),2.46-2.04(m,5H),1.12(s,5.49H),1.07(s,3.42H);13C NMR(100MHz,CDCl3)d 171.5,171.3,163.4,154.9,144.9,144.1,135.5,135.4,133.0,132.8,132.5,132.2,130.2,130.1,129.9,128.0,127.8,96.8(d,J=91.1Hz),96.2(d,J=147.9Hz),92.3,91.2(d,J 35.7Hz),90.5,88.5(d,J=15.9Hz),81.9,80.1,64.7,62.9,33.5(d,J=20.5Hz),30.5(d,J 20.5 I4z),26.9,26.8,24.9,24.8,19.3,19.2;IR(薄膜)3237,2932,1722,1671,1559,1493,1107cm-1;HRMS理论值[M+Li]C27H32N3O4FSiLi516.2306.实测值516.2310.元素分析理论值.C27H32N3O4FSiC,63.63;H,6.33;N,8.24.实测值C,63.45;H,6.42;N,8.09。
(D)-5′-O-(叔丁基二苯基甲硅烷基)-2′,3′-二脱氧-2′-氟-胞苷(12)端基异构体的混合物Rf(15%EtOH,85%EtOAc)=0.50;mp98-104℃.1H NMR(360MHz,CDCl3)d 7.97(d,J=7.2Hz,0.64H,H-6),7.65(m,4H),7.47-7.38(m,6.36H),6.15(d,J=20.5Hz,0.36H),6.05(d,J=16.6Hz,0.64H),5.83(d,J=7.9Hz,0.36H),5.46(d,J=7.2Hz,0.64H),5.30-5.10(m,1H),4.55(m,0.36H),4.44(m,0.64H),4.22(d,J=9.7Hz,0.64H),3.88-3.63(m,1.36H),2.38-1.95(m,2H),1.09(s,5.76H),1.06(s,3.24H);13C NMR(100MHz,CDCl3)d 166.1,155.8,141.5,140.5,135.6,135.4,133.1,132.9,132.8,132.4,130.1,130.0,129.8,128.0,127.9,127.8,96.7(d,J=181.3Hz),93.4(d,J=140.3Hz),94.5,90.8(d,J=35.6Hz),90.8,87.8(d,J=15.9Hz),81.2,79.4,65.0,63.2,33.7(d,J=21.2Hz),30.8(d,J=20.4Hz),26.9,26.8,19.3,19.2IR(薄膜)3470,3339,1644,1487,1113cm-1;HRMS理论值[M+Li]C25H30N3O3FSiLi474.2201.实测值474.2198.元素分析理论值.C25H30N3O3FSiC,64.21;H,6.47;N,8.99.实测值C,64.04;H,6.58;N,8.76。
α-(D)-2’,3’-二脱氧-2’-氟-5-氟尿苷(14a)Rf(100%EtOAc)=0.38;mp153-155℃。1H NMR(360MHz,CD3OD)d 7.80(d,J=6.8Hz,1H),6.11(d,J=18.7Hz,1H),5.35(d,J=52.9,1H),4.59(m,1H),3.81(d,J=11.9Hz,1H),3.57(dd,J=12.6和3.6Hz,1H),2.36-2.15(m,2H);13C NMR(100MHz,CD3OD)d 159.6(d,J=25.8Hz),150.7,141.5(d,J=230.6Hz),127.0(d,J=34.9Hz),93.9(d,J=185.1Hz),88.5(d,J=15.1Hz),81.8,64.3,34.3(d,J=20.5Hz);IR(KBr)3421,3081,1685,1478,1111cm-1;HRMS理论值[M+Li]C9H10N2O4F2Li255,0769,实测值255.0778.元素分析理论值C9H10N2O4F2C,43.56;H,4.06;N,11.29.实测值C,43.59;H,4.11;N,11.17。
β-(D)-2’,3′-二脱氧-2’-氟-5-氟尿苷(14b)Rf(100%EtOAc)0.54;mp 152-154℃。1H NMR(360MHz,CD3OD)d 8.41(d,J=7.2Hz,1H),5.89(d,J 16.6Hz,1H),5.21(dd,J=51.5和3.6Hz,1H),4.41(m,1H),4.00(d,J=12.6Hz,1H),3.67(d,J=12.2Hz,1H),2.25-2.09(m,2H);13C NMR(100MHz,CD3OD)d 159.7(d,J=25.8Hz),150.7,141.8(d,J=229.8Hz),126.3(d,J=36.4Hz),98.3(d,J=179Hz),91.9(d,J=37.1Hz),83.6,61.9,31.9(d,J=20.5Hz);IR(KBr)3417,3056,1684,1474,1105cm-1;HRMS理论值[M+Li]C9H10N2O4F2Li255.0769.实测值255.0764.元素分析理论值C9H10N2O4F2C,43.56;H,4.06;N,11.29.实测值C,43.37;H,3.98;N,11.22。
α-(D)-2′,3′-二脱氧-2’-氟-5-氟胞苷(15a)Rf(15%EtOH,85%EtOAc)=0.22;mp 198-202℃(分解)。1H NMR(400MHz,CD3OD)d 7.78(d,J=6.8Hz,1H),6.07(d,J=18.8Hz,1H),5.37(d,J=54.0Hz,1H),4.59(m,1H),3.80(dd,J=12.0和3.2Hz,1H),3.57(dd,J=12.4和4.4Hz,1H),2.38-2.14(m,2H);13C NMR(100MHz,CD3OD)d 159.9(d,J=13.6Hz),156.5,138.3(d,J=240.4Hz),127.5(d,J=33.4Hz),93.6(d,J=184.3Hz),89.5(d,J=15.9Hz),81.8,64.4,34.5(d,J=20.5Hz);IR(Y.Br)3486,3098,1681,1519,1108cm-1;HRMS理论值[M+Li]C9H11N3O3F2Li254.0929.实测值254.0929.元素分析理论值C9H11N3O3F2·1/2H2OC,42.19;H,4.72;N,16.40.实测值C,41.86;H,4.75;N,16.36。
β-(D)-2′,3′-二脱氧-2’-氟-5-氟胞苷(15b)Rf(15%EtOH,85%EtOAc)=0.37;mp 181-183℃(分解)。1H NMR(400MHz,CD3OD)d 8.45(d,J=7.2Hz,1H),5.92(dd,J=16.2和1.2Hz,1H),5.18(dd,J=50.9和4.0Hz,114),4.46(m,1H),4.05(dd,J=12.4和2.4Hz,1H),3.72(dd.J=12.8和2.4Hz,1H),2.27-2.05(m,2H);13C NMR(100MHz,CD3OD)d 159.9(d,J=13.6Hz),156.5,138.5(d,J=240.5Hz),126.9(d,J=33.4Hz),98.4(d,J=179.0Hz),92.5(d,J=36.4Hz),83.6,61.9,31.6(d,J=20.5Hz);IR(KBR)3494,2944,1689,1522,1106cm-1;HRMS理论值[M+Li]C9H11N3O3F2Li254.0929.实测值254.0936.元素分析理论值.C9H11N3O3F2C,43.73;H,4.49;N,17.00.实测值C,43.84;H,4.47;N,17.05.
α-(D)-N4-乙酰基-2’,3’-二脱氧-2’-氟-胞苷(16a)Rf(15%EtOH,85%EtOAc)=0.40;mp 208-212℃。1H NMR(360MHz,DMSO-d6)d(10.91,bs,1H),8.05(d,J=7.2Hz,1H),7.25(d,J=7.2Hz,1H),6.08(dd,J=19.1和2.9Hz,1H),5.42(d,J=52.2Hz,1H),4.97(bs,1H),4.54(m,1H),3.63(d,J=13.0Hz,1H),3.47(d,J=13.3Hz,1H),2.35-2.15(m,2H),2.11(s,3M;13C NMR(100MHz,DMSO-d6)d 171.0,162.6,154.3,145.7,94.9,92.0(d,J=183.6Hz),87.5(d,J=15.9Hz),80.2,62.6,33.3(d,J=19.7Hz),24.4;IR(KBr)3436,3227,1702,1661,1442,1102cm-1;HRMS理论值[M+Li]C11H14N3O4FLi278.1128.实测值278.1136.元素分析理论值C11H14N3O4FC,48.71;H,5.20;N,15.49.实测值C,48.73;H,5.23;N,15.52。
β-(D)-N4-乙酰基-2’,3’-二脱氧-2’-氟-胞苷(16b)Rf(15%EtOH,85%EtOAc)=0.50;mp 174-178℃。1HNMR(360MHz,DMSO-d6)d(10.90,bs,1H),8.46(d,J=7.2Hz,1H),7.18(d,J=7.2Hz,1H),5.90(d,J=16.9Hz,1H),5.27(d,J=52.9Hz,1H),5.27(bs,1H),4.39(m,1H),3.88(d,J=13.0Hz,1H),3.61(d,J=13.0Hz,1H),2.09(s,3H),2.20-1.85(m,2H);13C NMR(100MHz,DMSO-d6)d 171.0,162.6,154.4,144.7,97.0(d,J=177.5Hz),95.0,90.7(d,J=36.6Hz),82.2,60.3,30.3(d,J=19.7Hz),24.3;IR(KBr)3447,3245,1703,1656,1497,1122cm-1;HRMS理论值[M+Li]C11H14N3O4FLi278.1128.实测值278.1133.元素分析理论值C11H14N3O4FC,48.71;H,5.20;N,15.49.实测值C,48.65;H,5.22;N,15.46。
α-(D)-2′,3’-二脱氧-2′-氟-胞苷(17a)Rf(15%EtOH,85%EtOAc)=0.08;mp234-237℃(分解)。1H NMR(400MHz,DMSO-d6)d 7.52(d,J=7.6Hz,1H),7.21(bm,2H),6.05(dd,J=20.4和3.2Hz,1H),5.73(d,J=7.2Hz,1H),5.28(d,J=52.4Hz,1H),4.93(t,J=5.6Hz,1H),4.45(m,1H),3.58(m,1H),3.43(m,1H),2.26-2.13(m,2H);13C NMR(100MHz,DMSO-d6)d 165.8,155.0,141.6,93.3,92.2(d,J=182.8Hz),86.6(d,J=15.1Hz),79.4,62.8,33.3(d,J=19.7Hz);IR(KBr)3366,3199,1659,1399,1122cm-1;HRMS理论值[M+Li]C9H12N3O3FLi236.1023.实测值236.1014.元素分析理论值C9H12N3O3FC,47.16;H,5.28;N,18.33.实测值C,47.40;H,5.34;N,18.51。
β-(D)-2′,3’-二脱氧-2′-氟-胞苷(17b)将核苷25(0.160g,0.59mmol)溶解于10mL饱和氨的甲醇溶液中。搅拌5分钟后,反应完毕。除去甲醇的氨溶液并将所得白色固体置于真空下,在60℃水浴中温和加热2小时以通过升华除去乙酰胺副产物。将此白色固体从5%甲醇/95%二氯甲烷中结晶,得到定量收率的白色结晶固体。Rf(15%EtOH,85%EtOAc)=0.18;mp 191-195℃(分解)。1H NMR(360MHz,CD3OD)d 8.10(d,J=7.2Hz,1H),5.92(d,J=17.3Hz,1H),5.82(d,J=7.6Hz,1H),5.13(d,J=50.0Hz,1H),4.39(m,1H),3.97(d,J=12.2Hz,1H),3.68(dd,J=13.0和2.5Hz,1H),2.21-2.00(m,2H);13C NMR(100MHz,CD3OD)d 165.9,155.0,140.8,97.3(d,J=176.8Hz),93.6,90.3(d,J=35.6Hz),81.3,60.7,31.0(d,J=20.5Hz);IR(KBr)3397,3112,1680,1400,1178,1070cm-1;HRMS理论值[M+Li]C9H12N3O3FLi236.1024.实测值236.1028.元素分析理论值.C9H12N3O3FC,47.16;H,5.28;N,18.33.实测值C,47.01;H,5.21;N,18.29。
(L)-5′-O-(叔丁基二苯基甲硅烷基)-2′,3′-二脱氧-2′-氟-胸苷(23)端基异构体的混合物Rf(10%MeOH/90%二氯甲烷)=0.56;mp61-65℃.1H NMR(360,MHz,CDCl3)d 9.48(bs,1H),7.67(m,4H),7.45-7.37(m,7H),6.15(dd,J=20.2和3.2Hz,0.36H),5.99(d,J=18.4Hz,0.64H),5.34(d,J=51.8Hz,0.36H),5.24(dd,J=52.2和4.3Hz,0.64H),4.59(m,0.36H),4.45(m,0.64H),4.17(dd,J=12.2和2.5Hz,0.64H),3.91(dd,J=11.9和2.9Hz,0.36H),3.81(dd,J=11.5和2.9Hz,0.64H),3.68(dd,J=10.8和3.6Hz,0.36H),2.40-2.12(m,2H),1.94(s,1.08H),1.61(s,1.92H),1.10(s,5.76H),1.07(s,3.24H);13C NMR(100MHz,CDCl3)d164.1,164.0,150.4,150.2,136.4,135.6,135.5,135.4,135.3,135.2,133.0,132.8,132.6,130.1,130.0,129.9,127.94,127.90,127.8,110.8,109.8,96.4(d,J=181.3Hz),92.1(d,J=185.8Hz),90.7(d,J=36.4Hz),86.6(d,J=15.2Hz),80.9,79.4,64.9,63.6,33.4(d,J=20.5Hz),32.0(d,J=21.2Hz),27.0,26.8,19.4,19.2,12.6,12.2;IR(薄膜)3183,3050,1696,1506,1188cm-1;HRMS理论值[M+Li]C26H31N2O3SiF489.2197.实测值489.2175.元素分析理论值C26H31N2O3SiFC,64.71;H,6.47;N,5.80.实测值C,64.88;H,6.56;N,5.76。
(L)-5′-O-(叔丁基二苯基甲硅烷基)-2′,3’-二脱氧-2’-氟-5-氟尿苷(24)端基异构体的混合物Rf(1∶1己烷/EtOAc)=0.48;mp 65-71℃。1H NMR(400MHz,CDCl3)d 9.08(bs,0.4H),9.00(bs,0.6H)8.01(d,J=5.4Hz,0.6H),7.65(m,4H),7.42(m,6.4H),6.10(dd,J=20.2和1.4Hz,0.4H),6.00(d,J=16.0Hz,0.6H),5.35(dd,J=52.4和1.6Hz,0.4H),(5.22,dd,J=51.2和4Hz,0.6H),4.57(m,0.4H),4.44(m,0.6H),4.22(dd,J=12.4和2.0Hz,0.6H),3.91(dd,J=11.2和2.9Hz,0.4H),3.70(m,1H),2.45-2.00(m,2H),1.09(s,5.4H),1.07(s,3.6H);13C NMR(100MHz,CDCl3)d 156.9(d,J=26.5Hz),148.8,148.6,140.3(d,J=236.7Hz),140.1(d,J=235.1Hz),135.6,135.5,135.4,132.9,132.7,132.4,132.3,130.2,130.1,129.9,127.9,127.8,125.1(d,J=34.9Hz),123.6(d,J=34.2Hz),96.4(d,J=182.9Hz),92.0(d,J=186.6Hz),90.2(d,J=36.0Hz),86.9(d,J=15.1Hz),81.7,79.8,64.8,63.0,33.2(d,J=20.5Hz),30.9(d,J=20.4Hz),26.9,26.8,19.2;IR(薄膜)3191,1719,1113cm-1;HRMS理论值[M+Li]C26H31N2O3SiF Li493.1946.实测值493.1952.元素分析理论值C26H31N2O3SiFC,61.71;H,5.80;N,5.76.实测值C,61.73;H,5.83;N,5.77。
α-(L)-2′,3’-二脱氧-2’-氟-胸苷(26a)Rf(100%EtOAc)=0.25;mp 147-149℃。1H NMR(360MHz,CD3OD)d 7.45(s,1H),6.11(dd,J=19.4和2.9Hz,1H),5.30(d,J=53.6Hz,1H),4.58(m,1H),3.79(dd,J=12.2和2.2Hz,1H),3.55(dd,J=2.2和3.6Hz,1H),2.40-2.15(m,2H),1.87(s,3H);13C NMR(100MHz,CD3OD)d 166.6,162.3,138.6,110.5,93.9(d,J=185.1Hz),88.3(d,J=15.1Hz),81.7,64.4,34.5(d,J=20.5Hz),12.6;IR(KBr)3436,3166,1727,1667,1362,1186c-1;HRMS理论值[M+Li]C10H13N2O4FLi251.1019.实测值251.1014.元素分析理论值C10H13N2O4FC,49.18;H,5.37;N,11.47.实测值.C,49.32;H,5.40;N,11.29。
β-(L)-2′,3′-二脱氧-2’-氟-胸苷(26b)Rf(100%EtOAc)=0.38;mp186-188℃。1H NMR(360MHz,CD3OD)d 7.94(s,1H),5.93(d,J=17.6Hz,1H),5.20(d,J=51.8Hz,1H),4.40(m,1H),3.98(d,J=11.9Hz,1H),3.68(d,J=13.0Hz,1H),2.37-2.10(m,2H),1.83(s,3H);13C NMR(100MHz,CD3OD)d 166.7,152.3,138.2,111.0,98.4(d,J=178.3Hz),92.1(d,J=36.4Hz),83.1,62.4,32.5(d,J=20.5Hz),12.6;IR(KBr)3478,3052,1684,1363,1192,1005cm-1;元素分析理论值C10H13N2O4FC,49.18;H,5.37;N,11.47.实测值C,49.29;H,5.44;N,11.36。
α-(L)-2′,3’-二脱氧-2’-氟-5-氟尿苷(27a)Rf(100%EtOAc)=0.38;mp 155-157℃。1H NMR(400MHz,CD3OD)d 7.80(d,J=6.8Hz,1H),6.13(d,J=20.0Hz,1H),5.35(d,J=54.4Hz,1H),4.63(m.1H),3.81(dd,J=11.9和3.2Hz,1H),3.58(dd,J=12.4和2.0Hz,1H),2.41-2.15(m,2H);13C NMR(100MHz,CD3OD)d 159.6(d,J=25.8Hz),150.7,141.5(d,J=230.6Hz),127.0(d,J=34.9Hz),93.9(d,J=184.3Hz),88.5(d,J=15.1Hz),81.9,64.3,34.3(d,J=20.5Hz);IR(KBr)3401,3098,1661,1458,1018cm-1;HRMS理论值[M+Li]C9H10N2O4F2Li255.0769.实测值255.0771.元素分析理论值C9H10N2O4F2C,43.56;H,4.06,N,11.29.实测值C,43.70;H,4.17;N,11.15。
β-(L)-2’,3’-二脱氧-2’-氟-5-氟尿苷(27b)
Rf(100%EtOAc)=0.54;mp 153-156℃。1H NMR(400MHz,CD3OD)d 8.46(d,J=6.8Hz,1H),5.94(d,J=16.4Hz,1H),5.25(dd,J=51.6和4.0Hz,1H),4.41(m,1H),4.05(dd,J=12.8和2.4Hz,1H),3.72(dd,J=12.4和2.4Hz,1H),2.34-2.09(m,2H);13C NMR(100MHz,CD3OD)d 159.7(d,J=25.8Hz),150.7,141.8(d,J=230.6Hz),126.3(d,J=35.7Hz),98.3(d,J=184.6Hz),91.9(d,J=36.4Hz),83.6,61.9,31.9(d,J=20.5Hz);IR(KBr)3482,3037,1702,1654,1402,1103cm-1;HRMS理论值[M+Li]C9H10N2O4F2Li255.0769.实测值255.0764.元素分析理论值C9H10N2O4F2C,43.56;H,4.06;N,11.29.实测值C,43.59;H,4.06;N,11.17。
制备L-2’-氟-2′,3’-不饱和核苷不饱和2’-氟代核苷的第二种容易的合成方法现已完成并描述如下.此合成包括将被保护的嘧啶或嘌呤碱与关键中间体309在Lewis酸的存在下反应,总的如下列方案9所述。按照此合成方法合成的典型化合物见表5-6。
方案9
方案9
方案9
表2

aCDCl3,bDMSO-d6
表3

aCDCl3,bDMSO-d6
表4

bDMSO-d6
表5

*溶剂;A;EtOAc-己烷,B;CH2Cl2-MeOH,C;CHCl3-MeOH,D;THF-40环己烷,E;冻干如前所述,通过由容易得到的核苷类似物开始的消除反应已完成了2’,3’-不饱和-D-核苷的合成,其中包括单个核苷酸的冗长的修饰反应。一些人报告了通过适宜的2′-氟代核苷类似物的消除反应制备D-2’-氟-2’,3’-不饱和嘧啶核苷(Martin,J.A.等,J.Med Chem.1990,33,213 7-2145;Stezycki,R.Z.等,J.Med.Chem.1990,33,2150-2157)。但是用此方法合成L-Fd4N时,在制备起始物L-核苷中遇到了另外一些困难。由于2,3-不饱和糖部分在偶联条件下在Lewis酸的存在下不稳定,通过直接缩合合成2′,3′-不饱和嘌呤核苷的实例非常少,只有一种嘧啶类似物的情况用噻酚基中间体(Abdel-Medied,A.W.S.等,Synthesis 1991,313-317;Sujino,K.等,Tetrahedron Lett.1996,37,6133-6136)。与2,3-不饱和糖部分相反,2-氟-2,3-不饱和糖在与杂环缩合时糖基键的稳定性提高,预计对直接偶联反应会变得更稳定。因此,选择(R)-2-氟代丁烯羟酸内酯506,作为关键中间体508的前体,其可以由L-甘油醛丙酮化合物(glyceraldehyde acetonide)501制备。
由L-甘油醛丙酮化合物开始,通过Horner-Emmons反应在α-氟代磷酰基乙酸三乙基酯和双(三甲基甲硅烷基)氨化钠的存在下在THF中获得(E)-502/(Z)-2的混合物(1H NMR检测9∶1)(Thenappan,A.等,J.Org.Chem.,1990,55,4639-4642;Morikawa,T.等,Chem.Pharm.Bull.1992,40,3189-3193;Patrick,T.B.等,J.Org.Chem.1994,59,1210-1212).由于在分离(E)-502/(Z)-502异构体中的困难,将此混合物用于以下的环合反应中,在酸性条件下得到所需的内酯503和未环合的二醇504.将所得混合物转变为甲硅烷基化的内酯506,将其用DIBAL-H在二氯甲烷中在-78℃下还原得到乳醇507。将此乳醇507用醋酸酐处理得到关键中间体508,将其与甲硅烷基化的6-氯代嘌呤在Vorburggen条件下缩合得到端基异构体混合物509。用TBAF在THF中处理509得到游离的核苷510和511,用硅胶色谱容易地将其分离。通过用巯基乙醇和NaOMe在不锈钢瓶中在90℃下处理化合物510和511分别得到腺嘌呤类似物512和513。用巯基乙醇和NaOMe处理化合物510和511分别得到肌苷类似物514和515。这些化合物的立体化学由NOESP波谱确定(B异构体512中在H-1′和H-4′之间存在交叉峰)。
方案10.通过直接缩合合成L-2’-氟-d4腺嘌呤和次黄嘌呤
表7.在PBM中L-2’-氟-d4腺嘌呤和次黄嘌呤抗HIV-1的半数有效值(EC50)和半数抑制值(IC50)

实验部分用Mel-temp II实验装置检测熔点并未校准。用四甲基甲硅烷作为内标物用Bruker 250和AMX400 400MHz色谱仪记录核磁共振光谱;化学位移(δ)用百万分之一报告(ppm),而信号描述为s(单峰),d(双重峰),t(三重峰),q(四重峰),br s(宽单峰),dd(双重双峰)及m(多重峰)。UV光谱得自beckman DU 650光谱仪。旋先性在Jasco DIP-370数码旋光计上测定。质谱在Micromass Inc.Autospec高分辨双聚焦扇形片(EBE)MS光谱仪上检测。红外光谱记录于Nicolet 510 FT-IR光谱仪。由Atlantic Mcrolab,Inc.,Norcross,GA进行元素分析。所有反应用薄层色谱Analtech,200mm硅胶GF板监控。在使用前用Ca2H蒸馏获得干燥的1,2-二氯乙烷、二氯甲烷和乙腈。用钠和二苯酮蒸馏,当溶液变紫时获得干燥的THF。
L-(S)-甘油醛丙酮化合物(302)将L-古洛糖酸-γ-内酯(175g,0.98mol)的DMF(1L)溶液冷却至0℃并在搅拌下分批加入对甲苯磺酸(1.1g,5.65mmol)。向所得溶液中,通过滴液漏斗在0℃下滴加2-甲氧基丙烯(87.7g,0.92mol)。将此反应混和物升温至室温并再搅拌24小时。反应完毕后,加入碳酸钠(124g)并将所得悬浮液剧烈搅拌3小时。然后,用玻璃过滤器过滤并将此滤液真空蒸发得到黄色残余物,加入甲苯(170mL),发生结晶.抽滤固体,用己烷/乙醇(9∶1;1L)洗涤,并干燥得到淡黄色固体301(99.1g,65%)。
向搅拌的、5,6-O-亚异丙基-L-古洛糖酸-1,4-内酯(70.0g,0.32mol)在水(270mL)中的悬浮液中,在0℃下在30分钟内分批加入偏高碘酸钠(123g,0.58mol),维持pH5.5(通过加入2N氢氧化钠调节)。将此悬浮液室温下搅拌2小时,然后用氯化钠饱和并过滤。将此滤液的pH调节至6.5-7.0,并用二氯甲烷(5次,200mL)和乙酸乙酯(5次,300mL)萃取。用无水硫酸镁将合并的有机层干燥,过滤并减压浓缩(<20℃)。然后将所得残余物蒸馏得到302(23.2g,69%),为无色油状物。b.p.49-51℃/16Torr.[α]D25-66.4(c 6.3,苯)。
(E)/(Z)-乙基-3-[(R)-2,2-二甲基-1,3-二氧杂环戊烷-4-基]-2-氟丙烯酸酯(E-303和Z-303)将2-氟磷酰基乙酸三乙酯(39.2g,162mmol)的THF(70mL)溶液冷却至-78℃,并滴加双(三甲基甲硅烷基)氨化钠(1.0M THF溶液,162mL,162mmol)。将此混合物在-78℃保持30分钟,然后加入303(19.14g,147mmol)的THF(70mL)溶液。-78℃下搅拌1小时后,用氯化铵水溶液处理此反应混和物并用乙醚萃取。用饱和氯化钠洗涤醚相,用硫酸镁干燥,过滤并蒸发。将此残余物在硅胶上进行色谱得到E-303和Z-303(91根据1H NMR),为淡黄色油状物(34.6g,97.9%)。1HNMR(CDCl3)81.34,1.36(2t,J=8Hz,-CH2CH3),1.40,1.45(2s,-CH3),3.69(m,Ha-5),4.28(m,Hb-5,-CH2CH3),5.02(m,H-4),5.40(m,H-4),6.02(dd,J=8,20Hz,H-3),6.18(dd,J=8,32Hz,H-3)。
(R)-(+)-4-[(叔丁基二甲基甲硅烷氧基)甲基]-2-氟-2-丁烯-4-交酯(307)将E-303和Z-303(19.62g,89.89mmol)的110mL无水乙醇溶液用30mL浓盐酸处理并在室温下搅拌2小时。真空除去溶剂并将此残余物与甲苯(3×300mL)共蒸发得到内酯304和未环合的酯305。将所得淡黄色浆不经纯化直接用于下步反应。向304、305和咪唑(12.3g,180mmol)在二氯甲烷(250mL)中的混合物中加入叔丁基二甲基甲硅烷基氯(27.1g,180mmol),并将此反应混和物室温下搅拌4小时。将所得混合物用水洗涤,用硫酸镁干燥,过滤并浓缩至干。通过硅胶柱色谱用4%EtOAc-己烷作为洗脱剂分离此残余物,得到307(28.0g,70.2%,由化合物302),为白色结晶固体。mp48-50℃;[α]D+105.3(c1.60,CHCl3);1H NMR(CDCl3)δ0.07,0.08(2s,2xCH3),0.88(s,叔丁基),3.88(m,2H,H-5),5.01(m,1H,H4),6.73(pst,1H,J=4Hz);元素分析理论值C10H19FO3SiC,53.63;H,7.77.实测值C,53.70;H,7.75。
1-乙酰基-4-[(叔丁基二甲基甲硅烷氧基)甲基]-2-氟-2-丁烯-4-交酯(309)在氮气氛下,将内酯307(20.59g,83.54mmol)溶解于200mL的二氯甲烷中,然后冷却至-78℃,并加入1.0M DIBAL-H的二氯甲烷(125mL)溶液。将所得化合物在-78℃下搅拌2小时。用稀硝酸处理此冷的混合物,并干燥(硫酸钠)。将溶剂蒸发得到端基异构体308,为淡黄色油状物(16.6g,粗收率80%),将其不经纯化直接用于下步反应。
在0℃将Ac2O(25mL,0.27mol)加入到308和吡啶(22mL,0.27mol)的二氯甲烷(200mL)溶液中,并将所得混合物搅拌16小时。用稀盐酸、饱和碳酸氢钠和盐水洗涤此反应混和物。将合并的有机层干燥,过滤并浓缩至干。将此残余物进行柱色谱纯化(6.5%乙酸乙酯/己烷),得到309(12.6g,65%),为无色油状物。
乙酸酯309和嘧啶碱缩合的一般方法在氮气氛下,将尿嘧啶(420mg,3.75mmol),六甲基乙硅氮烷(15mL)和硫酸铵(20mg)的混合物回流3小时。将所得清澈溶液真空浓缩至干。向糖309(728mg,2.50mmol)和甲硅烷基化碱在干燥的DCE(20ml)的溶液中在0℃下加入TMSOTf(0.7mL,3.14mmol)。将此反应混和物在氮气氛下搅拌2小时,倒入冷的饱和碳酸氢钠溶液(30mL)中并搅拌15分钟。将所得混合物洗涤,干燥(硫酸钠),过滤并真空浓缩。将此粗品通过柱色谱(3%甲醇/氯仿)纯化得到310(0.960g,2.73mmol,73%),为不可分的端基异构体,将其不经分离直接用于下步反应。
1-[5-O-(叔丁基二甲基甲硅烷基)-2,3-二脱氧-2-氟-L-甘油基-戊-2-烯呋喃糖基]尿嘧啶(310)UV(CHCl3)λmax257.5nm.;元素分析(C15H23N2O4Si)C,H,N.
1-[5-O-(叔丁基二甲基甲硅烷基)-2,3-二脱氧-2-氟-L-甘油基-戊-2-烯呋喃糖基]胸腺嘧啶(311)甲硅烷基化的胸腺嘧啶(242mg,1.92mmol),307(500mg,1.72mmol)和TMSOTf(0.5mL,2.25mmol)反应2小时得到311的混合物,将其通过硅胶柱色谱(3%甲醇/氯仿)纯化为不可分的端基异构体混合物(0.392g,1.10mmol,64%)。UV(CHCl3)λmax 262.0nm。元素分析(C16H25FN2O4Si)C,H,N。
N6-苯甲酰基-1-[5-O-(叔丁基二甲基甲硅烷基)-2,3-二脱氧-2-氟-(a,b)-L-甘油基-戊-2-烯呋喃糖基]胞嘧啶(312和313)甲硅烷基化的N6-苯甲酰基胞嘧啶(790mg,3.67mmol),307(470mg,1.62mmol)和TMSOTf(0.5mL,2.25mmol)反应2小时得到312和313的混合物,将其通过硅胶柱(30%乙酸乙酯/己烷)纯化得到β端基异构体312(0.34g,0.76mmol,47.1%),为白色固体,以及α端基异构体313(0.23g,0.52mmol,31.8%),为白色固体。312UV(CHCl3)λmax 260.5nm;元素分析(C22H28FN3O4Si)C,H,N;513UV(CHCl3)λmax260.5nm.;元素分析(C22H28FN3O4Si)C,H,N。
5-氟-1-[5-O-(叔丁基二甲基甲硅烷基)-2,3-二脱氧-2-氟-(a,b-L-甘油基-戊-2-烯呋喃糖基]胞嘧啶(314和315)甲硅烷基化的5-氟-胞嘧啶(300mg,2.32mmol),309(360mg,1.24mmol)和TMSOTf(0.4mL,1.86mmol)反应2小时得到314和315的混合物,将其通过硅胶柱色谱(3%MeOH/二氯甲烷)纯化得到β端基异构体314白色固体(168mg,37.8%)和α端基异构体315(121mg,27.1%)白色固体。314UV(MeOH)λmax281.5nm;315UV(MeOH))λmax281.5mn。
1-(2,3-二脱氧-2-氟-(α,β)-L-甘油基-戊-2-烯呋喃糖基)尿嘧啶(316和317)将氟化四正丁基铵(0.6mL,0.6mmol)加入到310(177mg,0.52mmol)在THF(15mL)中的混合物中并将此反应混和物室温下搅拌15分钟。除去溶剂并将此残余物通过硅胶柱色谱(2%MeOH/CHCl3)纯化得到β端基异构体316(52.8mg,0.23mmol,44.5%)和α端基异构体317(35.1mg,0.15mmol,29.6%)。
316UV(H2O)λmax261.0mn(pH7);元素分析(C9H9FN2O4·0.3H2O)C,H,N。317UV(H2O)λmax261.0nm(pH7);元素分析(C9H9FN2O4·0.2H2O)C,H,N。
1-(2,3-二脱氧-2-氟-(α,β)-L-甘油基-戊-2-烯呋喃基)胸腺嘧啶(318和319)在0℃,将氟化四正丁基铵(0.8mL,0.8mmol)加入到311(240mg,0.67mmol)在THF(10mL)中的混合物中,并将此反应混和物室温下搅拌15分钟。除去溶剂并将此残余物通过硅胶柱色谱(40%THF/环己烷)纯化得到β端基异构体318(66.5mg,0.28mmol,41%)和α端基异构体319(52.8mg,0.23nunol,26%)。
318UV(H2O)λmax265.5nm(pH7);元素分析(C9H9FN2O4·0.3H2O)C,H,N。319UV(H2O)λmax266.0nm(pH7);元素分析(C9H9FN2O4·0.3H2O)C,H,N。
N6-苯甲酰基-1-(2,3-二脱氧-2-氟-β-L-甘油基-戊-2-烯呋喃糖基)胞嘧啶(320)将氟化四正丁基铵(1M在THF中)(1mL,1mmol)加入到β端基异构体312(280mg,0.63mmol)的THF(10mL)溶液中并将此反应在室温下搅拌1小时。将此反应混和物减压浓缩并将此残余物通过闪式硅胶柱用2.5%MeOH/CHCl3洗脱纯化得到320(218mg,0.66mmol,75%),为白色固体。
UV(MeOH)λmax260.5nm。元素分析(C16H14FN3O4)C,H,N。
N6-苯甲酰基-1-(2,3-二脱氧-2-氟-α-L-甘油基-戊-2-烯呋喃糖基)胞嘧啶(321)将氟化四正丁基铵(1M在THF中)(1mL,1mmol)加入到α端基异构体313(280mg,0.63mmol)的THF(10mL)溶液中并将此反应在室温下搅拌1小时。将此反应混和物减压浓缩并将此残余物通过闪式硅胶柱用2.5%MeOH/CHCl3洗脱纯化得到321(145.8mg,0.44mmol,69%),为白色固体。
UV(MeOH)λmax260.5nm。元素分析(C16H14FN3O4·0.3H2O)C,H,N。
1-(2,3-二脱氧-2-氟-β-L-甘油基-戊-2-烯呋喃糖基)胞嘧啶(322)将β端基异构体(67.60mg,0.204mmol)的甲醇(5mL)溶液用NH3/MeOH(10mL饱和溶液)处理并将此反应混和物室温下搅拌直到观察到起始物消失(10小时)。将此反应混和物减压浓缩并将此残余物通过制备TLC纯化,用12%MeOH/二氯甲烷作洗脱剂。由此板获得的物质322(43mg,93.1%),为固体,将其用己烷和乙醚研磨.
UV(H2O)λmax266.5nm(pH7);元素分析(C9H10FN3O3·0.4H2O)C,H,N。
1-(2,3-二脱氧-2-氟-α-L-甘油基-戊-2-烯呋喃糖基)胞嘧啶(323)将α端基异构体(65.90mg,0.199mmol)的甲醇(5mL)溶液用NH3/MeOH(10mL饱和溶液)处理并将此反应混和物室温下搅拌直到观察到起始物消失(16小时)。将此反应混和物减压浓缩并将此残余物通过制备TLC纯化,用12%MeOH/二氯甲烷作洗脱剂。由此板获得的物质323(42.5mg,94.5%),为固体,将其用己烷和乙醚研磨。
UV(H2O)λmax276.0nm(pH7);元素分析(C9H10FN3O3)C,H,N。
5-氟-1-(2,3-二脱氧-2-氟-β-L-甘油基-戊-2-烯呋喃糖基)胞嘧啶(324)将氟化四正丁基铵(1M在THF中)加入到β端基异构体314的乙腈溶液中并将此反应室温下搅拌1小时。将此反应混和物减压浓缩并将此残余物通过闪式硅胶柱用12%MeOH/CHCl3洗脱纯化得到324.
5-氟-1-(2,3-二脱氧-2-氟-α-L-甘油基-戊-2-烯呋喃糖基)胞嘧啶(325)将氟化四正丁基铵(1M在THF中)加入到α端基异构体315的乙腈溶液中并将此反应室温下搅拌1小时。将此反应混和物减压浓缩并将此残余物通过闪式硅胶柱用12%MeOH/CHCl3洗脱纯化得到325。
乙酸酯309与嘌呤碱缩合的一般方法在氮气氛下,将6-氯嘌呤(1.20g,7.75mmol),六甲基乙硅氮烷(25mL)和硫酸铵(催化量)的混合物回流4小时。将所得清澈溶液真空浓缩至干并将此残余物溶解于无水DCE(10mL)中并在室温下与307(1.50g,5.17mmol)的DCE(40mL)溶液和三氟甲磺酸三甲基甲硅烷基酯(1.5mL,7.75mmol)反应。在氮气氛下室温搅拌1小时后,将此反应溶液倒入到冰冷的饱和碳酸氢钠溶液(20mL)中并搅拌15分钟。用水和盐水洗涤此有机层,并用硫酸镁干燥。减压除去溶剂并通过硅胶柱色谱用12.5%乙酸乙酯/己烷将此残余物分离,得到端基异构体混合物326(1.25g,62.9%),为浆状物。
6-氯-9-[5-O-(叔丁基二甲基甲硅烷基)-2,3-二脱氧-2-氟-L-甘油基-戊-2-烯呋喃糖基]嘌呤(326)326UV(MeOH)λmax265.0nm;元素分析(C16H22ClFN4O2Si)C,H,N。
6-氨-2-氟-9-[5-O-(叔丁基二甲基甲硅烷基)-2,3-二脱氧-2-氟-(α,β)L-甘油基-戊-2-烯呋喃糖基]嘌呤(327和328)将甲硅烷基化的2-氟-6-氯嘌呤[由1.170g(6.78mmol)的2-氟-6-氯嘌呤制备]和无水DCE(40mL)的混合物室温下搅拌16小时。类似于326经处理后,通过硅胶柱色谱(12%乙酸乙酯/己烷)纯化得到β端基异构体327(685mg,1.70mmol,30.0%)白色泡沫和α端基异构体328(502mg,1.25nunol,22.1%)淡黄色浆状物。
327UV(MeOH)λmax268.5nm.元素分析(C16H21F2ClN4O2Si)C,H,N.,328UV(MeOH)λmax269.0nm。元素分析(C16H21F2ClN4O2Si)C,H,N.
6-氨-9-(2,3-二脱氧-2-氟-(α,β)-L-甘油基-戊-2-烯呋喃糖基)嘌呤(329和330)将326(1.2g,3.12mmol)的无水CH3CN(20mL)溶液用TBAF(1M的THF溶液)(3.2mL,3.2mmol)处理并搅拌1小时.蒸发溶剂后,将残余物通过柱色谱(3%甲醇/氯仿)纯化得到β端基异构体329(296mg,35%)白色固体和α端基异构体330(380mg,45%)泡沫。
329UV(MeOH)λmax265.0nm.;330UV(MeOH)λmax265.0nm。
6-氨基-2-氟-9-[5-O-(叔丁基二甲基甲硅烷基)-2,3-二脱氧-2-氟-β-L-甘油基-戊-2-烯呋喃糖基]嘌呤(331)和6-氯-2-氨基-9-[5-O-(叔丁基二甲基甲硅烷基)-2,3-二脱氧-2-氟-β-L-甘油基-戊-2-烯呋喃糖基]嘌呤(332)室温下将干燥的氨气通入搅拌的、327(420mg,1.04mmol)的无水DME(35mL)溶液中,过夜通入。过滤除去盐并将此滤液减压蒸发。将此残余物通过硅胶柱色谱(25%EtOAc/己烷)纯化得到两种化合物,331(114mg,0.30mmol)白色固体和332(164mg,0.41mmol)白色固体。
331UV(MeOH)λmax268,5nm。元素分析(C16H23F2N5O2Si·0.2丙酮)C,H,N;332UV(MeOH)λmax307.5nm。元素分析(C16H23FN5O2ClSi)C,H,N,Cl。
6-氨基-2-氟-9-[5-O-(叔丁基二甲基甲硅烷基)-2,3-二脱氧-2-氟-α-L-甘油基-戊-2-烯呋喃糖基]嘌呤(333)和6-氯-2-氨基-9-[5-O-(叔丁基二甲基甲硅烷基)-2,3-二脱氧-2-氟-α-L-甘油基-戊-2-烯呋喃糖基]嘌呤(334)室温下将干燥的氨气通入搅拌的、333(420mg,1.04mmol)的干燥DME(35mL)溶液中,过夜通入。过滤除去盐并将此滤液减压蒸发。将此残余物通过硅胶柱色谱(25%EtOAc/己烷)纯化得到两种化合物,332(150mg,0.30mmol)白色固体和333(150mg,0.38mmol)白色固体。
333UV(MeOH)λmax269.0nm。元素分析(C16H23F2N5O2Si·0.3丙酮)C,H,N;332UV(MeOH)λmax309.5nm。元素分析(C16H23FClN5O2Si)C,H,N。
9-(2,3-二脱氧-2-氟-β-甘油基-戊-2-烯呋喃糖基)腺嘌呤(335)将329(100mg,0.369mmol)和饱和NH3/MeOH(50mL)在不锈钢瓶中在90℃加热24小时。冷却至室温后,减压除去溶剂并将残余浆状物通过柱色谱用6%MeOH/CHCl3作为洗脱剂纯化得到335(70mg,75%)白色固体.335UV(H2O)λmax258nm(ε18,800)(pH2),258.5nm(ε18,800)(pH7),258.5nm(ε19,100)(pH11)。元素分析(C10H10FN5O2.0.2H2O)C,H,N。
9-(2,3-二脱氧-2-氟-α-L-甘油基-戊-2-烯呋喃糖基)腺嘌呤(336)将330(100mg,0.369mmol)和饱和NH3/MeOH(50mL)在不锈钢瓶中在90℃加热24小时。冷却至室温后,减压除去溶剂并将残余浆状物通过柱色谱用6%MeOH/CHCl3作为洗脱剂纯化得到335(72mg,78%)白色固体。336UV(H2O)λmax258nm(ε21,100)(pH2),259nm(ε21,500)(pH7),29nm(ε22,600)(pH11).元素分析(C10H10FN5O2.0.3MeOH)C,H,N.
9-(2,3-二脱氧-2-氟-β-L-甘油基-戊-2-烯呋喃糖基)次黄嘌呤(337)将329(100mg,0.369mmol),NaOMe(0.5M甲醇溶液)(2.94mL,1.46mmol)和HSCH2CH2OH(0.1mL,1.46mmol)在甲醇(20mL)中的混合物在氮气氛下回流4小时.将此反应混和物冷却,用冰醋酸中和并真空蒸发至干。将此残余物通过硅胶柱色谱(10%甲醇/氯仿)纯化得到337(74mg,80%)白色固体.337UV(H2O)λmax247nm(ε12,400)(pH2),247.5nm(ε13,000)(pH7),253nm(ε13,100)(pH11)。元素分析(C10H9FN4O3.0.2H2O)C,H,N.
9-(2,3-二脱氧-2-氟-α-L-甘油基-戊-2-烯呋喃糖基)次黄嘌呤(338)将330(100mg,0.369mmol),NaOMe(0.5M甲醇溶液)(2.94mL,1.46mmol)和HSCH2CH2OH(0.1mL,1.46mmol)在甲醇(20mL)中的混合物在氮气氛下回流4小时.将此反应混和物冷却,用冰醋酸中和并真空蒸发至干.将此残余物通过硅胶柱色谱(10%甲醇/氯仿)纯化得到338(70mg,80%)白色固体。338UV(H2O)λmax247.5nm(ε12,700)(pH2),247.5nm(ε13,700)(pH7),252.5nm(ε13,100)(pH11)。元素分析(C10H9FN4O3.0.3H2O)C,H,N。
2-氟-6-氨基-9-(2,3-二脱氧-2-氟-β-L-甘油基-戊-2-烯呋喃糖基)嘌呤(339)将31(101mg,0.26mmol)的无水乙腈(15mL)溶液用TBAF(1MTHF溶液)(0.35mL,0.35mmol)处理并搅拌30分钟.溶剂蒸发后,将残余物通过柱色谱(9%二氯甲烷/甲醇)纯化得到339(64.7mg,0.24mmol,92.3%)白色结晶固体。UV(H2O)λmax269.0nm(pH7)。
2-氟-6-氨基-9-(2,3-二脱氧-2-氟-α-L-甘油基-戊-2-烯呋喃糖基)嘌呤(340)将333(73.4mg,0.19mmol)的无水乙腈(10mL)溶液用TBAF(1M THF溶液)(0.25mL,0.25mmol)处理并搅拌30分钟。溶剂蒸发后,将残余物通过柱色谱(9%二氯甲烷/甲醇)纯化得到340(46.2mg,0.17mmol,90.3%)白色结晶固体。UV(H2O)λmax269.0nm(pH7).
2-氨基-6-氯-9-(2,3-二脱氧-2-氟-β-L-甘油基-戊-2-烯呋喃糖基)嘌呤(341)将332(143.5mg,0.40mmol)的无水乙腈(15mL)溶液用TBAF(1M THF溶液)(0.60mL,0.60mmol)处理并搅拌30分钟。溶剂蒸发后,将残余物通过柱色谱(5%二氯甲烷/甲醇)纯化得到341(109mg,0.382mmol,90.3%)白色结晶固体.UV(H2O)λmax308.5nm(pH7)。
2-氨基-6-氯-9-(2,3-二脱氧-2-氟-α-L-甘油基-戊-2-烯呋喃糖基)嘌呤(342)将334(145mg,0.36mmol)的无水乙腈(10mL)溶液用TBAF(1 MTHF溶液)(0.50mL,0.50mmol)处理并搅拌30分钟.溶剂蒸发后,将残余物通过柱色谱(9%二氯甲烷/甲醇)纯化得到342(99.9mg,0.35mmol,96.4%)白色结晶固体。UV(H2O)λmax309.0nm(pH7)。
9-(2,3-二脱氧-2-氟-β-L-甘油基-戊-2-烯呋喃糖基)鸟嘌呤(343)将341(63.6mg,0.223mmol),2-巯基乙醇(0.06mL,0.89mmol)和1N NaOMe(0.89mL,0.89mmol)在甲醇(10mL)中在氮气氛下回流5小时。将此混合物冷却,用冰醋酸中和并减压浓缩至干。将此残余物通过柱色谱(12%二氯甲烷/甲醇)纯化得到343(30.1mg,0.113mmol,50.7%)白色固体。UV(H2O)λmax253.5nm(pH7)。
9-(2,3-二脱氧-2-氟-α-L-甘油基-戊-2-烯呋喃糖基)鸟嘌呤(344)将342(59.3mg,0.208mmol),2-巯基乙醇(0.07mL,1.04mmol)和1N NaOMe(1.04mL,1.04mmol)在甲醇(10mL)中在氮气氛下回流5小时。将此混合物冷却,用冰醋酸中和并减压浓缩至干.将此残余物通过柱色谱(12.5%二氨甲烷/甲醇)纯化得到344(28.0mg,0.105mmol,50.5%)白色固体。UV(H2O)λmax253.0nm(pH7)。
合成顺-(±)-碳环d4胞嘧啶核苷及其5’-三磷酸盐参照方案11,由二烯丙基丙二酸二乙酯(701)开始,以78%的收率合成4-乙氧羰基-1,6-庚二烯(702)(W.A.Nugent,J.Am.Chem.Soc.,1995,117,8992-8998)。以71%的收率由化合物702合成化合物703(L.E.Martinez,J.Org.Chem.,1996,61,7963-7966)而以43%的收率由化合物704合成化合物705(D.M.Hodgson,J.Chem.Soc.Perkin Trans.1,1994,3373-3378)。关键中间体顺-(±)-3-乙酰氧基-5-(乙酰氧基甲基)环戊烯(708)或者可以从环戊二烯和甲醛在乙酸中用Prins反应合成(E.A.Saville-Stones,J.Chem.Soc.PerkinTrans.1,1991,2603-2604),尽管其有收率低及不可分离的问题;或者可以由双环内酯合成,其经多步骤通过4步反应合成(F.Burlina,Bioorg.Med.Chem.Lett.,1997,7,247-250)。虽然需要合成手性的双环内酯,后种方法得到手性708[(-)-对映异构体]。由5-氟胞嘧啶和乙酸对硝基苯基酯合成N4-乙酰基-5-氟胞嘧啶(A.S.Steinfeld,J.Chem.Research(M),1979,1437-1450)。
方案11 实验部分总论除非另外说明所有的试剂都直接使用。无水试剂购自AldrichChemical Co.。用电热数码熔点仪测定熔点(M.p.)且不经校准。1H和13C NMR光谱用Varian Unity Plus 400光谱仪在室温下检测并以内标物四甲基硅烷低磁场的ppm报告。
4-乙氧羰基-1,6-庚二烯(702)将二烯丙基丙二酸二乙酯(701;50g,208mmol),氰化钠(20.7g,422mmol)和DMSO(166mL)的混合物在160℃加热6小时。冷却至室温后,将此混合物加入到400mL水中并用己烷(4×100mL)萃取产物。将溶剂减压蒸发后,将此残余物蒸馏(42-43℃/1 Torr)得到27.34g(78%)的702,为无色液体。1H NMR(400MHz,CDCl3)65.80-5.70(m,2H,2 CH=CH2),5.10-5.02(m,4H,2CH=CH2),4.14(q,2H,J=7.2Hz,OCH2),2.54-2.48(m,1H,CH),2.41-2.34,2.29-2.23(2m,4H,2 CH2),1.25(t,J=7.2Hz,3H,CH3)。
(±)-3-环戊烯甲酸乙酯(703)向火焰干燥的500mL烧瓶中加入2,6-二溴酚(1.20g,4.76mmol),氯氧化钨(0.813g,2.38mmol)和无水甲苯(25mL)。在氮气氛下将所得悬浮液加热回流1小时,然后真空蒸发溶剂。将固体残余物用刮刀打碎并真空干燥30分钟。向此残余物中加入甲苯(160mL),Et4Pb(1.54g,4.76mL)和702(22g,131.0mmol)。在氮气氛下,将此混合物在90℃下加热1.5小时。冷却至室温后,将此混合物通过硅藻土过滤,并用叔丁基甲醚清洗硅藻土。将合并的滤液用1%氢氧化钠溶液、水和盐水洗涤,并减压蒸发浓缩。将此残余物蒸馏(37-38℃/1 Torr)得到13.06g(71%)的703,为无色液体.1H NMR(400MHz,CDCl3)δ5.67(s,2H,CH=CH),4.14(q,2H,J=7.2Hz,OCH2),3.11(五个小峰,J=7.6Hz,1H,CH),2.65(d,J=7.6Hz,4H,2 CH2),1.27(t,J=7.2Hz,3H,CH3)。
(±)-1-(羟甲基)-3-环戊烯(704)向703(7g,50mmol)在无水THF(150mL)的冷(-78℃)溶液中,加入LiAlH4(1M THF溶液,25mL,25mmol),并将此反应溶液在-78℃下在氩气氛下搅拌4小时。然后让此反应溶液升温至0℃,并依次加入2.5mL水、2.5mL 15%氢氧化钠和7.5mL水。升温至室温后,通过硅藻土滤出沉淀并用热乙酸乙酯清洗此硅藻土。将合并的滤液用0.1N氢氧化钠和盐水洗涤,干燥(硫酸镁),过滤,浓缩并真空干燥得到4.294g(84%)的704,为淡黄色液体。1H NMR(400MHz,CDCl3)δ5.68(s,2H,2 CH=CH),3.57(d,J=6.0Hz,2H,CH2OH),2.54-2.48(m,3H,CH+CH2),2.15-2.10(m,2 H,CH2)。
顺-(+)-4-(羟甲基)-1,2-环氧环戊烷(705)向704(930mg,9.1mmol)和氧钒基乙酰基丙酮(10mg)的无水二氯甲烷(20mL)溶液中,滴加叔丁基甲酸[3M二氯甲烷溶液,由叔丁基甲酸(70%(重量)在水中,41mL,0.3mol)和二氯甲烷(59mL)通过干燥(2×MgSO4)并在4埃分子筛上保存制备,10mL,约30mmol]。室温下搅拌24小时后,加入亚硫酸钠水溶液(15%溶液,60mL),并将此混合物室温下搅拌6小时。分离有机层,用饱和碳酸氢钠和盐水洗涤,并浓缩。将此残余物通过闪式色谱在硅胶上用己烷/乙酸乙酯(2∶1)洗脱纯化得到460mg(43%)的705,为无色液体。1H NMR(400MHz,CDCl3)δ3.54(s,2H,(CH)2O),3.49(t,J=4.0Hz,2H,CH2OH),2.95(bs,1H,OH),2.44-2.40(m,1H,CH),2.05-2.02(m,4H,2 CH2)。13C NMR(100MHz,CDCl3)δ66.9(d,(CH)2O),59.2(t,CH2OH),36.5(d,CH),31.4(t,2 CH2)。
顺-(±)-3-乙酰氧基-5-(乙酰氧基甲基)环戊烯(708)向二苯基联硒化物(2.70g,8.65mmol)的无水乙醇(100mL)溶液中分批加入硼氢化钠。搅拌此溶液至黄色变为无色,然后加入705(1.70g,14.4mmol)的无水THF(10mL)溶液。将此反应溶液在氮气氛下加热回流1小时,然后真空蒸发溶剂。向此残余物中加入乙酸乙酯(80mL)和水(30mL)。分离有机层,用盐水洗涤,干燥(硫酸镁),过滤,浓缩并真空干燥。将所得(±)-1-羟基-4-(羟甲基)-2-(苯基硒基)-环戊烷(706;淡黄色油状物)不经纯化直接用于下步反应。向粗品706中加入无水二氯甲烷(60mL)、三乙胺(30mL,216mmol)和DMAP(50mg)。将所得溶液冷却至0℃,并滴加醋酸酐(14.7g,144mmol)。在氩气氛下室温搅拌过夜后,蒸发溶剂,得到(±)-1-乙酰氧基-4-(乙酰氧基甲基)-2-(苯基硒基)-环戊烷(707;淡黄色油状物)。向含3滴吡啶的707的冷(0℃)二氯甲烷(50mL)溶液中,在5分钟内加入30%过氧化氢溶液(20ml)。在0℃搅拌30分钟后,再在室温下搅拌30分钟,加入二氯甲烷(50mL)稀释此反应混和物。分离有机相,用水、饱和碳酸氢钠和盐水洗涤,干燥(硫酸镁),过滤并真空蒸发浓缩。将此残余物通过闪式色谱在硅胶上用存在于己烷中的0-10%乙酸乙酯洗脱纯化得到2.254g(79%,3步总收率)的708,为淡棕色液体。1H NMR(400MHz,CDCl3)δ6.01-6.00,5.92-5.90(2m,2H,CH=CH),5.66-5.64(m,1H,H-3),4.04(d,J=6.8Hz,2H,CH2O),2.98-2.92(m,1H,H-5),2.53-2.46(m,1H,H-4a),2.08,2.04(2s,6H,2 CH3),1.60-1.54(m,2H,H-4b)。13C NMR(100MHz,CDCl3)δ171.1,170.9(2s,2 C=0),137.0,131.4(2d,CH=CH),79.2(d,C-3),67.4(t,CH2O),43.7(d,C-5),33.4(t,C-4),21.3,20.9(2q,2 CH3)。
顺-(±)-碳环-5’-O-乙酰基-2’,3′-二脱氢-2’,3’-二脱氧-5-氟胞苷(709)将5-氟胞嘧啶(258mg,2mmol)和NaH(58mg,2.4mmol)在无水DMSO(15mL)中的悬浮液在预热的油浴中在70℃加热30分钟。然后,将所得溶液冷却至室温,并分别加入Pd(PPh3)4(73mg,0.063mmol)和708(298mg,1.5mmol)的无水THE(2mL)溶液。将此反应混和物在氩气氛下在70℃搅拌3天。真空蒸发除去溶剂后,将此残余物用二氯甲烷(50mL)处理。通过硅藻土滤出沉淀并用二氯甲烷清洗此硅藻土。将合并的滤液浓缩,并将此残余物通过闪式色谱在硅胶上用存在于二氯甲烷中的0-5%甲醇洗脱纯化得到40mg(10%)的709,为淡棕色固体。用甲醇/二氯甲烷/己烷重结晶得到纯的产物,为白色粉末。M.p.182-184℃。1H NMR(400MHz,CDCl3)δ7.43(d,J=6.0Hz,1H,H-6),6.18-6.16(m,1H,H-3’),5.83-5.81(m,1H,H-2’),5.73-5.71(m,1H,H-1’),4.23-4.21,4.08-4.04(2m,2H,CH2O),3.14-3.12(m,1H,H-4’),2.92-2.84(m,1H,.H-6’a),2.08(s,3H,CH3),1.41-1.35(m,1H,H-6’b)。
顺-(±)-碳环-N4,5’-O-二乙酰基-2′,3′-二脱氢-2′,3’-二脱氧-5-氟胞苷(710)以类似于709的方法,由708(560mg,2.828mmol)和N4-乙酰基-5-氟胞嘧啶(726mg,4.24mmol)制备标题化合物710560mg(64%,棕色油状物)。将此粗品不经纯化直接用于下步反应。
顺-(±)-碳环-N4,5’-O-二乙酰基-2′,3′-二脱氢-2′,3’-二脱氧胞苷(711)以类似于709的方法,由708(272mg,1.37mmol)和N4-乙酰基胞嘧啶(316mg,2.06mmol)制备标题化合物711108mg(27%)的白色粉末。M.p.169.5-171.5℃。1H NMR(400MHz,CDCl3)δ8.80(bs,1H,NH),7.72(d,J=6.8Hz,1H,H-6),7.3 9(d,J=6.8Hz,1H,H-5),6.19-6.17(m,1H.H-3’),5.86-5.81(m,1H,H-2’),5.77-5.75(m,1H,H-1’),4.17-4.13,4.07-4.02(2m,2H,CH2O),3.18-3,10(m,1H,H-4’),2.96-2.88(m,1H.H-6’a),2.27,2.06(2s,6H,2 CH3),1.43-1.37(m,1H,H-6’b)。13C NMR(100MHz,CDCl3)δ170.8(s,2 C=0),162.0(s,C-4),155.6(s,C-2),145.3(d,C-6),139.2(d,C-3’),130.0(d,C-2’),96.8(d,C-5),66.3(t,C-5’),62.8(d,C-1’),44.2(d,C-4′),34.7(t,C-6’),25.0,20.9(2q,2CH3)。
顺-(±)-碳环-2’,3’-二脱氢-2’,3’-二脱氧-5-氟胞苷(712)向装有709(33mg,0.12mmol)的烧瓶中加入NaOMe(0.5M的甲醇溶液,0.5mL)。将此反应溶液室温搅拌1小时,并真空蒸发溶剂。将此残余物通过闪式色谱在硅胶上用存在于二氯甲烷中的5-10%甲醇洗脱纯化得到17mg(61%)的712,为淡棕色固体。用甲醇/二氯甲烷/己烷重结晶得到纯产物,为白色粉末。M.p.205.5-206.0℃.1HNMR(400MHz,DMSO-d6)δ7.66(d,J=6.0Hz,1H,H-6),7.60,7.40(2bs,2H,NH2),6.06-6.05(m,1H,H-3’),5.68-5.65(m,1H,H-2’),5.53-5.50(m,1H,H-1’),4.77-4.75(m,1H,H4’),3.50-3.48,3.41-3.37(2m,2H,H-5’),2.79-2.77(m,1H,H-6’a),1.34-1.27(m,1H,H-6’b)。13C NMR(100MHz,DMSO-d6)δ157.0(d,JC-F=11.9Hz,C-4),154.0(3,C-2),139.2(d,C-3’),135.8(d,JC-F=241.3Hz,C-5),130.2(d,C-2’),126.8(d,JC-F=11.8Hz,C-6),63.5(t,C-51),61.3(d,C-1’),47.2(d,C-4),33.3(t,C-6’)。MS(FAB)m/e 226(MH+)。元素分析(C10H12FN3O2)理论值C 53.33,H 5.37,N 18.66;实测值C53.10,H 5.40,N 18.44。类似于上述方法,由710(750mg,2.42mmol)还制备了化合物712320mg(59%,白色粉末)。
顺-(±)-碳环-2’,3’-二脱氢-2’,3’-二脱氧胞苷(713)以类似于制备712的方法,由化合物711(75mg,0257mmol)制备标题化合物71348mg(90%,白色固体)。M.p.200-201℃。1H NMR(400MHz,DMSO-d6)δ7.40(d,J=7.2Hz,1H,H-6),7,03,6.95(2bs,2H,NH2),6.07-6.05(m,1H,H-3’),5.67(d,J=7.2Hz,1H,H5),5.65-5.64(m,1H,H-2’),5.55-5.52(m,1H,H-1’),4.71-4.68(m,1H,H4’),3.43-3.36(m,2H,H-5’),2.78-2.76(m,1H,H-6’a),1.24-1.18(m,1H,H-6’b).13C NMR(100MHz,DMSO-d6)δ165.5(s,C-4),155.8(s,C-2),142.2(d,C-6),13 8.6(d,C-3’),130.5(d,C-2’),93.7(d,C5),63.9(t,C-5’),60.8(d,C-1’),47.3(d,C-4’),34.0(t,C-6’)。MS(FAB)m/e 208(MH+)。元素分析(C10H13N3O2)理论值D 57.96,H 6.32,N 20.28;实测值C 57.35,H 6.27,N 20.02。HRMS(FAB)理论值(C10H14N3O2)208.1086;实测值208.1088。
顺-(±)-碳环-2’,3’-二脱氢-2’,3’-二脱氧-5-氟胞苷5’-三磷酸,三乙基氢铵盐(714)向712(10mg)的无水DMF(0.3mL)和吡啶(0.1ml)溶液中加入2-氯-4H-1,3,2-苯并二氧杂phosphorin-4-酮的1M无水1,4-二烷(0.05mL)溶液。将此反应室温下搅拌15分钟。然后,依次加入焦磷酸-Bu3N的1M无水DMF(0.12mL)溶液和Bu3N(0.05mL)。室温下再搅拌15分钟后,向上述溶液中滴加I2/H2O/吡啶/THF的溶液直到碘的颜色不褪(约0.5mL),然后将此混合物真空蒸发浓缩。将此残余物溶解于水(2mL)中,用二氯甲烷(3×1mL)洗涤,过滤,并通过FPLC纯化(柱HiLoad 26/10 Q Sepharose Fast Flow;缓冲液A0.01M Et3NHCO3;缓冲液B0.7 M Et3NHCO3;流速10mL/分钟;梯度将B从开始时的0%至4分钟时的10%,在64分钟时增加到100%)。收集并将适当的馏份冻干得到714,为无色浆状物。HPLC[柱100×4.6mm Rainin HydroporeSAX离子交换;缓冲液A10mM NH4H2PO4在10%甲醇/H2O(pH5.5)中;缓冲液B125mM NH4H2PO4在10%MeOH/H2O(pH5.5)中;流速1.0mL/min;梯度将B从开始时0%增加至25分钟时的100%],滞留时间11.9分钟。MS(FAB)m/e 464([M-H]+)。
顺-(±)-碳环-2′,3′-二脱氢-2’,3’-二脱氧胞苷5’-磷酸盐(715)以类似于制备714的方法,由713制备标题化合物715。HPLC(条件同上)滞留时间12.1分钟。MS(FAB)m/e 446([M-H]+)。
(±)-羧基-D4FC-三磷酸盐对HIV-1逆转录酶的抑制作用用r(I)n·(dC)12-18均聚物模板引物(Pharmacia,Piscataway,NJ)和HIV-1杂二聚物p66/51逆转录酶(RT,Biotechnology General,Rehoval,Israel)。标准反应混合物(100μl)含100mM Tris-HCl(pH8.0),50mM KCl,2mM MgCl2,0.05单位/ml r(I)n·(dC)12-18,5mMDTT,100μg/ml牛血清白蛋白和1μM3H-dCTP(2Ci/mmol)。将3TCTP(0.001-50μM)作为阳性对照。将化合物在37℃下在反应混和物中与1单位HIV-1 RT孵育一小时。加入等体积的冷10%TCA/0.05%焦磷酸钠停止该反应并在4℃下孵育30分钟。用Packard手动收获仪(Meriden.CT)将沉淀的核酸收集在玻璃纤维过滤纸上。用Packard 9600 Direct Beta计数器测定放射标记吸收的每分钟计数(cpm)。
IV.抗HIV活性在一个实施方案中,所公开的化合物或其药用衍生物或盐或含这些化合物的药剂用于预防和治疗HIV感染及其相关疾病,如AIDS相关综合征(ARC)、持续性泛化淋巴节病(PGL)、AIDS相关神经疾病、抗HIV抗体阳性和HIV阳性的病症、卡波济氏肉瘤、血小板减少性紫癜和机会性感染。此外,这些化合物或制剂可以预防性使用以防止或延迟抗HIV抗体或HIV抗原阳性或已接触了HIV的个体的临床疾病的恶化。
核苷抑制HIV的能力可以通过多种实验技术检测.以下详述的技术之一是检测对被HIV-1(株LAV)感染的、用植物凝集素(PHA)刺激的人外周血单核(PBM)细胞中病毒复制的抑制。通过检测病毒编码的逆转录酶来测定所产生病毒的量.所产生的酶的量与所产生病毒的量成比例。
抗病毒和细胞毒检测如前所述在人外周血单核(PBM)细胞中测定这些化合物的抗HIV-1活性(Schinazi,R.F.;McMillan,A.;Cannon,D.;Mathis,R.;Lloyd,R.M.Jr.;Peck,A.;Sonimadossi,J.-P.;St.Clair,M.;Wilson,J.;Furman,P.A.;Painter,G.;Choi,W.-B.;Liotta,D.C.Antimicrob.Agents Chemother.1992,36,2423;Schinazi,R.F.;Sommadossi,J.-P.;Saalmann,V.;Cannon,D.;Xie,M.-Y.;Hart,G.;Smith,G.;Hahn,E.Antimicrob.Agents Chemother.1990,34,1061)。在灭菌的DMSO中制备这些化合物的贮存液(20-40mM),然后在完全介质中稀释为所需的浓度。在水中制备3’-叠氮基-3’-脱氧胸苷(AZT)贮存液。用原形HIV-1LA1以0.01的多重性感染细胞。将由细胞上清液获得的病毒在感染后第6天通过逆转录酶实验用聚(rA)n·寡(dT)12-18作为模板引物定量测定。在稀溶液(<0.1%)中DMSO的存在对病毒的产量应没有影响。可以在人PBM、CEM和Veto细胞中评价这些化合物的毒性。用Chou和Talalay描述的半数有效方法(Adv.Enzyme Regul.1984,22,27)由浓度-效果曲线获得抗病毒EC50和细胞毒性IC50。
将得自乙型肝炎和HIV-1血清阴性的健康供者的、已存活三天的植物凝集素刺激的PBM细胞(106细胞/ml)用HIV-1(株LAV)以浓度约百倍于50%组织培养感染剂量(TICD 50)每毫升感染,并在不同浓度的抗病毒化合物存在或不存在下培养。
感染约1小时后,将含被测化合物(浓度是在介质中最终浓度的2倍)或不含化合物的介质加入到烧瓶(5ml;最终体积10ml)。用AZT作为阳性对照。
让细胞接触病毒(约2×105dpm/ml,通过逆转录酶实验检测)并再置于二氧化碳孵育箱中。HIV-1(株LAV)得自Center for DiseaseControl,Atlanta,Georgia.用于培养PBM细胞、收获病毒并测定逆转录酶活性的的方法描述于McDougal等(J.Immun.Meth.76,171-183,1985)和Spira等(J.Clin.Moth.25,97-99,1987),不同的是二性霉素B不包括在介质中(见Schinazi等,Antimicrob.AgentsChemother,32,1784-1787(1988);Id.,341061-1067(1990))。
在第6天,将细胞和上清液转移至15ml试管并在约900g离心10分钟。移出5ml上清液并通过在40000rpm离心(Beckman 70.1Ti离心机)30分钟将病毒浓缩。处理溶解的病毒沉淀物以检测逆转录酶的浓度。结果以dpm/ml的抽样上清液表示。由上清液(1ml)获得的较小量的病毒还可以通过在溶解前离心浓缩并检测逆转录酶的浓度。
半数有效(EC50)浓度通过半数有效方法(Antimicrob.AgentsChemother,30,491-498(1986)检测。简言之,如从检测逆转录酶中测定的,将病毒的抑制百分率对化合物的微摩尔浓度作图。EC50是病毒生长抑制50%时化合物的浓度。
在与上述抗病毒实验类似的条件,在药物存在或不存在下,可以培养促细胞分裂剂刺激的未感染人PBM细胞(3.8×105细胞/ml)。6天后用血细胞计数器并用台盼蓝排除法计算细胞,如Schinazi等,Antimicrobial Agents and Chemotherapy,22(3),499(1982)所述。IC50是正常细胞生长被抑制50%时化合物的浓度。
表7提供了所选化合物的抗HIV活性数据。用此实验,测定了(±)-碳环-D4FC-TP(2’,3’-不饱和-5-氟胞苷的EC50为0.40μM,而(±)-碳环-D4C-TP(2’,3’-不饱和胞苷)的EC50为0.38μM。
V.抗乙型肝炎活性按照以下详述的方法可以评价活性化合物抑制2.2.15细胞培养物(用肝炎病毒颗粒转化的HepG2细胞)中抑制肝炎病毒生长的能力。
在此培养系统中检测抗病毒作用以及分析HBV DNA的概述和详述已公开(Korba和Milman,1991,Antiviral Res,15217)。抗病毒评价实验最好对细胞独立的两个阶段进行。在实验板中的所有孔以相同密度在相同的时间接种。
由于细胞内和细胞外HBV DNA的遗传变异,只有抑制大于未处理细胞中HBV DNA形式的平均水平的3.5倍(对于HBV病毒颗粒DNA)或3.0倍(对于HBV DNA复制中间体)时,才认为具有统计学显著性(P<0.05)。用在每个细胞DNA制剂中整合HBV DNA的浓度(在这些实验中以每个细胞计其是个常数)计算细胞内HBV DNA形式的浓度,以保证在分离的样本之间细胞DNA的等量。
在未处理细胞中细胞外HBV病毒颗粒DNA的典型值为50至150pg/ml培养基(平均约76pg/ml)。在未处理细胞中细胞内HBV DNA复制中间体为50至100μg/pg细胞DNA(平均约74pg/μg细胞DNA).总之,将细胞内HBV病毒颗粒DNA浓度的抑制而言,由于用抗病毒化合物治疗,因而对细胞内HBV DNA浓度的抑制不显著,且发生得很慢(Korba和Milman,1991,Antiviral Res.,15217)。
这些实验中可以进行杂交分析的方式产生等同于约1.0pg的细胞内HBV DNA至2-3染色体拷贝每个细胞和1.0pg/ml的细胞内HBV DNA至3×105病毒颗粒/ml。
进行毒性分析以评价任何观察到的抗病毒作用是否由于对细胞活力的总作用。本文中所用方法是检测中性红染料(标准的并广泛用于在多种病毒宿主系统包括HSV和HIV中检测细胞活力物质)的摄入。毒性分析在96孔平底培养板中进行。用于毒性分析的细胞用与如下所述抗病毒评价相同的方案培养并用试验化合物处理。每个化合物检测4个浓度,每个浓度在三份培养物(孔A、B和C)中进行。用对中性红染料的吸收测定毒性水平。将内在的染料在510nm(Asin)的吸收值用来定量分析。该数值以9个独立培养物中平均Asin值占保持在与被测化合物相同的96孔板上的未处理细胞的百分率表示。
VI.抗丙型肝炎活性通过抑制HCV聚合酶,通过抑制复制循环中需要的其它酶或通过其它已知方法可以显示出化合物具有抗丙型肝炎活性。已公开了多种测定这些活性的方法。
WO97/12033,申请于1996年9月27日,由Emory University申请,Iisting C.Hagedom和A.Reinoldus是发明人,要求U.S.S.N.60/004,383(1995年9月申请)的优先权,描述了可以用于评价本发明化合物活性的HCV聚合酶检测。此申请和发明单独属于TrianglePharmaceuticals,Inc.,Durham,North Carolina。另一种HCV聚合酶检测法已由Bartholomeusz等报告,“用克隆HCV非结构蛋白进行的丙肝病毒(HCV)RNA聚合酶检测”;Antiviral Therapy 19961(Supp 4)18-24。
VI.治疗异常细胞增殖在可选择的实施方案中,这些化合物用来治疗异常细胞增殖。通过常规筛选实验(如由National Cancer Institute资助进行的),或用任何其它已知筛选方法(例如WO 96/07413所述的)可以评价此化合物的活性.
按照以下CEM细胞或其它肿瘤细胞系检测法中的方法,可以容易地评价化合物的抗癌活性的程度.CEM细胞为人淋巴瘤细胞(一种T-成淋巴细胞系,可得自ATCC,Rockville,MD)。化合物对CEM细胞的毒性为认识该化合物对肿瘤的活性提供了有用的信息。该毒性以IC50(μM)检测。IC50是指抑制培养基中50%肿瘤细胞生长的被测化合物浓度。IC50越低,作为抗肿瘤剂该化合物就越具活性。总之,2′-氟代核苷表现出了抗肿瘤活性并可以用于治疗细胞的异常增殖,如果其浓度小于50μM时在CEM或其它生命力顽强的肿瘤细胞系中表现毒性,该浓度更优选小于10μM,首选小于1μM。药物溶液,包括作为阳性对照的放线菌酮,以2倍于最终浓度,分三份置于50μl生长培养基中,并让其在37℃下在5%二氧化碳孵育箱中平衡。在50μl生长培养基中加入对数期细胞至最终浓度2.5×103(CEM和SK-MEL-28),5×103(MMAN,MDA-MB-435s,SKMES-1,DU-145,LNCap),1×104(PC-3,MCF-7)细胞/孔并在37℃下在5%二氧化碳气氛下孵育3(DU-145,PC-3,MMAN),4(MCF-7,SK-MEL-28,CEM),或5(SK-MES-1,MDA-MB-435s,LNCap)天。对照孔包括单独的介质(空白)和不含药物的细胞加介质。生长期后,将15μl的Cell Titer 96试剂盒检测染料溶液(Promega,Madison,WI)加入到每个孔中并将此板在37℃下在5%二氧化碳孵育箱中孵育。将Promega Cell Titer 96试剂盒检测停止溶液加入到每个孔中并在此孵育箱中孵育4-8小时。用Biotek Biokinetics板读数仪(Biotek,Winooski,VT)在570nm读取吸收值,用只有介质的孔作空白对照。与未处理对照比较计算生长的平均抑制百分率。通过Chou和Talalay的方法计算IC50、IC90、斜率和r值。Chou T-C,Talalay P.定量分析量效关系多种药物或酶抑制剂的协同作用。Adv Enzyme Regul 1984,2227-55。
可以使用此活性化合物特别治疗异常细胞增殖,并特别是细胞过度增殖。异常细胞增殖的实例包括但不限于良性瘤,其包括但不限于乳头状瘤,腺瘤,firoma,软骨瘤,骨瘤,脂肪瘤,血管瘤,淋巴管瘤,平滑肌瘤,横纹肌瘤,脑脊膜瘤,神经瘤,神经节瘤,痣,嗜铬细胞瘤,神经鞘瘤,纤维腺瘤,畸胎瘤,囊状痣,肉芽瘤(granuosatheca),布伦纳氏瘤,男性细胞瘤,门细胞瘤,性索间质,间质细胞瘤和thyoma以及在血管组织斑发展过程中的平滑肌细胞的增殖;恶性肿瘤(癌症),包括但不限于癌,包括肾细胞癌,前列腺癌,膀胱癌和腺癌,纤维肉瘤,软骨肉瘤,骨肉瘤,脂肉瘤,血管肉瘤,淋巴管肉瘤,平滑肌肉瘤,横纹肌肉瘤,髓细胞白血病,红白血病,多发性骨髓瘤,神经胶质瘤,脑膜瘤,thyoma,叶状囊性肉瘤,肾胚细胞瘤,畸胎瘤绒毛膜癌,皮肤上的T细胞淋巴瘤(CTCL),原发于皮肤的皮肤肿瘤(例如,基底细胞瘤,鳞状细胞瘤,黑素瘤和博温氏病),乳腺癌和其它侵润皮肤的肿瘤,卡波济氏瘤及粘膜组织恶化前的和恶性疾病,包括口腔、膀胱和直肠疾病;肿瘤发生前的损伤,真菌霉菌病,牛皮癣,皮肤肌炎,类风湿病关节炎,病毒(例如,疣,单纯疱疹和尖锐湿疣),触染性软疣,女性生殖道恶化前的和恶性疾病(子宫颈,阴道和外阴)。这些化合物还可以用于引流。
在此实施方案中,活性化合物或其药用盐以治疗有效量给药,以降低靶细胞的过度增殖。可以将此活性化合物修饰成包括靶向部分,其将此化合物浓集在活性位点。靶向部分可以包括结合靶细胞表面蛋白质的抗体或抗体片断,包括但不限于表皮生长因子受体(EGFR),受体的c-Esb-2系列受体和血管内皮生长因子(VEGF)。
VII.药物组合物通过给患者使用存在于药用载体或稀释剂中的有效量的活性化合物或其药用衍生物或其盐,可以治疗患有本文中描述的患任何疾病的病人。这些活性物质可以以液体或固体形式通过任何适当的途径给药,例如,口服、非肠道、静脉内、真皮内,皮下或局部给药。对于所有上述病症,此化合物优选的剂量为约1至50mg/kg、优选1至20mg/kg体重每天,更概括地说是0.1至约100mg每千克体重/天。药用衍生物的有效量可以根据所要使用的母体核苷的重量来计算。如果此衍生物本身具有活性,有效量可以如上所述用衍生物的重量估算,或通过本领域技术人员已知的其它途径评估。
此化合物以任何适宜的剂型单元方便地给药,包括但不限于每单元剂型含7至3000mg,优选70至1400mg活性组份的。口服剂量为50-1000mg一般是便利的。
理想中活性组份的使用应达到约0.2至70pM,优选约1.0至10μM的活性化合物的峰值血浆浓度。例如,可以通过静脉注射活性化合物的0.1至5%溶液(选择性地存在于生理盐水中)或通过活性化合物的快速浓注达到此目的。
在药物组合物中活性化合物的浓度依赖于药物的吸收、灭活和排泄速度以及其它本领域技术人员已知的因素。注意此剂量值还会随要减轻的病症的严重性变化。还应理解对于任何特定的对象,应按照此个体的需要和使用或建议使用此组合物的人的职业判断,来在一定时间内对特定的给药方案进行调整,而本文中给出的浓度范围只是举例而非旨在限制要求保护的组合物的范围或实施。该活性组份可以一次使用,或可以分为一些较小的剂量以可变的时间间隔给药。
此活性化合物的优选给药方式是口服。口服组合物一般含有惰性稀释剂或可食用的载体。它们可以包封在明胶胶囊或压制为片剂。为了口服治疗给药目的,此活性化合物可以与赋形剂掺混并以片剂、锭剂或胶囊的形式使用。药用粘合剂和/或辅料也可作为此组合物的一部分。
片剂、丸剂、胶囊、锭剂等可以含有任何下列组份或性质类似的化合物粘合剂如微晶纤维素、黄蓍胶或明胶;赋形剂如淀粉或乳糖,崩解剂如藻酸、Primogel或玉米淀粉;润滑剂如硬脂酸镁或Sterotes;助流剂如胶态二氧化硅;甜味剂如蔗糖或糖精;或矫味剂如薄荷脑、水杨酸甲酯或桔味香料。当此单元剂型是胶囊时,除上述物质外,其可以含有液体载体如脂肪油。此外,单元剂型中可以含有多种其它物质,其修饰此单元剂型的物理形式,例如,糖、紫胶或其它肠溶试剂。
此化合物可以作为酏剂、混悬剂、糖浆、糯米纸囊剂、口胶等的一种成分给药。除活性化合物外糖浆可以含有蔗糖作为甜味剂和某些防腐剂、染料和着色剂及矫味剂。
此化合物或其药用衍生物或盐还可以与不损害所需作用的其它活性物质混和,或与增补所需作用的物质混和,例如抗生素、抗真菌、抗炎药或其它抗病毒药,包括其它核苷化合物。用于非肠道、真皮内、皮下或局部给药的溶液剂或混悬剂可以含有下列组份灭菌稀释剂如注射用水、盐水溶液、固定油、聚乙二醇、甘油、丙二醇或其它合成溶剂;抗菌剂如苄醇或对羟基苯甲酸甲酯;抗氧化剂如抗坏血酸或亚硫酸氢钠;螯合剂如乙二胺四乙酸;缓冲剂如乙酸盐、枸橼酸盐或磷酸盐以及渗透压调节剂如氯化钠或右旋糖。非肠道制剂可以包封在安瓿、一次性注射器或玻璃或塑料制的多剂量小瓶中。
如果静脉内给药,优选载体是生理盐水或磷酸盐缓冲盐水(PBS)。
在优选的实施方案中,活性化合物与保护此化合物以防止其在体内的快速消除的载体配制,如控释制剂,包括埋植剂和微囊给药系统。可以使用生物可降解的、生物相容的聚合物,例如,亚乙基乙烯基乙酸酯、聚酸酐、聚乙醇酸、胶原、聚原酸酯和聚乳酸。制备这些制剂的方法对本领域技术人员来说是显而易见的。这些物质也可从Alza Corporation购买。
脂质体混悬剂(包括用抗病毒抗原的单克隆抗体靶向感染细胞的脂质体)也是优选的药用载体。它们可以按照本领域技术人员已知的方法制备,例如,美国专利No.4,522,811(将其整体引入作为参考)所述。例如,通过将适宜的脂(一种或多种)(如硬脂酰基磷酰基乙醇胺、硬脂酰基磷酰基胆碱、花生酰基磷脂酰基胆碱和胆固醇)溶解于无机溶剂,然后将此溶剂蒸发,在该容器的表面上留下干燥脂的薄膜,可以制备脂质体制剂。将活性化合物或其单磷酸盐、二磷酸盐和/或三磷酸盐衍生物的水溶液引入该容器中。然后,用手旋转此容器以让脂类物质从容器壁释出并分散脂类附聚物,于是形成脂质体混悬液。
参照优选的实施方案已对本发明本发明进行了描述。基于本发明的上述描述,本发明的变化和修饰形式对本领域技术人员来说是显而易见的。
权利要求
1.下式的2′-α-氟-核苷或其药用盐 其中碱基是嘌呤或嘧啶碱基;R1是OH,H,OR3,N3,CN,卤素包括F,或CF3,低级烷基,氨基,低级烷基氨基,二低级烷基氨基,或烷氧基;R2是H,磷酸根,包括单磷酸根,二磷酸根,三磷酸根,或稳定的磷酸盐前药;酰基,或其它药用离去基团,当体内使用时该基团能提供R2是H或磷酸根的化合物;磺酸酯包括烷基或芳烷基磺酰基、包括甲基磺酰基,苄基,其中苯基选择性被一个或多个上述芳基定义中所述的取代基取代,脂类,氨基酸,肽或胆固醇;而R3是酰基、烷基、磷酸根或其它药用离去基团,即当体内使用时能裂解为母体化合物的基团。
2.权利要求1的化合物或其药用盐,其中碱基是嘌呤碱基,R2是H、单磷酸根、二磷酸根、三磷酸根或酰基。
3.权利要求2的化合物或其药用盐,其中嘌呤碱基选自鸟嘌呤、腺嘌呤、次黄嘌呤、2,6-二氨基嘌呤和6-氯嘌呤。
4.权利要求1的化合物或其药用盐,其中碱基是嘧啶碱基,R2是H、单磷酸根、二磷酸根、三磷酸根或酰基。
5.权利要求5的化合物或其药用盐,其中碱基选自胸腺嘧啶、胞嘧啶、5-甲基胞嘧啶、尿嘧啶和5-氟尿嘧啶。
6. 药物组合物,其中含有与药用载体结合的、治疗有效量的下式化合物或其药用盐 其中碱基是嘌呤或嘧啶碱基;R1是OH,H,OR3,N3,CN,卤素包括F,或CF3,低级烷基,氨基,低级烷基氨基,二低级烷基氨基,或烷氧基;R2是H,磷酸根,包括单磷酸根,二磷酸根,三磷酸根,或稳定的磷酸盐前药;酰基,或其它药用离去基团,当体内使用时该基团能提供R2是H或磷酸根的化合物;磺酸酯包括烷基或芳烷基磺酰基、包括甲基磺酰基,苄基,其中苯基选择性被一个或多个上述芳基定义中所述的取代基取代,脂类,氨基酸,肽或胆固醇;而R3是酰基、烷基、磷酸根或其它药用离去基团,即当体内使用时能裂解为母体化合物的基团。
7.权利要求6组合物,其中碱基是选自鸟嘌呤、腺嘌呤、次黄嘌呤、2,6-二氨基嘌呤和6-氯嘌呤的嘌呤碱基或其药用盐。
8.权利要求6的组合物,其中碱基是选自胸腺嘧啶、胞嘧啶、5-甲基胞嘧啶、尿嘧啶和5-氟尿嘧啶的嘧啶碱基或其药用盐。
9.2′-氟代核苷或其药用盐在制备治疗人的乙型肝炎感染的药物中的用途,其中2′-氟代核苷具有下式 其中碱基是嘌呤或嘧啶碱基;R1是OH,H,OR3,N3,CN,卤素包括F,或CF3,低级烷基,氨基,低级烷基氨基,二低级烷基氨基,或烷氧基;R2是H,磷酸根,包括单磷酸根,二磷酸根,三磷酸根,或稳定的磷酸盐前药;酰基,或其它药用离去基团,当体内使用时该基团能提供R2是H或磷酸根的化合物;磺酸酯包括烷基或芳烷基磺酰基、包括甲基磺酰基,苄基,其中苯基选择性被一个或多个上述芳基定义中所述的取代基取代,脂类,氨基酸,肽或胆固醇;而R3是酰基、烷基、磷酸根或其它药用离去基团,即当体内使用时能裂解为母体化合物的基团,其中化合物或其药用盐选择性地与药用载体混和。
10.2′-氟代核苷或其药用盐在制备治疗人的丙型肝炎感染的药物中的用途,其中2′-氟代核苷具有下式 其中碱基是嘌呤或嘧啶碱基;R1是OH,H,OR3,N3,CN,卤素包括F,或CF3,低级烷基,氨基,低级烷基氨基,二低级烷基氨基,或烷氧基;R2是H,磷酸根,包括单磷酸根,二磷酸根,三磷酸根,或稳定的磷酸盐前药;酰基,或其它药用离去基团,当体内使用时该基团能提供R2是H或磷酸根的化合物;磺酸酯包括烷基或芳烷基磺酰基、包括甲基磺酰基,苄基,其中苯基选择性被一个或多个上述芳基定义中所述的取代基取代,脂类,氨基酸,肽或胆固醇;而R3是酰基、烷基、磷酸根或其它药用离去基团,即当体内使用时能裂解为母体化合物的基团,其中化合物或其药用盐选择性地与药用载体混和。
11.2′-氟代核苷或其药用盐在制备抑制人HIV复制的药物中的用途,其中2′-氟代核苷具有下式 其中碱基是嘌呤或嘧啶碱基;R1是OH,H,OR3,N3,CN,卤素包括F,或CF3,低级烷基,氨基,低级烷基氨基,二低级烷基氨基,或烷氧基;R2是H,磷酸根,包括单磷酸根,二磷酸根,三磷酸根,或稳定的磷酸盐前药;酰基,或其它药用离去基团,当体内使用时该基团能提供R2是H或磷酸根的化合物;磺酸酯包括烷基或芳烷基磺酰基、包括甲基磺酰基,苄基,其中苯基选择性被一个或多个上述芳基定义中所述的取代基取代,脂类,氨基酸,肽或胆固醇;而R3是酰基、烷基、磷酸根或其它药用离去基团,即当体内使用时能裂解为母体化合物的基团,其中化合物或其药用盐选择性地与药用载体混和。
12.2′-氟代核苷或其药用盐在制备治疗人的异常细胞增殖的药物中的用途,其中2′-氟代核苷具有下式 其中碱基是嘌呤或嘧啶碱基;R1是OH,H,OR3,N3,CN,卤素包括F,或CF3,低级烷基,氨基,低级烷基氨基,二低级烷基氨基,或烷氧基;R2是H,磷酸根,包括单磷酸根,二磷酸根,三磷酸根,或稳定的磷酸盐前药;酰基,或其它药用离去基团,当体内使用时该基团能提供R2是H或磷酸根的化合物;磺酸酯包括烷基或芳烷基磺酰基、包括甲基磺酰基,苄基,其中苯基选择性被一个或多个上述芳基定义中所述的取代基取代,脂类,氨基酸,肽或胆固醇;而R3是酰基、烷基、磷酸根或其它药用离去基团,即当体内使用时能裂解为母体化合物的基团,其中化合物或其药用盐选择性地与药用载体混和。
13.下式的2′-氟代核苷或其药用盐 其中碱基是嘌呤或嘧啶碱基;R1是OH,H,OR3,N3,CN,卤素包括F,或CF3,低级烷基,氨基,低级烷基氨基,二低级烷基氨基,或烷氧基;R2是H,磷酸根,包括单磷酸根,二磷酸根,三磷酸根,或稳定的磷酸盐前药;酰基,或其它药用离去基团,当体内使用时该基团能提供R2是H或磷酸根的化合物;磺酸酯包括烷基或芳烷基磺酰基、包括甲基磺酰基,苄基,其中苯基选择性被一个或多个上述芳基定义中所述的取代基取代,脂类,氨基酸,肽或胆固醇;而R3是酰基、烷基、磷酸根或其它药用离去基团,即当体内使用时能裂解为母体化合物的基团。
14.权利要求13的化合物或其药用盐,其中碱基是嘌呤碱基,R2是H、单磷酸根、二磷酸根、三磷酸根或酰基。
15.权利要求13的化合物或其药用盐,其中嘌呤碱基选自鸟嘌呤、腺嘌呤、次黄嘌呤、2,6-二氨基嘌呤和6-氯嘌呤。
16.权利要求13的化合物或其药用盐,其中碱基是嘧啶碱基,R2是H、单磷酸根、二磷酸根、三磷酸根或酰基。
17.权利要求16的化合物,其中碱基选自胸腺嘧啶、胞嘧啶、5-甲基胞嘧啶、尿嘧啶和5-氟尿嘧啶。
18.药物组合物,其中含有与药用载体混和的、治疗有效量的下式2′-氟-核苷或其药用盐 其中碱基是嘌呤或嘧啶碱基;R1是OH,H,OR3,N3,CN,卤素包括F,或CF3,低级烷基,氨基,低级烷基氨基,二低级烷基氨基,或烷氧基;R2是H,磷酸根,包括单磷酸根,二磷酸根,三磷酸根,或稳定的磷酸盐前药;酰基,或其它药用离去基团,当体内使用时该基团能提供R2是H或磷酸根的化合物;磺酸酯包括烷基或芳烷基磺酰基、包括甲基磺酰基,苄基,其中苯基选择性被一个或多个上述芳基定义中所述的取代基取代,脂类,氨基酸,肽或胆固醇;而R3是酰基、烷基、磷酸根或其它药用离去基团,即当体内使用时能裂解为母体化合物的基团。
19.权利要求18组合物,其中碱基是选自鸟嘌呤、腺嘌呤、次黄嘌呤、2,6-二氨基嘌呤和6-氯嘌呤的嘌呤碱基或其药用盐。
20.权利要求18的组合物,其中碱基是选自胸腺嘧啶、胞嘧啶、5-甲基胞嘧啶、尿嘧啶和5-氟尿嘧啶的嘧啶碱基或其药用盐。
21.2′-氟代核苷或其药用盐在制备治疗人的乙型肝炎感染的药物中的用途,其中2′-氟代核苷具有下式 其中碱基是嘌呤或嘧啶碱基;R1是OH,H,OR3,N3,CN,卤素包括F,或CF3,低级烷基,氨基,低级烷基氨基,二低级烷基氨基,或烷氧基;R2是H,磷酸根,包括单磷酸根,二磷酸根,三磷酸根,或稳定的磷酸盐前药;酰基,或其它药用离去基团,当体内使用时该基团能提供R2是H或磷酸根的化合物;磺酸酯包括烷基或芳烷基磺酰基、包括甲基磺酰基,苄基,其中苯基选择性被一个或多个上述芳基定义中所述的取代基取代,脂类,氨基酸,肽或胆固醇;而R3是酰基、烷基、磷酸根或其它药用离去基团,即当体内使用时能裂解为母体化合物的基团,其中化合物或其药用盐选择性地与药用载体混和。
22.2′-氟代核苷或其药用盐在制备治疗人的丙型肝炎感染的药物中的用途,其中2′-氟代核苷具有下式 其中碱基是嘌呤或嘧啶碱基;R1是OH,H,OR3,N3,CN,卤素包括F,或CF3,低级烷基,氨基,低级烷基氨基,二低级烷基氨基,或烷氧基;R2是H,磷酸根,包括单磷酸根,二磷酸根,三磷酸根,或稳定的磷酸盐前药;酰基,或其它药用离去基团,当体内使用时该基团能提供R2是H或磷酸根的化合物;磺酸酯包括烷基或芳烷基磺酰基、包括甲基磺酰基,苄基,其中苯基选择性被一个或多个上述芳基定义中所述的取代基取代,脂类,氨基酸,肽或胆固醇;而R3是酰基、烷基、磷酸根或其它药用离去基团,即当体内使用时能裂解为母体化合物的基团,其中化合物或其药用盐选择性地与药用载体混和。
23.2′-氟代核苷或其药用盐在制备抑制人HIV复制的药物中的用途,其中2′-氟代核苷具有下式 其中碱基是嘌呤或嘧啶碱基;R1是OH,H,OR3,N3,CN,卤素包括F,或CF3,低级烷基,氨基,低级烷基氨基,二低级烷基氨基,或烷氧基;R2是H,磷酸根,包括单磷酸根,二磷酸根,三磷酸根,或稳定的磷酸盐前药;酰基,或其它药用离去基团,当体内使用时该基团能提供R2是H或磷酸根的化合物;磺酸酯包括烷基或芳烷基磺酰基、包括甲基磺酰基,苄基,其中苯基选择性被一个或多个上述芳基定义中所述的取代基取代,脂类,氨基酸,肽或胆固醇;而R3是酰基、烷基、磷酸根或其它药用离去基团,即当体内使用时能裂解为母体化合物的基团,其中化合物或其药用盐选择性地与药用载体混和。
24.2′-氟代核苷或其药用盐在制备治疗人的异常细胞增殖的药物中的用途,其中2′-氟代核苷具有下式 其中碱基是嘌呤或嘧啶碱基;R1是OH,H,OR3,N3,CN,卤素包括F,或CF3,低级烷基,氨基,低级烷基氨基,二低级烷基氨基,或烷氧基;R2是H,磷酸根,包括单磷酸根,二磷酸根,三磷酸根,或稳定的磷酸盐前药;酰基,或其它药用离去基团,当体内使用时该基团能提供R2是H或磷酸根的化合物;磺酸酯包括烷基或芳烷基磺酰基、包括甲基磺酰基,苄基,其中苯基选择性被一个或多个上述芳基定义中所述的取代基取代,脂类,氨基酸,肽或胆固醇;而R3是酰基、烷基、磷酸根或其它药用离去基团,即当体内使用时能裂解为母体化合物的基团,其中化合物或其药用盐选择性地与药用载体混和。
25.下式的2′-氟代核苷或其药用盐 其中碱基是嘌呤或嘧啶碱基;R1是OH,H,OR3,N3,CN,卤素包括F,或CF3,低级烷基,氨基,低级烷基氨基,二低级烷基氨基,或烷氧基;R2是H,磷酸根,包括单磷酸根,二磷酸根,三磷酸根,或稳定的磷酸盐前药;酰基,或其它药用离去基团,当体内使用时该基团能提供R2是H或磷酸根的化合物;磺酸酯包括烷基或芳烷基磺酰基、包括甲基磺酰基,苄基,其中苯基选择性被一个或多个上述芳基定义中所述的取代基取代,脂类,氨基酸,肽或胆固醇;而R3是酰基、烷基、磷酸根或其它药用离去基团,即当体内使用时能裂解为母体化合物的基团。
26.权利要求24的化合物或其药用盐,其中碱基是嘌呤碱基,R2是H、单磷酸根、二磷酸根、三磷酸根或酰基。
27.权利要求26的化合物或其药用盐,其中嘌呤碱基选自鸟嘌呤、腺嘌呤、次黄嘌呤、2,6-二氨基嘌呤和6-氯嘌呤。
28.权利要求24的化合物或其药用盐,其中碱基是嘧啶碱基,R2是H、单磷酸根、二磷酸根、三磷酸根或酰基。
29.权利要求28的化合物,其中碱基选自胸腺嘧啶、胞嘧啶、5-甲基胞嘧啶、尿嘧啶和5-氟尿嘧啶。
30.药物组合物,其中含有与药用载体混和的、治疗有效量的下式2′-氟-核苷或其药用盐 其中碱基是嘌呤或嘧啶碱基;R1是OH,H,OR3,N3,CN,卤素包括F,或CF3,低级烷基,氨基,低级烷基氨基,二低级烷基氨基,或烷氧基;R2是H,磷酸根,包括单磷酸根,二磷酸根,三磷酸根,或稳定的磷酸盐前药;酰基,或其它药用离去基团,当体内使用时该基团能提供R2是H或磷酸根的化合物;磺酸酯包括烷基或芳烷基磺酰基、包括甲基磺酰基,苄基,其中苯基选择性被一个或多个上述芳基定义中所述的取代基取代,脂类,氨基酸,肽或胆固醇;而R3是酰基、烷基、磷酸根或其它药用离去基团,即当体内使用时能裂解为母体化合物的基团。
31.权利要求30组合物,其中碱基是选自鸟嘌呤、腺嘌呤、次黄嘌呤、2,6-二氨基嘌呤和6-氯嘌呤的嘌呤碱基或其药用盐。
32.权利要求30的组合物,其中碱基是选自胸腺嘧啶、胞嘧啶、5-甲基胞嘧啶、尿嘧啶和5-氟尿嘧啶的嘧啶碱基或其药用盐。
33.2′-氟代核苷或其药用盐在制备治疗乙型肝炎感染的药物中的用途,其中2′-氟代核苷具有下式 其中碱基是嘌呤或嘧啶碱基;R1是OH,H,OR3,N3,CN,卤素包括F,或CF3,低级烷基,氨基,低级烷基氨基,二低级烷基氨基,或烷氧基;R2是H,磷酸根,包括单磷酸根,二磷酸根,三磷酸根,或稳定的磷酸盐前药;酰基,或其它药用离去基团,当体内使用时该基团能提供R2是H或磷酸根的化合物;磺酸酯包括烷基或芳烷基磺酰基、包括甲基磺酰基,苄基,其中苯基选择性被一个或多个上述芳基定义中所述的取代基取代,脂类,氨基酸,肽或胆固醇;而R3是酰基、烷基、磷酸根或其它药用离去基团,即当体内使用时能裂解为母体化合物的基团,其中化合物或其药用盐选择性地与药用载体混和。
34.2′-氟代核苷或其药用盐在制备治疗丙型肝炎感染的药物中的用途,其中2′-氟代核苷具有下式 其中碱基是嘌呤或嘧啶碱基;R1是OH,H,OR3,N3,CN,卤素包括F,或CF3,低级烷基,氨基,低级烷基氨基,二低级烷基氨基,或烷氧基;R2是H,磷酸根,包括单磷酸根,二磷酸根,三磷酸根,或稳定的磷酸盐前药;酰基,或其它药用离去基团,当体内使用时该基团能提供R2是H或磷酸根的化合物;磺酸酯包括烷基或芳烷基磺酰基、包括甲基磺酰基,苄基,其中苯基选择性被一个或多个上述芳基定义中所述的取代基取代,脂类,氨基酸,肽或胆固醇;而R3是酰基、烷基、磷酸根或其它药用离去基团,即当体内使用时能裂解为母体化合物的基团,其中化合物或其药用盐选择性地与药用载体混和。
35.2′-氟代核苷或其药用盐在制备抑制HIV复制的药物中的用途,其中2′-氟代核苷具有下式 其中碱基是嘌呤或嘧啶碱基;R1是OH,H,OR3,N3,CN,卤素包括F,或CF3,低级烷基,氨基,低级烷基氨基,二低级烷基氨基,或烷氧基;R2是H,磷酸根,包括单磷酸根,二磷酸根,三磷酸根,或稳定的磷酸盐前药;酰基,或其它药用离去基团,当体内使用时该基团能提供R2是H或磷酸根的化合物;磺酸酯包括烷基或芳烷基磺酰基、包括甲基磺酰基,苄基,其中苯基选择性被一个或多个上述芳基定义中所述的取代基取代,脂类,氨基酸,肽或胆固醇;而R3是酰基、烷基、磷酸根或其它药用离去基团,即当体内使用时能裂解为母体化合物的基团,其中化合物或其药用盐选择性地与药用载体混和。
36.2′-氟代核苷或其药用盐在制备治疗人的异常细胞增殖的药物中的用途,其中2′-氟代核苷具有下式 其中碱基是嘌呤或嘧啶碱基;R1是OH,H,OR3,N3,CN,卤素包括F,或CF3,低级烷基,氨基,低级烷基氨基,二低级烷基氨基,或烷氧基;R2是H,磷酸根,包括单磷酸根,二磷酸根,三磷酸根,或稳定的磷酸盐前药;酰基,或其它药用离去基团,当体内使用时该基团能提供R2是H或磷酸根的化合物;磺酸酯包括烷基或芳烷基磺酰基、包括甲基磺酰基,苄基,其中苯基选择性被一个或多个上述芳基定义中所述的取代基取代,脂类,氨基酸,肽或胆固醇;而R3是酰基、烷基、磷酸根或其它药用离去基团,即当体内使用时能裂解为母体化合物的基团,其中化合物或其药用盐选择性地与药用载体混和。
37.下式的2′-氟代核苷或其药用盐 其中碱基是嘌呤或嘧啶碱基;R1是OH,H,OR3,N3,CN,卤素包括F,或CF3,低级烷基,氨基,低级烷基氨基,二低级烷基氨基,或烷氧基;R2是H,磷酸根,包括单磷酸根,二磷酸根,三磷酸根,或稳定的磷酸盐前药;酰基,或其它药用离去基团,当体内使用时该基团能提供R2是H或磷酸根的化合物;磺酸酯包括烷基或芳烷基磺酰基、包括甲基磺酰基,苄基,其中苯基选择性被一个或多个上述芳基定义中所述的取代基取代,脂类,氨基酸,肽或胆固醇;而R3是酰基、烷基、磷酸根或其它药用离去基团,即当体内使用时能裂解为母体化合物的基团。
38.权利要求37的化合物或其药用盐,其中碱基是嘌呤碱基,R2是H、单磷酸根、二磷酸根、三磷酸根或酰基。
39.权利要求38的化合物或其药用盐,其中嘌呤碱基选自鸟嘌呤、腺嘌呤、次黄嘌呤、2,6-二氨基嘌呤和6-氯嘌呤。
40.权利要求37的化合物或其药用盐,其中碱基是嘧啶碱基,R2是H、单磷酸根、二磷酸根、三磷酸根或酰基。
41.权利要求40的化合物或其药用盐,其中碱基选自胸腺嘧啶、胞嘧啶、5-甲基胞嘧啶、尿嘧啶和5-氟尿嘧啶。
42.药物组合物,其中含有与药用载体混和的、治疗有效量的下式2′-氟-核苷或其药用盐 其中碱基是嘌呤或嘧啶碱基;R1是OH,H,OR3,N3,CN,卤素包括F,或CF3,低级烷基,氨基,低级烷基氨基,二低级烷基氨基,或烷氧基;R2是H,磷酸根,包括单磷酸根,二磷酸根,三磷酸根,或稳定的磷酸盐前药;酰基,或其它药用离去基团,当体内使用时该基团能提供R2是H或磷酸根的化合物;磺酸酯包括烷基或芳烷基磺酰基、包括甲基磺酰基,苄基,其中苯基选择性被一个或多个上述芳基定义中所述的取代基取代,脂类,氨基酸,肽或胆固醇;而R3是酰基、烷基、磷酸根或其它药用离去基团,即当体内使用时能裂解为母体化合物的基团。
43.权利要求42组合物,其中碱基是选自鸟嘌呤、腺嘌呤、次黄嘌呤、2,6-二氨基嘌呤和6-氯嘌呤的嘌呤碱基或其药用盐。
44.权利要求42的组合物,其中碱基是选自胸腺嘧啶、胞嘧啶、5-甲基胞嘧啶、尿嘧啶和5-氟尿嘧啶的嘧啶碱基或其药用盐。
45.2′-氟代核苷或其药用盐在制备治疗乙型肝炎感染的药物中的用途,其中2′-氟代核苷具有下式 其中碱基是嘌呤或嘧啶碱基;R1是OH,H,OR3,N3,CN,卤素包括F,或CF3,低级烷基,氨基,低级烷基氨基,二低级烷基氨基,或烷氧基;R2是H,磷酸根,包括单磷酸根,二磷酸根,三磷酸根,或稳定的磷酸盐前药;酰基,或其它药用离去基团,当体内使用时该基团能提供R2是H或磷酸根的化合物;磺酸酯包括烷基或芳烷基磺酰基、包括甲基磺酰基,苄基,其中苯基选择性被一个或多个上述芳基定义中所述的取代基取代,脂类,氨基酸,肽或胆固醇;而R3是酰基、烷基、磷酸根或其它药用离去基团,即当体内使用时能裂解为母体化合物的基团,其中化合物或其药用盐选择性地与药用载体混和。
46.2′-氟代核苷或其药用盐在制备治疗丙型肝炎感染的药物中的用途,其中2′-氟代核苷具有下式 其中碱基是嘌呤或嘧啶碱基;R1是OH,H,OR3,N3,CN,卤素包括F,或CF3,低级烷基,氨基,低级烷基氨基,二低级烷基氨基,或烷氧基;R2是H,磷酸根,包括单磷酸根,二磷酸根,三磷酸根,或稳定的磷酸盐前药;酰基,或其它药用离去基团,当体内使用时该基团能提供R2是H或磷酸根的化合物;磺酸酯包括烷基或芳烷基磺酰基、包括甲基磺酰基,苄基,其中苯基选择性被一个或多个上述芳基定义中所述的取代基取代,脂类,氨基酸,肽或胆固醇;而R3是酰基、烷基、磷酸根或其它药用离去基团,即当体内使用时能裂解为母体化合物的基团,其中化合物或其药用盐选择性地与药用载体混和。
47.2′-氟代核苷或其药用盐在制备抑制HIV复制的药物中的用途,其中2′-氟代核苷具有下式 其中碱基是嘌呤或嘧啶碱基;R1是OH,H,OR3,N3,CN,卤素包括F,或CF3,低级烷基,氨基,低级烷基氨基,二低级烷基氨基,或烷氧基;R2是H,磷酸根,包括单磷酸根,二磷酸根,三磷酸根,或稳定的磷酸盐前药;酰基,或其它药用离去基团,当体内使用时该基团能提供R2是H或磷酸根的化合物;磺酸酯包括烷基或芳烷基磺酰基、包括甲基磺酰基,苄基,其中苯基选择性被一个或多个上述芳基定义中所述的取代基取代,脂类,氨基酸,肽或胆固醇;而R3是酰基、烷基、磷酸根或其它药用离去基团,即当体内使用时能裂解为母体化合物的基团,其中化合物或其药用盐选择性地与药用载体混和。
48.2′-氟代核苷或其药用盐在制备治疗人的异常细胞增殖的药物中的用途,其中2′-氟代核苷具有下式 其中碱基是嘌呤或嘧啶碱基;R1是OH,H,OR3,N3,CN,卤素包括F,或CF3,低级烷基,氨基,低级烷基氨基,二低级烷基氨基,或烷氧基;R2是H,磷酸根,包括单磷酸根,二磷酸根,三磷酸根,或稳定的磷酸盐前药;酰基,或其它药用离去基团,当体内使用时该基团能提供R2是H或磷酸根的化合物;磺酸酯包括烷基或芳烷基磺酰基、包括甲基磺酰基,苄基,其中苯基选择性被一个或多个上述芳基定义中所述的取代基取代,脂类,氨基酸,肽或胆固醇;而R3是酰基、烷基、磷酸根或其它药用离去基团,即当体内使用时能裂解为母体化合物的基团,其中化合物或其药用盐选择性地与药用载体混和。
全文摘要
公开了用于治疗乙型肝炎感染、丙型肝炎感染、HIV和异常细胞增殖包括肿瘤和癌症的2′-氟代核苷化合物。这些化合物具有通式(I)、(II)、(III)、(IV)或其药用盐,其中碱基是嘌呤或嘧啶碱基;R
文档编号C07H19/20GK101089010SQ200610108548
公开日2007年12月19日 申请日期1999年2月25日 优先权日1998年2月25日
发明者雷蒙德F·辛纳兹, 丹尼斯C·利奥塔, C·K·朱, J·杰弗里·麦卡蒂, 施俊生, Y·蔡, K·李, J·H·洪 申请人:埃莫里大学, 佐治亚州大学研究基金会有限公司, 雷蒙德F·辛纳兹, 丹尼斯C·利奥塔, C·K·朱, J·杰弗里·麦卡蒂, 施俊生, Y·蔡, K·李, J·H·洪
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1