细胞毒性剂的被动靶向的利记博彩app

文档序号:3475396阅读:634来源:国知局
专利名称:细胞毒性剂的被动靶向的利记博彩app
技术领域
本发明涉及与非特异性抗体共轭结合的细胞毒性剂的被动靶向。
背景技术
细胞毒性化学治疗的使用已改善了患有各种类型癌症的患者的存活率。在用于抵抗选择性赘生性疾病中,例如青年人的急性淋巴细胞白血病和何杰金氏淋巴瘤(Hodgkinlymphomas),细胞毒性药物的鸡尾酒疗法可诱使完全治愈。不幸的是,如目前所应用的化学治疗并不引起大部分癌症的完全恢复。多种原因可解释此功效的相对缺失。其中,大部分化学疗法的低治疗指数是医药学改良的可能目标。低治疗指数反应功效与药物毒性剂量间的较小差距,其可防止投与根除肿瘤所必需的足够高剂量并获得治疗效果。
解决此问题的一种策略在于使用所谓的魔力子弹。魔力子弹由化学连接至抗体的细胞毒性化合物组成。将细胞毒性抗癌药物与识别肿瘤相关性抗原的抗体结合可改良药物的治疗指数。理想的是,所述抗体应识别在肿瘤细胞表面专门表达的肿瘤相关性抗原(TAA)。此策略使得可在将正常组织暴露减至最少的同时,将细胞毒性剂递送至肿瘤位点。抗体可将细胞毒性剂特异性递送至肿瘤,且从而降低全身毒性。
对于全身性药物治疗所研发的药物共轭物是靶特异性细胞毒性剂。所述概念涉及将治疗剂偶合至对所定义的靶细胞群具有特异性的载剂分子。对抗原具有高亲合力的抗体是作为靶向部分的天然选择。在高亲合力单克隆抗体可用的情况下,抗体靶向疗法的前景变得令人期待。已与单克隆抗体共轭的毒性物质包括毒素、低分子量细胞毒性药物、生物应答调节剂和放射性核素。通常将抗体-毒素共轭物称为免疫毒素,而将由抗体和低分子量药物(例如甲氨喋呤(methotrexate)和阿霉素(adriamycin))组成的免疫共轭物称为化学免疫共轭物。免疫调节剂含有已知具有调节功能的生物应答调节剂,例如淋巴因子、生长因子和补体活化眼镜蛇毒因子(CVF)。放射免疫共轭物由放射性同位素组成,其可用作治疗剂而通过其放射性来杀死细胞,或用于成像。预期细胞毒性药物通过抗体介导而特异性递送至肿瘤细胞不仅可增强其抗肿瘤功效,而且可防止正常组织的非靶向吸收,因此增加其治疗指数。
研发使用抗菌剂和抗肿瘤剂的有效家族中的一员的免疫共轭物(广泛称为卡奇霉素或LL-E33288复合物)以用于治疗癌症。最为有效的卡奇霉素命名为γ1I,其在本文中简单引用为γ。这些化合物含有可与适当硫醇反义以形成二硫化物的甲基三硫化物,同时引入例如酰肼的官能基,或可用于将卡奇霉素衍生物连接至载剂的其他官能基。卡奇霉素含有烯二炔弹头,其由-S-S-键的还原而活化,导致双链DNA的断裂。
MYLOTARG,也称为CMA-676或CMA,是根据所述原理作用的唯一市售药物。目前已认可MYLOTARG(吉妥珠单抗奥唑米星(gemtuzumab ozogamicin))用于治疗老龄患者的急性骨髓性白血病。所述药物由抵抗CD33的抗体组成,CD33通过酸可水解连接子与卡奇霉素结合。半合成N-乙酰基γ卡奇霉素的二硫化物类似物用于共轭(美国专利第5,606,040号,和第5,770,710号,其全文以引用的方式并入本文)。下文将此分子N-乙酰基γ卡奇霉素二甲基酰肼简写为CM。
在研发用于多种癌症的治疗中使用靶向细胞毒素已受到特异性靶向药剂(载剂)的可用性,以及当与载剂(即,药物负载)共轭的卡奇霉素衍生物的量增加时导致形成蛋白聚集体的共轭方法的限制。举例来说,尽管卡奇霉素是具有低治疗指数的有效化学治疗剂,但其在用于临床时需要靶向肿瘤细胞。所述靶向策略对于由肿瘤细胞(活性靶向)的特异性抗原表达的依赖性限制了其应用范围。因此,需要设计出新颖且经改良的方法以投与共轭至抗体的细胞毒素,例如卡奇霉素。

发明内容
本发明提供一种治疗癌细胞的方法,其包含对需要其的患者投与治疗有效量的与细胞毒素共轭的非特异性抗体,其中所述癌细胞不表达与非特异性抗体结合的抗原。在一实施例中,非特异性抗体是抗-CD33抗体(例如hp67.6)且癌细胞不表达CD33,抗-CD22抗体(例如g5/44)且癌细胞不表达CD22,抗-CD20抗体(例如利妥昔单抗)且癌细胞不表达CD20。在另一实施例中,非特异性抗体不与人类抗原结合。举例来说,所治疗的癌细胞可为胃癌细胞、结肠癌细胞、非小细胞肺癌细胞(NSCLC)、乳癌细胞、表皮样癌细胞或前列腺癌细胞。
在本方法的一实施例中,细胞毒素为卡奇霉素。可使用4-(4′-乙酰基苯氧基)丁酸(AcBut)或(3-乙酰基苯基)乙酸(AcPAc)连接子将卡奇霉素共轭至非特异性抗体。
在另一实施例中,与细胞毒素共轭的非特异性抗原的抗体与生物活性剂(例如抗癌剂)组合投与。


图1由肿瘤体积(mm3)对肿瘤生长期(天数)的曲线表明hp67.6-AcBut-CalichDMH对CD33阴性(CD33-)表皮样癌异种移植体的生长抑制作用;图1A显示用酸不稳定性AcBut连接子将卡奇霉素共轭至hp67.6,图1B显示用酸稳定性Amide连接子将卡奇霉素共轭至hp67.6,且图1C显示作为对照的游离卡奇霉素。符号代表10(PBS处理)或5只动物(卡奇霉素或共轭物处理)的平均肿瘤体积,而误差条线指示标准偏差。所有组的小鼠都接受3次腹膜内每只小鼠1剂量的方案,其间隔为4天(Q4Dx3)。

中括号间的数字指示在单一剂量中作为游离药物或共轭形式所给的卡奇霉素的量(μg/小鼠)。
图2表明125I-标记的hp67.6-AcBut-CalichDMH作为在带有CD33-肿瘤的小鼠中的时间函数的分布;图2A显示肿瘤,图2B显示血液,图2C显示肝,图2D显示脑,图2E显示皮肤,图2F显示脾,图2G显示横纹肌,图2H显示肺、图2I显示肾,图2J显示心脏,且图2K显示肠。各种正常组织和肿瘤(A431)异种移植体中hp67.6-AcBut-CalichDMH的量都相对于全血中共轭物的量(空心圆,Y1轴,血液%)或注射量(实心圆,Y2轴,%ID/g)来表示。所有数据点反映5个样品的平均值,而误差条线指示标准偏差。
图3表明使用hp67.6、g5/44和利妥昔单抗作为载剂的卡奇霉素的被动靶向对肿瘤生长的抑制作用;图3A显示抵抗N87异种移植体的hp67.6-AcBut-CalichDMH和利妥昔单抗-AcBut-CalichDMH;图3B显示抵抗N87的g5/44-AcBut-CalichDMH和hp67.6-AcBut-CalichDMH,且图3C显示抵抗MDAMB435/5T4的g5/44-AcBut-CalichDMH和hp67.6-AcBut-CalichDMH。所有组的经共轭物处理的小鼠都接受3次腹膜内每只小鼠1剂量4μg CalichDMH的方案,其间隔为4天(Q4Dx3)。各点代表n次肿瘤测量的平均值(参看说明),而误差条线反映标准偏差。
图4表明HSA、PEG化Fc和PEG化hp67.6的卡奇霉素共轭物对肿瘤生长的抑制作用。将MOPC-21-AcPAc-CalichDMH(图4A)对A431异种移植体生长的影响与HSA-AcPAc-CalichDMH(图4B)对A431异种移植体生长的影响进行比较。每一点代表5(共轭物处理)或10(PBS)个异种移植体的平均肿瘤体积。所有组的小鼠都接受3次腹膜内每只小鼠1剂量的方案,其间隔为4天(Q4Dx3)。

中括号间的数字指示在单一剂量中给出的卡奇霉素的量(μg/小鼠)。在图4C中,将PEG化Fc片段的卡奇霉素共轭物对A431异种移植体生长的抑制作用与hp67.6-AcBut-CalichDMH对A431异种移植体生长的抑制作用进行比较。每一点代表5(共轭物处理)或10(PBS)个异种移植体的平均肿瘤体积。hp67.6和PEG化形式的抗体(hp67.6PEGB)的卡奇霉素共轭物的功效也显示抵抗N87肿瘤异种移植体(图4D)。每一点代表经PBS或hp67.6PEGB-AcBut-CalichDMH处理的10只小鼠组的平均肿瘤体积,和经hp67.6-AcBut-CalichDMH处理的小鼠组中7只小鼠的平均肿瘤体积。在图4C和4D中,所有组的经共轭物处理的小鼠都接受3次腹膜内每只小鼠1剂量4μg CalichDMH的方案,其间隔为4天(Q4Dx3)。所有平面中的误差条线都反映标准偏差。
图5表明与肿瘤细胞活体外对卡奇霉素的敏感性相关的卡奇霉素的被动靶向对肿瘤生长的抑制作用。将肿瘤细胞系(X-轴,图5A和5B)对卡奇霉素的敏感性表示为CalichDMH(Y1轴,图5A)或hp67.6-AcBut-CalichDMH(Y1轴,图5B)的ED50-值。各条线的高度反映至少3个独立ED50测定数据的中值。将肿瘤异种移植体对hp67.6-AcBut-CalichDMH的敏感性表示为T/Cmin(Y2轴,图5A和5B)。T/Cmin值(黑色菱形,虚线指数回归曲线)是由单一实验(A431/Ley,PC3MM2,KB8.5,HT29)或多个实验的中值(N87[n=6],PCI4PE6[n=3],LOVO[n=3],L2987[n=2],MDAMB435/5T4[n=2],A431[n=3],LNCaP[n=2])所获得的测定数据。在经3次腹膜内每只小鼠1剂量4μg CalichDMH的方案(其间隔为4天(Q4Dx3))处理后,测定hp67.6-AcBut-CalichDMH的所有T/Cmin值。
具体实施例方式
本申请案涉及细胞毒素-抗体共轭物在各种人类肿瘤中导致肿瘤恢复的能力。所述肿瘤并不显示可检测量的由抗体识别的抗原。因此,将所述处理称为被动靶向。在被动靶向中,在缺少可检测量靶向抗原的情况下,非特异性抗体与细胞毒素的共轭物在人类肿瘤中积累。因此,例如借助于抗体或免疫球蛋白载剂的卡奇霉素的被动靶向是安全投与治疗有效量卡奇霉素的有效策略。
被动靶向策略可基于肿瘤的增强渗透性和滞留作用(EPR)。尽管并不倾向限制于作用的任何特定方法,但此作用可使得粒子或水溶性高分子在肿瘤中积累,这是由于其血管的有孔内皮的渗漏以及不适当的淋巴引流。
卡奇霉素共轭物的被动靶向在多种人类肿瘤中产生治疗益处。IgG分子的分子特征和酸不稳定性连接子的使用对于通过被动靶向达到功效而言可具有重要意义。当肿瘤不表达肿瘤相关性抗原时,或当所述抗原的肿瘤外表达阻止使用活性靶向的卡奇霉素共轭物时,可证明设计用于被动靶向的卡奇霉素共轭物在靶向递送中具有临床优势。
适用于本发明的治疗剂为抑制或破坏微管蛋白聚合的细胞毒性药物,结合至DNA并破坏DNA的烷基化药剂,和抑制蛋白合成的药剂或基本细胞蛋白(例如蛋白激酶、酶和细胞周期素)。所述细胞毒性药物的实例包括(但不限于)塞替派(thiotepa)、紫杉烷类(taxanes)、长春新碱(vincristine)、柔红霉素(daunorubicin)、多柔比星(doxorubicin)、表柔比星(epirubicin)、放线菌素(actinomycin)、奥莱霉素(authramycin)、氮杂丝氨酸(azaserines)、博莱霉素(bleomycin)、他莫西芬(tamoxifen)、伊达柔比星(idarubicin)、多拉斯他丁(dolastatin)/奥利斯他丁(auristatin)、海梅斯特林(hemiasterlin)、艾博米新(esperamicin)和梅坦斯诺德(maytansinoid)。
优选细胞毒性药物是卡奇霉素,其为甲基三硫化物抗肿瘤抗生素的实例。如上文所述,卡奇霉素指的是一类抗菌剂和抗肿瘤剂,如美国专利第4,970,198号中所述(也参看美国专利第5,108,912号中所述,二者全文都以引用的方式并入本文)。在本方法的一个优选实施例中,卡奇霉素是卡奇霉素的N-酰基衍生物,或卡奇霉素的二硫化物类似物。所述化合物的二氢衍生物描述于美国专利第5,037,651号中,且N-酰化衍生物描述于美国专利第5,079,233号中,二者全文都以引用的方式并入本文。也可用于本发明的相关化合物包括艾博米新,描述于美国专利第4,675,187号;第4,539,203号;第4,554,162号和第4,837,206号中,所有专利全文都以引用的方式并入本文。所有所述化合物都含有可与适当硫醇反应以形成二硫化物的甲基三硫化物,同时引入例如酰肼的官能基或类似亲核试剂。可用于本发明的两种化合物描述于美国专利第5,053,394号中,且展示于美国专利第5,877,296号的表1中,γ二甲基酰肼和N-乙酰基γ二甲基酰肼。上述专利引用中的所有信息都以引用的方式并入本文。
在本发明的上下文中,卡奇霉素优选为N-乙酰基γ卡奇霉素二甲基酰肼(N-乙酰基卡奇霉素DMH)。在当前使用中,N-乙酰基卡奇霉素DMH比大部分细胞毒性化学治疗剂至少有效10至100倍。其高效性使其成为抗体靶向治疗的理想候选药剂,从而使抗肿瘤活性最大化,同时减少正常器官和组织的非特异性暴露。
因此,在一实施例中,本发明的共轭物具有下式Pr(-X-W)m其中Pr为抗体;X为包含可与抗体反应的任何反应性基团的产物的连接子;W为来自卡奇霉素家族的细胞毒性药物;m为经纯化共轭产物的平均负载,以使得卡奇霉素占共轭物的3-9重量%;且(-X-W)m为细胞毒性药物衍生物。
X优选具有下式(CO-Alk1-Sp1-Ar-Sp2-Alk2-C(Z1)=Q-Sp)其中Alk1和Alk2独立为键或分枝或未分枝的(C1-C10)亚烃基链;Sp1为键、-S-、-O-、-CONH-、-NHCO-、-NR-、-N(CH2CH2)2N-或-X-Ar-Y-(CH2)n-Z,其中X、Y和Z独立为键、-NR-、-S-或-O-,其限制条件在于当n=0时,则Y和Z中的至少一者必须为键且Ar为视情况经(C1-C5)烷基、(C1-C4)烷氧基、(C1-C4)硫代烷氧基、卤素、硝基、-COOR、-CONHR、-(CH2)nCOOR、-S(CH2)nCOOR、-O(CH2)nCONHR或-S(CH2)nCONHR中的一个、二个或三个基团取代的1,2-、1,3-或1,4-亚苯基,其限制条件在于当Alk1为键时,Sp1为键;n为0至5的整数;R为视情况经-OH、(C1-C4)烷氧基、(C1-C4)硫代烷氧基、卤素、硝基、(C1-C3)二烷基氨基或(C1-C3)三烷基铵-A-(其中A-为形成盐的医药学上可接受的阴离子)中的一个或两个基团取代的分枝或未分枝(C1-C5)链;Ar为视情况经(C1-C6)烷基、(C1-C5)烷氧基、(C1-C4)硫代烷氧基、卤素、硝基、-COOR、-CONHR、-O(CH2)nCOOR、-S(CH2)nCOOR、-O(CH2)nCONHR或-S(CH2)nCONHR中的一个、二个或三个基团取代的1,2-、1,3-或1,4-亚苯基,其中n和R如上文所定义,或为1,2-、1,3-、1,4-、1,5-、1,6-、1,7-、1,8-、2,3-、2,6-或2,7-亚萘基或 其中各亚萘基或吩噻嗪视情况经(C1-C6)烷基、(C1-C5)烷氧基、(C1-C4)硫代烷氧基、卤素、硝基、-COOR、-CONHR、-O(CH2)nCOOR、-S(CH2)nCOOR或-S(CH2)nCONHR中的一个、二个、三个或四个基团取代,其中n和R如上文所定义,其限制条件在于当Ar为吩噻嗪时,Sp1为仅连接至氮的键;Sp2为键、-S-或-O-,其限制条件在于当Alk2为键时,Sp2为键;Z1为H、视情况经(C1-C5)烷基、(C1-C5)烷氧基、(C1-C4)硫代烷氧基、卤素、硝基、-COOR、-ONHR、-O(CH2)nCOOR、-S(CH2)nCOOR、-O(CH2)nCONHR或-S(CH2)nCONHR中的一个、二个或三个基团取代的(C1-C5)烷基或苯基,其中n和R如上文所定义;Sp为直链或支链二价或三价(C1-C18)基团,二价或三价芳基或杂芳基,二价或三价(C3-C18)环烷基或杂环烷基,二价或三价芳基-或杂芳基-芳基(C1-C18)基团,二价或三价环烷基-或杂环烷基-烷基(C1-C18)基团,或二价或三价(C2-C18)不饱和烷基,其中杂芳基优选为呋喃基、噻吩基、N-甲基吡咯基、吡啶基、N-甲基咪唑基、噁唑基、嘧啶基、喹啉基、异喹啉基、N-甲基咔唑基、氨基香豆素基或吩嗪基,且其中如果Sp为三价基团,则Sp额外可经低碳数(C1-C5)二烷基氨基、低碳数(C1-C5)烷氧基、羟基或低碳数(C1-C5)烷硫基取代;且Q为=NHNCO-、=NHNCS-、=NHNCONH-、=NHNCSNH-或=NHO-。
Alk1优选为分枝或未分枝的(C1-C10)亚烷基链;Sp为键、-S-、-O-、-CONH-、-NHCO-或-NR,其中R如上文所定义,其限制条件在于当Alk1为键时,Sp1为键;Ar为视情况经(C1-C6)烷基、(C1-C5)烷氧基、(C1-C4)硫代烷氧基、卤素、硝基、-COOR、-CONHR、-O(CH2)nCOOR、-S(CH2)nCOOR、-O(CH2)nCONHR或-S(CH2)nCONHR中的一个、二个或三个基团取代的1,2-、1,3-或1,4-亚苯基,其中n和R如上文所定义,或Ar为各自视情况经(C1-C6)烷基、(C1-C5)烷氧基、(C1-C4)硫代烷氧基、卤素、硝基、-COOR、-CONHR、-O(CH2)nCOOR、-S(CH2)nCOOR、-O(CH2)nCONHR或-S(CH2)nCONHR中的一个、二个、三个或四个基团取代的1,2-、1,3-、1,4-、1,5-、1,6-、1,7-、1,8-、2,3-、2,6-或2,7-亚萘基。
Z1为视情况经(C1-C5)烷基、(C1-C4)烷氧基、(C1-C4)硫代烷氧基、卤素、硝基、-COOR、-CONHR、-O(CH2)nCOOR、-S(CH2)nCOOR、-O(CH2)nCONHR或-S(CH2)nCONHR中的一个、二个或三个基团取代的(C1-C5)烷基或苯基。
Alk2和Sp2一起为键。
Sp和Q直接如上文所定义。
在一实施例中,本发明的共轭物利用以包括任何与抗体反应的反应性基团的连接子所衍生的细胞毒性药物卡奇霉素,其用作蛋白质载剂靶向剂以形成细胞毒性药物衍生物-抗体共轭物。全文以引用的方式并入本文的美国专利第5,773,001号、第5,739,116号和第5,877,296号揭示可与由卡奇霉素所制备的亲核试剂衍生物(尤其是酰肼和相关亲核试剂)一起使用的连接子。所述连接子尤其可用于以下情况当在药物与连接子之间所形成的键可水解时,获得较佳活性。所述连接子含有两个官能基。一个基团一般为用于与载剂反应的羧酸。当经适当活化时,酸官能基可与载剂的游离胺基(例如抗体或其他蛋白质载剂的赖氨酸侧链中的胺)形成酰胺键。其他官能基通常是羰基,即与经适当改质的治疗剂反应的醛或酮。羰基可与药物上的酰肼基反应而形成腙键。这种键可水解(所述连接子特定为酸不温定),以使得治疗剂在结合至靶细胞以后从共轭物中释放出来。可水解连接子优选为4-(4-乙酰基苯氧基)丁酸(AcBut)或(3-乙酰基苯基)乙酸(AcPAc)。
除了免疫球蛋白的载剂功能以外,酸不稳定连接子的用途与卡奇霉素共轭物的功效相关。尽管并不希望受任何特定理论或作用机制的约束,但在卡奇霉素共轭物在肿瘤中积累以后,细胞外周的酸性环境可用于释放卡奇霉素。这种机制可能与卡奇霉素共轭物的活体内肿瘤消解作用与肿瘤细胞对卡奇霉素的活体外敏感性一致的事实相关。此外,胞饮作用也可能与并入卡奇霉素共轭物的机制相关。然而,由于酸稳定性连接子在无靶向抗原下无效,因此此贡献可能具有较差的相关性。
本发明的抗体为非特异性抗体。所述抗体对细胞毒性共轭物所投与的肿瘤细胞上不存在的抗原具有特异性。可使用任何已知的方法来确定来自肿瘤细胞的抗原是否存在,例如FACS或BIA核心分析。通过由其他高分子取代共轭物中的免疫球蛋白,可识别在卡奇霉素共轭物的治疗活性下的载剂特征。通常适用于活性靶向的载剂的实例为脂质体、白蛋白、葡聚糖或聚乙二醇(PEG)聚合物。发现与白蛋白的积累相比,免疫球蛋白在移植肿瘤中的积累更为显著,与此发现一致的是,在不降低或损失共轭物功效的情况下,抗体既不可由白蛋白置换,也不可由PEG化Fc片段置换。
可用于本发明的抗体实例包括单克隆抗体(mAb),例如嵌合抗体、人源化抗体、灵长化抗体、重整表面抗体、人类抗体和其生物活性片段,而不考虑其特异性、同型或等电点。除非另外说明,否则如本文所用的术语抗体广泛用于指示抗体分子和各种抗体衍生分子。所述抗体衍生分子包含至少一个可变区(重链可变区或轻链可变区),且包括例如Fab片段、F(ab′)2片段、Fd片段、Fabc片段、Sc抗体(单链抗体)、双功能抗体、个别抗体轻单链、个别抗体重链、抗体链与其他分子之间的嵌合融合体等的分子。
用于本发明的抗体优选为具有两条重链和两条轻链的竞争性免疫球蛋白。举例来说,可能必需IgG分子的分子质量和蛋白通用结构以将足量卡奇霉素靶向肿瘤而不引发小鼠的致命性。
本发明的抗体可对任何TAA具有特异性,例如包括CD22、CD33、HER2/neu;EGFR;PSMA;PSCA;MIRACL-26457;CEA;Lewis Y(Ley)或5T4。例示性抗体包括hp67.6和g5/44,其为分别特异性识别人类CD33或CD22的人源化IgG4抗体(参看美国专利第5,773,001号和美国申请案第2004/0082764 A1号和第2004/0192900 A1号,其都以全文引用的方式并入本文)。RITUXAN(利妥昔单抗)(IDEC Pharmaceuticals Corporationand Genentech)也为例示性抗体,其为识别CD20的嵌合IgG1-k抗体。另一实例为命名为hu3S193的抗-Lewis Y抗体(参看美国专利第6,310,185号、第6,518,415号、第5,874,060号,其全文以引用的方式并入本文),或者G193,其描述于题为“卡奇霉素共轭物(Calicheamicin Conjugates)”(AM101462)的同在申请中的申请案中。由于TAA为肿瘤细胞的罕见专有产物,且所述抗原(例如Ley、EGFR或Her2/neu)在正常组织中的表达可引起对于识别所述抗原的卡奇霉素共轭物的治疗剂量限制性毒性,因此使用无法识别任何人类抗原的具有载剂抗体的卡奇霉素共轭物可避免此问题。
可通过多种用于生产多肽的方法来生产本发明的抗体,例如活体外合成、重组DNA生产等等。优选通过重组DNA技术和蛋白表达方法来生产抗体。分子生物学领域普通技术人员熟知用于操控DNA(例如,多聚核苷酸)的技术。所述熟知技术的实例可在Molecular CloningA Laboratory Manual第2版,Sambrook等人,Cold Spring Harbor,N.Y.(1989)中发现。在Goeddel等人的Gene Expression Technology Methods in Enzymology,第185卷,Academic Press(1991),和Borreback,Antibody Engineering,W.H.Freeman(1992)中的其他地方也可发现重组表达免疫球蛋白(包括人源化免疫球蛋白)的技术。在Mayforth,Designing Antibodies,Academic Press,San Diego(1993)中可发现关于重组抗体的产生、设计和表达的其他信息。常规的分子生物学技术的实例包括(但不限于)活体外连接、限制性核酸内切酶消化、PCR、细胞转化、杂交、电泳、DNA测序等等。
构建载体、转染细胞以产生宿主细胞、培养细胞以产生抗体的一般方法都是常规的分子生物学方法。同样,一旦产生之后,重组抗体即可通过所属技术领域的标准程序来纯化,包括错流过滤法、硫酸铵沉淀法、亲合柱色谱法、凝胶电泳法、透滤法等等。用于表达重组抗体的宿主细胞可为细菌细胞,例如大肠杆菌(E.coli),或优选为真核细胞。优选使用哺乳动物细胞,例如PER.C.6细胞或中国仓鼠卵巢细胞(CHO)。表达载体的选择取决于宿主细胞的选择,且经选择以使得在所选宿主细胞中具有所要的表达和调节特征。
用于本方法的共轭物优选保持裸抗体的结合动力学和特异性。可使用任何已知方法来确定共轭物的结合动力学和特异性,例如FACS或BIA核心分析。
非特异性抗体可结合例如人类或人源化单克隆抗体的抗体(或其部分)使用,或连接至所述抗体(或其部分)。所述其他抗体可与表征本发明抗体所针对的疾病的其他标记物(表位)反应,或可具有不同的所选特异性,例如向患病细胞补充人类免疫系统的分子或细胞。本发明的抗体(或其部分)可通过常规化学方法或通过分子生物学方法,以单独投与组合物的形式或以与由两种试剂连接的单一组合物的形式来与所述抗体(或其部分)一起投与。
此外,可通过用产生可检测信号(活体外或活体内)的标记物或用具有治疗特性的标记物来标记人源化抗体,从而增加本发明抗体的诊断和治疗价值。某些标记物(例如放射性核素)可产生可检测信号且具有治疗特性。放射性核素标记物的实例包括125I、131I、14C。其他可检测标记物的实例包括荧光发色团,例如用于荧光显微镜法的荧光素、藻胆蛋白或四乙基若丹明(rhodamine);产生用于通过荧光、吸光率、可见光颜色或凝集检测的荧光或有色产物的酶,其可产生用于通过电子显微镜法证实的电子密集产物;或用于直接或间接电子显微镜显像的电子密集分子,例如铁蛋白、过氧化物酶或金珠。具有治疗特性的标记物包括用于治疗癌症的药物,例如甲氨喋呤及诸如此类。
用于本发明方法的共轭物可为治疗或诊断组合物/调配物中的唯一活性成分,或可伴随有其他活性成分(例如下文所述的化学治疗剂、激素治疗剂或生物治疗剂),包括其他抗体成分,例如抗-CD19、抗-CD20、抗-CD33、抗-T细胞、抗-IFNγ或抗-LPS抗体,或非抗体成分,例如细胞因子、生长因子、激素、抗激素、细胞毒性药物和黄嘌呤。
可将所述组合物/调配物投与给患者以治疗癌症。根据本发明,对需要其的患者投与治疗有效量的与细胞毒素共轭结合的非特异性抗体。或者,所述组合物或调配物用于制造供治疗癌症使用的药物。应了解,此方法或药物可用于治疗其中癌细胞不表达与所述非特异性抗体结合的抗原的任何患者。然而,在治疗功效与癌细胞对卡奇霉素的敏感性之间存在相关性。在一实施例中,所治疗的癌症为胃癌、结肠癌、非小细胞肺癌(NSCLC)、乳癌、表皮样癌或前列腺癌。
本治疗方法可与包括手术、辐射、化学治疗、激素治疗、生物学疗法、骨髓移植(对于白血病和其他癌症来说,其中需要极高剂量的化学治疗剂)的其他癌症治疗组合使用。基于对癌症生物学的了解的增加,目前也正在研发并通过了新颖的治疗方法。
存在两类常用的放射治疗,且其可用于本方法中。在一类中,近距离放射治疗,向肿瘤中直接进行放射性同位素移植以向所述区域中递送浓缩剂量。另一类中,远距离放射治疗,使用光束以全身照射(total body irradiation,TBI)向大面积身体或全身递送辐射。
在本方法中可使用任何合适的化学治疗剂。所述化学治疗剂通常属于以下类别(其各自具有实例)抗代谢药(例如,叶酸拮抗剂(例如甲氨喋呤)、嘌呤拮抗剂(例如6-巯基嘌呤(6-MP))和嘧啶拮抗剂(例如5-氟尿嘧啶(5-FU)));烷基化剂(环磷酰胺);DNA结合剂(顺铂或奥沙利铂(oxaliplatin));抗肿瘤抗生素(多柔比星或米托蒽醌(mitoxantrone));有丝分裂抑制剂(例如紫杉烷类或微管抑制剂(例如长春新碱))或拓扑异构酶抑制剂(喜树碱(camptothecan)或紫杉酚(taxol))。下文描述更为特定的实例。
例如,与本方法相关的激素疗法包括用于白血病和骨髓瘤的皮质类固醇,用于乳癌的雌激素和抗雌激素,和用于前列腺癌的雄激素和抗雄激素。
生物学疗法使用来源于身体的物质。适用于本方法中的疗法的实例包括抗体(例如抗EGFR抗体(例如西妥昔单抗(cetuximab)或曲妥珠单抗(trastuzumab))或抗VEGF抗体(例如贝伐单抗(bevacizumab)))、T细胞疗法、干扰素、白细胞间介素和造血生长因子。
骨髓移植可用于治疗某些癌症,特别是白血病。为治疗白血病,通过化学疗法或辐射治疗破坏患者的骨髓细胞。随后将来自供体的在细胞表面上具有匹配或近似匹配的HLA抗原的骨髓引入至患者体内。骨髓移植也用于置换需要极高剂量的放射或化学疗法以杀死肿瘤细胞的患者的骨髓。移植基于供体来源来分类。在异源移植中,骨髓供体通常不具有遗传相关性,但是与免疫系统所识别的主要蛋白的至少六分之五的细胞表面抗原(HLA抗原)匹配。在自体移植中,在化学疗法或辐射治疗以后,患者接受其自身的骨髓。这种类型的骨髓移植可用于非骨髓相关性癌症,常规治疗对于所述癌症并非完全有效。
此外,基于对于癌症的分子和细胞基础以及疾病进程的了解的增加,正在研发可用于本方法中的新出现的方法,其中某些已通过认可或处于临床试验中。可使用抑制磷酸化级联反应的蛋白激酶抑制剂(小分子与抗体)(例如埃罗替尼(erlotinib)或甲磺酸伊马替尼(imatinib mesylate))。可使用阻断癌细胞扩散和新组织侵入的任何抗转移药剂。可使用阻断滋养肿瘤的血管发育的抗转移药剂(例如沙利度胺(thalidomide))。可使用的其他药剂为阻断异常蛋白产生的反义寡核苷酸,其中所述异常蛋白可引起肿瘤细胞增殖。也可使用基因治疗以将基因引入至T细胞中,所述T细胞注射于患者体内且指定杀死特异性肿瘤细胞。例如,通过将正常p53基因引入至突变癌细胞中也可靶向p53,以重新建立对化学治疗药物的敏感性。
在一实施例中,将本发明的组合物/调配物与生物活性剂组合使用。通常使用的生物活性剂包括抗体、生长因子、激素、细胞因子、抗激素、黄嘌呤、白细胞间介素、干扰素、细胞毒性药物和抗血管新生蛋白。
通常用于治疗例如癌症的增殖型病症,且与卡奇霉素-抗-Lewis Y抗体共轭物一起使用的生物活性细胞毒性药物包括使用长达三天的蒽环类药(anthracycline),例如多柔比星、柔红霉素、伊达柔比星、阿柔比星(aclarubicin)、佐柔比星(zorubicin)、米托蒽醌、表柔比星、卡柔比星(carubicin)、诺加拉霉素(nogalamycin)、美诺立尔(menogaril)、匹柔比星(pitarubicin)和戊柔比星(valrubicin);嘧啶或嘌呤核苷,例如阿糖胞苷(cytarabine)、吉西他滨(gemcitabine)、三氟尿苷、安西他滨(ancitabine)、依诺他滨(enocitabine)、阿扎胞苷(azacitidine)、去氧氟尿苷(doxifluridine)、喷司他丁(pentostatin)、溴尿苷、卡培他滨(capecitabine)、克拉曲滨(cladribine)、地西他滨(decitabine)、氟尿苷、氟达拉滨(fludarabine)、谷氏菌素(gougerotin)、嘌呤霉素(puromycin)、替加氟(tegafur)、噻唑呋啉(tiazofurin);烷基化剂,例如环磷酰胺、美法仑(melphalan)、塞替派、异环磷酰胺(ifosfamide)、卡莫司汀(carmustine)、顺铂、CKD-602、莱多沙松(ledoxantrone)、鲁比替康(rubitecan)、盐酸拓扑替康(topotecan)、LE-SN38、盐酸艾福替康(afeletecan)、XR-11576和XR-11612;抗代谢药,例如甲氨喋呤、5氟尿嘧啶、替加氟/尿嘧啶(UFT)、雷替曲噻(ralititrexed)、卡培他滨、亚叶酸(leucovorin)/UFT、S-1、培美曲塞二钠(pemetrexed disodium)、特扎他滨(tezacitabine)、三甲曲沙葡糖醛酸盐(trimetrexate glucuronate)、塞美他新(thymectacin)、地西他滨;抗肿瘤抗体,例如依决洛单抗(edrecolomab)、丝裂霉素(mitomycin)、丝裂霉素C和奥沙利铂;长春花属生物碱(vinca alkyloid),例如长春新碱、长春碱(vinblastine)、长春瑞宾(vinorelbine)、无水长春碱(anhydrovinblastine);血管生成抑制剂,例如凡他兰尼(vatalanib)琥珀酸盐、奥鲁耐德(oglufanide)、RPI-4610;信号转导抑制剂,例如吉非替尼(gefitinib)、317615.2 HCL、因地苏兰(indisulam)、拉帕替尼(lapatinib)、索拉非尼(sorafenib)、WHI-P131;细胞凋亡诱导剂,例如盐酸阿伐新地(alvocidib)、伊洛福芬(irofulven)、苯基丁酸钠、硼替佐米(bortezomib)、埃斯苏林(exisulind)、MS-2167;表鬼臼毒素(epipodophyllotoxin),例如依托泊苷(etoposide);以及紫杉烷类,例如太平洋紫杉醇(paclitaxel)、多西他赛(doceltaxel)、DHA-太平洋紫杉醇、ixabepilone、聚谷氨酸酯太平洋紫杉醇(polyglutamate paclitaxel)或埃博霉素(epothilone)。
可与hu3S193-AcBut-CM或CMD-193或AG G193-AcBut-CM组合投与的其他化学治疗剂/抗恶性肿瘤剂包括阿霉素、顺铂、卡波铂(carboplatin)、环磷酰胺、达卡巴嗪(dacarbazine)、异环磷酰胺、长春地辛(vindesine)、吉西他滨、依达曲沙(edatrexate)、依立替康(irinotecan)、氮芥(mechlorethamine)、六甲蜜胺(altretamine)、卡波锌铜合金(carboplatine)、替尼泊苷(teniposide)、拓朴替康(topotecan)、吉西他滨、塞替派、福苏立汀(fluxuridine)(FUDR)、MeCCNU、长春碱、长春新碱、米托蒽醌、博莱霉素、氮芥、泼尼松(prednisone)、甲基苄肼甲氨喋呤(procarbazine methotrexate)、氟尿嘧啶、依托泊苷、紫杉酚和其各种类似物、丝裂霉素、沙利度胺和其各种类似物、GBC-590、曲沙他滨(troxacitabine)、ZYC-300、TAU、(R)氟比洛芬(flurbiprofen)、盐酸组胺、他利曲达(tariquidar)、davanat-1、ONT-093。可与一种或一种以上所述治疗剂同时投与,或者与一种或一种以上所述治疗剂相继投与。
可与本发明的抗体共轭物一起投与的生物活性抗体包括(但不限于)赫赛汀(Herceptin)、泽娃灵(Zevalin)、托莫西单抗(Bexxar)、坎帕斯(Campath)、西妥昔单抗、贝伐单抗、ABX-EGF、MDX-210、帕妥珠单抗(pertuzumab)、曲妥珠单抗、I-131ch-TNT-1/b、hLM609、6H9、CEA-Cide Y90、IMC-1C11、ING-1、西罗珠单抗(sibrotuzumab)、TRAIL-R1 Mab、YMB-1003、2C5、基伐雷克斯(givarex)和MH-1。
卡奇霉素-抗-Lewis Y抗体共轭物也可单独、与其他生物活性剂的组合同时或相继投与,所述生物活性剂例如生长因子、细胞因子、类固醇、例如抗-Lewis Y抗体、利妥昔单抗的抗体和作为治疗方案部分的化学治疗剂。卡奇霉素-抗-Lewis Y抗体共轭物也可单独、与上文所识别的治疗方案同时或相继投与,所述治疗方案作为诱导性治疗阶段、巩固性治疗阶段和保持性治疗阶段的一部分。
本发明的共轭物也可与其他生物活性剂和化学治疗剂一起作为治疗复发型入侵性癌症的组合化学治疗方案的部分而投与。合适治疗方案包括CAP(环磷酰胺、多柔比星、顺铂)、PV(顺铂、长春碱或长春地辛)、CE(卡波铂、依托泊苷)、EP(依托泊苷、顺铂)、MVP(丝裂霉素、长春碱或长春地辛、顺铂)、PFL(顺铂、5-氟尿嘧啶、亚叶酸)、IM(异环磷酰胺、丝裂霉素)、IE(异环磷酰胺、依托泊苷);IP(异环磷酰胺、顺铂);MIP(丝裂霉素、异环磷酰胺、顺铂)、ICE(异环磷酰胺、卡波铂、依托泊苷);PIE(顺铂、异环磷酰胺、依托泊苷);伐奥拉滨(Viorelbine)和顺铂;卡波铂和太平洋紫杉醇;CAV(环磷酰胺、多柔比星、长春新碱)、CAE(环磷酰胺、多柔比星、依托泊苷);CAVE(环磷酰胺、多柔比星、长春新碱、依托泊苷);EP(依托泊苷、顺铂);CMCcV(环磷酰胺、甲氨喋呤、洛莫司汀(Lomustine)、长春新碱);CMF(环磷酰胺、甲氨喋呤、5-氟尿嘧啶);CAF(环磷酰胺、多柔比星、5-氟尿嘧啶);CEF(环磷酰胺、表柔比星、5-氟尿嘧啶);CMFVP(环磷酰胺、甲氨喋呤、5-氟尿嘧啶、长春新碱、泼尼松);AC(多柔比星、环磷酰胺);VAT(长春碱、多柔比星、塞替派);VATH(长春碱、多柔比星、塞替派、Fluosymesterone);CDDP+VP-16(顺铂、依托泊苷、丝裂霉素C+长春碱)。
应了解在本发明上下文中,治疗的意思是抑制、预防或减缓癌症生长,包括延迟肿瘤生长和抑制转移。
本发明的组合物/调配物可作为第二线单治疗来投与。第二线意思是在经不同抗癌治疗的治疗之后使用本组合物/调配物,其实例如上文所述。或者,所述组合物或调配物可作为与上述另一抗癌治疗的第一线组合治疗来投与。
可通过多种方式对患者投与抗体组合物。通常通过皮下、腹膜内、静脉内或肌肉内注射来完成组合物的直接递送,或者递送至组织的空隙空间。医药组合物优选经非经肠投与,即经皮下、肌肉内或静脉内。也可将组合物投与至损伤处。剂量治疗可为单一剂量注射法或多次剂量注射法。
卡奇霉素的被动靶向比主动靶向效率较差。通过较短的肿瘤恢复持续时期,和以使用被动靶向机制的卡奇霉素共轭物获得功效所必需的较高剂量可表明此相对差异。然而,在某些情况下可指出被动靶向策略,这是因为其避免了对于肿瘤相关性抗原的均匀表达或过度表达的需要。然而,被动靶向所指定的卡奇霉素共轭物的最大耐受剂量可高于主动靶向卡奇霉素共轭物的最大耐受剂量。
可使用多种水性载剂,例如水、缓冲水、0.4%盐水、0.3%甘氨酸等等。所述溶液都是无菌的,且通常无颗粒状物质。所述组合物可通过熟知的常规灭菌技术来进行灭菌。组合物可含有接近生理条件所需的医药学上可接受的辅助物质,例如pH调节剂和缓冲剂、毒性调节剂等等,例如乙酸钠、氯化钠、氯化钾、氯化钙、乳酸钠。所述调配物中抗体的浓度可广泛变化,例如以重量计自小于约0.5%(通常为约1%或至少约1%)至高达15%或20%,并主要基于流体体积和粘度进行选择,例如根据所选择的特定投与模式。
本发明的方法涉及投与治疗有效量的共轭物。如本文所用的术语治疗有效量是指治疗、改善或预防靶向的疾病或病症,或展示可检测的治疗或预防效果所需的治疗剂的量。对于任何共轭物而言,开始时在细胞培养检定中或在动物模型(通常为啮齿动物、兔、狗、猪或灵长类动物)中都可以估计治疗有效剂量。也可使用动物模型来确定适当的浓度范围和投与途径。所述信息随后可用来确定对于人类投与的有用剂量和途径。
人类受检者的精确有效量也取决于病状的性质和严重程度、受检者的一般健康状况、受检者的年龄、体重和性别、饮食、投与时间和频率、药物组合、反应敏感性和对治疗的耐受性/反应。如果预防性使用共轭物来治疗存在的病症,则此也将影响有效量。此量可通过途径实验来确定,且其在临床医师的判断范围以内。基于蛋白质载剂来计算,有效剂量通常为0.01mg/m2至50mg/m2,优选为0.1mg/m2至20mg/m2,更优选为约10-15mg/m2。
剂量的频率取决于共轭物的半衰期和其作用的持续时间。如果共轭物具有较短的半衰期(例如,2至10小时),则可能必需每天给药一次或一次以上。或者,如果共轭物分子具有较长的半衰期(例如2至15天),则可能仅需要每天给予一剂量,每周一次或甚至每1或2个月一次。
组合物也可含有用于投与抗体共轭物的医药学上可接受的载剂。医药学载剂可为适于向患者递送单克隆抗体的任何相容性、无毒物质。载剂中可包括无菌水、醇、脂肪、蜡和惰性固体。载剂自身不应诱导产生对接受所述组合物的个体有害的抗体,且不应具有毒性。合适载剂可为大的、缓慢代谢的高分子,例如蛋白质、多肽、脂质体、多糖、聚乳酸、聚乙醇酸、聚合氨基酸、氨基酸共聚物和无活性病毒粒子。也可将医药学上可接受的佐剂(缓冲剂、分散剂)纳入医药组合物中。
可使用医药学上可接受的盐,例如无机酸盐,例如盐酸盐、氢溴酸盐、磷酸盐和硫酸盐,或有机酸盐,例如乙酸盐、丙酸盐、丙二酸盐和苯甲酸盐。
治疗组合物/调配物中的医药学上可接受的载剂另外可含有液体,例如水、盐水、甘油和乙醇。在所述组合物中可存在辅助物质,例如湿润剂或乳化剂或pH缓冲物质。所述载剂使得可将组合物调配成供患者摄取的片剂、药丸、糖衣丸、胶囊、液体、凝胶、糖浆、浆液和悬浮液。
优选投与形式包括适于非经肠投与的形式,例如通过注射或输注,例如通过弹丸注射或连续输注。当产品适于注射或输注时,可采用在油性或水性媒剂中的悬浮液、溶液或乳液形式,且其可含有调配剂,例如悬浮剂、防腐剂、稳定剂及/或分散剂。
尽管经缓冲共轭物溶液的稳定性在短时间内足够,但其长期稳定性较差。为增强共轭物的稳定性并增加其保存期,可将抗体-药物共轭物冻干成干燥形式,以供在使用之前用适当无菌液体进行复水。文献中详细记载了与蛋白溶液冻干相关的问题。在冷冻和干燥过程中,可能发生二级、三级和四级结构的损失。使其与防冻剂、表面活性剂、缓冲剂和电解质于溶液中相接触,且随后冻干所述溶液可保持所述组合物/调配物的生物活性。也可向溶液中添加防溶剂。
可通过多种途径来投与共轭物,其包括(但不限于)口服、静脉内、肌肉内、动脉内、骨髓内、鞘内、心室内、通过皮肤、经皮(参看PCT公开案第WO98/20734号)、皮下、腹膜内、鼻内、经肠、外敷、舌下、阴道内或直肠途径。也可使用无针注射器来投与本发明的组合物。所述组合物一般可制备为呈液体溶液或悬浮液形式的可注射剂。也可制备适于在注射前溶解于或悬浮于液体媒剂中的固体形式。
实例实例1材料与方法卡奇霉素共轭物用酸不稳定性或酸稳定性连接子使卡奇霉素类似物与各种载剂分子共轭。酸不稳定性4-(4′-乙酰基苯氧基)丁酸(AcBut)或(3-乙酰基苯基)乙酸(AcPAc)使得可酸解腙基且使得可在溶酶体中进行二硫化物还原。酸稳定性4-巯基-4-甲基-戊酸(酰胺)仅可使得二硫化物基团分解。卡奇霉素类似物N-乙酰基-γ-卡奇霉素二甲基酰肼(CalichDMH)或N-乙酰基-γ-卡奇霉素二甲基酸(CalichDMA)分别与酸不稳定性或酸稳定性连接子共轭。
细胞与培养条件N87(CRL-5822)、HT29(HTB-38)、LOVO(CCL-229)、A431(CRL-1555)和LNCaP(CRL-1740)购自美国菌种保藏中心(American Type Culture Collection)(ATCC)。如ATCC目录所说明,将获自ATCC的细胞系保存在培养基中。L2987为Dr.C.Siegall(Seattle Genetics,Bothell,WA)的赠品。使所述细胞在补充有10%FBS、2mM gln、100IU青霉素(penicillin)和100μg链霉素(streptomycin)(下文称为pen/strep)和0.05mg庆大霉素(gentamycin)的RPMI 1640中生长。PC14PE6、PC3MM2和MDAMB435获自Dr.I.Fidler(MD Anderson,Houston,TX)。将PC14PE6和PC3MM2保存在补充有10%v/v FBS、2mM gln、1mM丙酮酸钠、0.2mM非必需氨基酸、2%MEM维生素溶液和pen/strep的最低必需培养基中。MDAMB435/5T4是经编码癌胚蛋白、5T4和新霉素(neomycin)耐药标记的质粒转染的MDAMB435细胞。将所述细胞培养在补充有10%v/v FBS、2mM gln、1mM丙酮酸钠、0.2mM非必需氨基酸、2%MEM维生素溶液和50%pen/strep和1.5mg/ml G418的含有Earle盐的最低必需培养基中。Dr.Scott A.(Ludwig Institute for Cancer Research,Melbourne,Australia)提供A431的Lewis Y阳性变体A431/Ley细胞。将其培养在补充有10%v/v FBS、2mM gln和pen/strep的DMEM/F12中。KB 8.5细胞由Dr.Shen获得,且培养在补充有20%v/v FBS、2mM gln、10μM丙酮酸钠、10%pen/strep和0.25mM秋水仙碱(colchicine)的DMEM(高葡萄糖)中。
抗体与共轭物Hp67.6和g5/44分别为特异性识别人类CD33或CD22的人源化IgG4抗体。利妥昔单抗(Rituxan)(IDEC Pharmaceuticals Corporation and Genentech)为识别CD20的嵌合IgG1-κ抗体。MOPC是具有未知特异性的单克隆IgG1-κ小鼠抗体,其通常用作免疫检测方法中的阴性对照。
对于FACS分析来说,人类IgG(huIgG,Zymed,San Francisco,CA)与小鼠IgG和经FITC标记的山羊抗-huIgG(FITC/a-huIgG,Zymed,San Francisco,CA)分别用作对照抗体和第二抗体。借助于酸不稳定性的AcBut(4-(4′-乙酰基苯氧基)丁酸)或AcPAc((3-乙酰基苯基)乙酸)连接子进行N,乙酰基γ-卡奇霉素二甲基酰肼(CalichDMH)的共轭。通过用酰胺(4-巯基-4-甲基-戊酸)连接子将N,乙酰基γ-卡奇霉素二甲基酰胺(CalichDMA)与抗体连接而获得酸稳定性共轭物。卡奇霉素与抗体的摩尔比显示2∶1与6∶1之间的摩尔比差异。将卡奇霉素与抗体共轭结合的方法描述于美国专利第5,773,001号、第5,739,116号和第5,877,296号中(所述专利引文中的所有信息都以引用的方式并入本文)。
合成高分子(FcPEGL与FcPEGB)通过用10mM柠檬酸盐缓冲液(pH3.5,37℃)中的2.8mg胃蛋白酶(WorthingBiochem.Corp.,Freehold,NJ)经过40min消化2.8g抗体来产生hp67.6的(Fab)2片段,并用K2HPO4中和至pH7。使用10mM Tris乙酸盐(pH8)中的Macroprep高Q管柱(160ml)色谱法使消化液分馏。在未结合馏份中洗提(Fab)2。
随后对hp67.6的(Fab)2片段进行PEG化。将20mg(Fab)2与在10mM磷酸钾缓冲液(pH8.0)中的40mg直链20kDa PEG(甲氧基聚(乙二醇)丙酸的N-羟基琥珀酰亚胺基酯)或60mg支链(10kDa)2PEG(甲氧基聚(乙二醇)的N-羟基琥珀酰亚胺基酯)混合。两种PEG储备溶液都在水中制备并立即使用。使反应在20℃下进行60min。
通过SDS-PAGE和渗透色谱法测定表观MW。基于PEG化(Fab)2的洗提位置,支链(10kDa)2PEG的平均MW为约250kDa,且直链20kDa PEG化(Fab)2的平均MW为约300kDa。SDS-PAGE揭示主要种类为摩尔比为1∶2和1∶3的(Fab)2PEG。
为PEG化hp67.6,将50mg抗体与在40mM HEPES缓冲液(pH8.0)中的100mgPEG(0.5ml的200mg/ml支链(10kDa)2PEG储备溶液)混合,其最终蛋白浓度为10.6mg/ml。使反应在20℃下进行60min。
FACS分析将105细胞的等分试样悬浮于补充有1%v/v牛血清白蛋白(PBS/BSA)的100μl磷酸盐缓冲盐水中。随后在4℃下,将细胞在10μγ/ml一级抗体(hp67.7、hg544、利妥昔单抗或MOPC)和结果部分中说明的所述抗体的共轭物中培育30分钟。通过FITC/α-huIgG揭示一级抗体与所述细胞的结合。
活体外测定ED50使用活体染料(MTS)染色来测定在暴露于各种处理之后存活细胞的数目。MTS(非放射性细胞增殖检定试剂盒)购自Promega(Madison,WI),且根据厂商说明书使用。对于每个细胞系建立校准曲线(2h后的细胞数对光学密度)来评估适当的起始接种密度。随后以每孔750至5,000个细胞的密度在96多孔培养皿中接种细胞。接种之后,立即将细胞暴露于各种浓度(0至500ng卡奇霉素当量/毫升)的hp67.6-AcBut-CalichDMH和CalichDMH中。在测定药物暴露96h的存活细胞数目之后,基于来源于剂量-应答曲线的逻辑回归参数来计算ED50。将ED50定义为在96小时后导致细胞数目减少50%的药物浓度(ng/ml CalichDMH)。
实例2HU3S193-DMH的活体内功效在无胸腺裸鼠(Charles River,Wilmington,MA)中生长N87、LOVO、A431/Ley、LS174T和L2987的皮下肿瘤。对2个月大的雌性小鼠分别注射每只小鼠5×106N87、LOVO、A431/Ley或LS174T细胞。对7到8周大的雄性裸鼠注射L2987细胞。为使肿瘤生长,必须在注射之前将N87细胞与MATRIGEL(Collaborative Biomedical Products,Belford,MA)混合(1∶1,体积比)。在结果部分中说明的时间间隔下,借助于卡尺来测量肿瘤的两个垂直直径。根据Attia&Weiss公式计算肿瘤体积A2×B×0.4。A与B分别为较小和较大肿瘤直径的符号。在结果部分和

中详细说明每组的处理时间安排、剂量和小鼠数目。
实例3经125I-标记的共轭物的活体内分布使用Bolton-Hunter试剂(NEN,Boston,MA),以125I标记吉妥单抗奥佐米星。对一组30只带有肿瘤的雌性裸鼠,在其侧尾静脉处注射20μCi/200mg的125I标记共轭物。注射时肿瘤重量大约为1g。在注射后2、6、24、48、72和96h时通过吸入CO2杀死5只小鼠的组。在所述时间点处测定如图2中所说明的组织中的γ辐射量。将共轭物的生物分布表示为每克组织中注射剂量的百分比(%ID/g),或表示为在给定时间点处的血液含量百分比(血液%)。在肿瘤组织中唯一观察到hp67.6-AcBut-CalichDMH的浓度稳定增加。A431肿瘤的积累倍增时间为150h。
实例4hp67.6-AcBut-CalichDMH的被动靶向不考虑肿瘤细胞上不可检测量的靶向抗原CD33,Hp67.6-AcBut-CalichDMH抑制各种皮下异种移植体的生长。
在多个异种移植体模型中证实hp67.6-AcBut-CalichDMH的肿瘤消解作用。表1(在癌细胞上的活体外CD33表达)列出用于在裸鼠中产生异种移植体的细胞系,及其由流式细胞术所测量的CD33表达。使用hp67.6或hp67.6-AcBut-CalichDMH作为一级抗体所获得的信号主要与在使用阴性对照抗体huIgG4后所获得的信号一致(reMCF接近1)。如图1所示,虽然在所述细胞的细胞膜上无CD33,但hp67.6-AcBut-CalichDMH仍抑制A431表皮样癌异种移植体的肿瘤生长。所展示实验中所有组的小鼠都根据以下方案进行处理每只小鼠1剂量,腹膜内给药3次,间隔为4天(Q4Dx3)。在处理之前选择具有大约80mm3异种移植体的小鼠。以卡奇霉素当量表示所给的CalichDMH或共轭物的量。直至处理后27天,A431异种移植体的生长在投与3剂量的4μghp67.6-AcBut-CalichDMH后受到显著抑制(p=0.03)。由于对照组中肿瘤尺寸变得太大,且出于人道主义原因必须将这些小鼠杀死,因此不可能在27天后进行评估。
表1
=使用hp67.6作为一级抗体的相对中值通道荧光[b]=独立测定数据的数目[c]=n个测定数据的最大值与最小值[d]=使用CMA-676作为一级抗体的相对中值通道荧光[e]=非小细胞肺癌用酸不稳定性AcBut连接子将卡奇霉素与hp67.6结合产生有效肿瘤抑制共轭物(图1A);然而用酸稳定酰胺连接子取代AcBut连接子消除了共轭物的功效(图1B),且投与游离卡奇霉素并不对肿瘤生长产生抑制作用(图1C)。明确地说,经2μg/剂量hp67.6-AcBut-CalichDMH处理的异种移植体仅保持21天比对照物显著较小(p=0.004)(图1A)。投与等于或高于hp67.6-AcBut-CalichDMH剂量的hp67.6-酰胺-CalichDMA或CalichDMH并不抑制肿瘤生长(图1B和1C)。图1中的所示结果不仅表明hp67.6-AcBut-CalichDMH对肿瘤生长产生显著抑制作用,而且此作用依赖于用于共轭结合的连接子。对照CalichDMH无效。
为确定p67.6-AcBut-CalichDMH的功效是否与CalichDMH从腹膜的缓慢释放相关,在保持处理的相同剂量、频率和时间间隔的同时,使用静脉内投与途径重复此实验。在用hp67.6-AcBut-CalichDMH处理之后,观察到显著的生长抑制作用。在治疗开始后27天,经4或2μg此共轭物处理的小鼠的平均肿瘤尺寸分别为对照肿瘤的11%或23%。静脉内投与hp67.6-酰胺-CalichDMA或CalichDMH并不产生显著的肿瘤生长抑制作用。
如表2所示(在用hp67.6-AcBut-CalichDMH处理(T)后,CD33-肿瘤异种移植体的肿瘤体积减小,并表示为经媒剂处理的对照物的百分比(T/C%)),hp67.6-AcBut-CalichDMH抑制具有不同组织类型来源的人类肿瘤异种移植体的肿瘤生长。将肿瘤生长抑制表示为T/C值。所述值为经hp67.6-AcBut-CalichDMH处理的一组小鼠的平均肿瘤体积(T),表示为对照组的平均肿瘤体积(C)的百分比。在处理开始后的相同天数时测定T与C。表II中的T/C值来源于27个独立实验,且是在第一剂量hp67.6-AcBut-CalichDMH注射后17天和34天之间测定的。不考虑大量应答的差异性,数据明确表明4μg/小鼠剂量的hp67.6-AcBut-CalichDMH和Q4Dx3方案显著抑制大部分异种移植体的肿瘤生长。当投与较少量的共轭物时,也观察到显著抑制作用。
表2


实例5经125I标记的hp67.6-AcBut-CalichDMH共轭物的积累将hp67.6-AcBut-CalichDMH在各种小鼠组织中与在经CD33-阴性A431肿瘤异种移植的肿瘤中的动力学进行比较。在注射200g(20μCi)经125I标记的共轭物后,在2、6、24、48、72和96h时测量各种组织中放射性标记的量(图2)。相对于测量时全血中所存在的量表示放射性物质的量(图2中血液%,Y1轴)。下式给出血液百分比(血液%)100×每克组织中的Bq/每克血液中的Bq。此外,也相对于所给共轭物的总量表示放射性物质的量(图2中%ID/g,Y2轴)。脑中仅保留临界量的经125I标记的共轭物。脑中共轭物的积累在96小时内并无显著变化。血液%平均为3.5%。因此,此值应解释为组织吸收共轭物的结果,这是因为血-脑屏障对于抗体来说是不可渗透的。
在96小时时期内,肿瘤组织中hp67.6-AcBut-CalichDMH的量相对于全血中的量从6%增加到28%。仅在肿瘤组织中发现这种平稳增加。在注射后2小时,心脏、肠和脾的血液%值最高,且随后以时间的函数形式平稳降低。在肝脏和横纹肌中,在48h出现血液%的峰值。在皮肤中,此值在24h后到达平稳状态。肿瘤组织中血液%值的增加并非仅是由于从血液中清除了p67.6-AcBut-CalichDMH。这由%ID/g值的平稳增加可证明,其为组织中hp67.6-AcBut-CalichDMH的绝对量的指标。
与肿瘤组织相反,在所有其他经检查的组织中,%ID/g与时间成函数降低。因此,肿瘤组织保留并积累hp67.6-AcBut-CalichDMH的能力异常。先前的实验表明抗体在肿瘤组织中积累。125I标记指出存在抗体,但并未表明共轭物的CalichDMH部分是否遵循类似的积累趋势。与经3H标记的CalichDMH共轭结合的hp67.6的组织分布与经125I标记的共轭物类似。
因此,共轭物的细胞毒性部分与免疫球蛋白载剂在正常和赘生性组织中具有类似分布。
实例6利妥昔单抗与G5/44共轭物的被动靶向利妥昔单抗与g5/44的卡奇霉素共轭物抑制肿瘤生长的程度与hp67.6-AcBut-CalichDMH相同。
为确认由hp67.6-AcBut-CalichDMH所引起的肿瘤生长抑制是否限制于作为载体用于被动靶向的hp67.6,进行了若干实验以将hp67.6共轭物的功效与利妥昔单抗和G5/44共轭物的功效进行比较。3种抗体都不以高亲合力结合至N87或MDAMB435/5T4。用利妥昔单抗探测N87或MDAMB435/5T4后的reMCF值分别为0.96和0.89。在用g5/44探测所述细胞之后,reMCF值介于0.76与1.60之间。不考虑抗体对细胞系的低亲合力,其卡奇霉素共轭物引起对肿瘤生长的显著抑制作用(图3)。图3也说明在不考虑用于共轭结合的抗体的特异性、同型或等电点的情况下,用共轭物达到了等同的功效。Hp67.6和g5/44为完全人源化IgG4分子。利妥昔单抗为小鼠-人类IgG1嵌合体。hp67.6、g5/44和利妥昔单抗的等电点分别为7.5、8.4和>9。
实例7人类血清白蛋白或PEG化Fc共轭物用人类血清白蛋白或PEG化Fc片段取代抗体可降低卡奇霉素共轭物的功效。
图4中所示的数据指示对于有效的卡奇霉素共轭物而言,人类血清白蛋白或PEG化Fc都不可替换载剂分子。图4A展示MOPC-21-AcPAc-CalichDMH共轭物的生长抑制作用。MOPC-21是具有未知特异性的小鼠单克隆抗体(IgG1),其通常用作免疫检测方法中的阴性对照。为将卡奇霉素与此小鼠抗体共轭,使用酸不稳定性AcPAc连接子。此共轭物功效指示,使用AcPAc连接子并不防止共轭物的肿瘤消解作用。相反,HSA-AcPAc-CalichDMH的功效在相同实验中为临界值(图4B)。尽管所述共轭物在另一实验中更为有效(即在投与4μg/小鼠Q4Dx3后20天,T/C=39%),但与对照抗体共轭物相比,其并不具有较高功效(即T/C=21%)。用HSA-AcPAc-CalichDMH观察到实验间较大差异的实情也指示HAS并不与免疫球蛋白一样作为适当载体来介导被动靶向。
图4C进一步说明完全抗体的可用性。在此实验中,将hp67.6-AcBut-CalichDMH的肿瘤生长抑制作用与由借助于AcBut连接子而连接至卡奇霉素的PEG化Fc片段所组成的共轭物的功效进行比较。使用两种类型的PEG以增加共轭物的斯托克斯(Stoke′s)半径。用甲氧基聚(乙二醇)丙酸的直链N-羟基琥珀酰亚胺基酯对FcPEGL(表观MW=300kDa)进行PEG化。用此分子的支链形式(表观MW=250 kDa)对FcPEGB进行PEG化。不考虑PEG化作用的性质,Fc共轭物不能引起任何生长抑制作用。
或者,使用与卡奇霉素共轭结合的完全PEG化(支链PEG)抗体(hp67.6PEGB,表观MW=300kDa)观察到与hp67.6-AcBut-CalichDMH类似的生长抑制作用,此指示PEG化作用本身并未消除共轭物的功效(图4D)。总之,图4所示的证据强调全部抗体作为卡奇霉素的有效载剂的独特倾向性。
实例8与卡奇霉素敏感性的相关性由p67.6-AcBut-CalichDMH的被动靶向所引起的功效程度与肿瘤细胞对卡奇霉素的活体外敏感性相关。
活体外测试11个肿瘤细胞系对CalichDMH或对hp67.6-AcBut-CalichDMH的敏感性。将这两种药物的ED50定义为在96h后将单层中的细胞数目减少至未经处理对照培养物的50%时的最低浓度(ng/ml)。无论是否将CalichDMH的ED50或hp67.6-AcBut-CalichDMH的ED50用作等级标准,各种细胞系的等级顺序类似(比较图5A与图5B)。由T/Cmin值反映皮下异种移植体对p67.6-AcBut-CalichDMH的敏感性。此参数是在给定实验期间内所观察到的最小T/C值,并因此反映所测定共轭物的最大治疗益处。因此,T/Cmin值使得可比较hp67.6-AcBut-CalichDMH对各种异种移植体的功效。
图5表明所述异种移植体的T/Cmin值与在向互补细胞中添加CalichDMH(图5A)或hp67.6-AcBut-CalichDMH(图5B)之后所测定的ED50直接成比例。此相关性表面对CalichDMH的敏感性决定hp67.6-AcBut-CalichDMH的功效。然而,在LOVO结肠癌中所发现的极高T/Cmin值强调仅对CalichDMH的敏感性可能不足以解释由被动靶向所引起的功效。
上文引用的所有参考文献和专利都以引用的方式并入本文。上述说明书中包括本发明的诸多修改和变更,且其对于所属领域技术人员而言是显而易见的,且涵盖于权利要求书的范畴之内。
权利要求
1.一种治疗癌细胞的方法,所述方法包含对需要其的患者投与治疗有效量的与细胞毒素共轭结合的非特异性抗体,其中所述癌细胞不表达与所述非特异性抗体结合的抗原。
2.根据权利要求1所述的方法,其中所述非特异性抗体是抗CD33抗体,且所述癌细胞不表达CD33。
3.根据权利要求2所述的方法,其中所述非特异性抗体是hp67.6。
4.根据权利要求1所述的方法,其中所述非特异性抗体是抗CD22抗体,且所述癌细胞不表达CD22。
5.根据权利要求4所述的方法,其中所述非特异性抗体是g5/44。
6.根据权利要求1所述的方法,其中所述非特异性抗体是抗CD20抗体,且所述癌细胞不表达CD20。
7.根据权利要求6所述的方法,其中所述非特异性抗体是利妥昔单抗。
8.根据权利要求1所述的方法,其中所述非特异性抗体不与人类抗原结合。
9.根据权利要求1至8中任一权利要求所述的方法,其中所述癌细胞是胃癌细胞、结肠癌细胞、非小细胞肺癌(NSCLC)细胞、乳癌细胞、表皮样癌细胞或前列腺癌细胞。
10.根据权利要求1至9中任一权利要求所述的方法,其中所述细胞毒素是卡奇霉素。
11.根据权利要求1至10中任一权利要求所述的方法,其中使用4-(4′-乙酰基苯氧基)丁酸(AcBut)或(3-乙酰基苯基)乙酸(AcPAc)连接子使所述卡奇霉素与所述非特异性抗体共轭结合。
12.根据权利要求1至11中任一权利要求所述的方法,其中将与细胞毒素共轭结合的所述非特异性抗原的所述抗体与生物活性剂组合投与。
13.根据权利要求12所述的方法,其中所述生物活性剂是抗癌剂。
全文摘要
本发明提供治疗癌细胞的方法,其包括对需要其的患者投与治疗有效量的与细胞毒素共轭结合的非特异性抗体,其中所述癌细胞不表达与非特异性抗体结合的抗原。在一实施例中,所述非特异性抗体是抗-CD33抗体(例如hp67.6)、抗-CD22抗体(例如g5/44)或抗-CD20抗体(例如利妥昔单抗(rituximab))。在另一实施例中,非特异性抗体不与人类抗原结合。例如,所治疗的癌细胞可为胃癌细胞、结肠癌细胞、非小细胞肺癌(NSCLC)细胞、乳癌细胞、表皮样癌细胞或前列腺癌细胞。在一实施例中,所述细胞毒素是卡奇霉素(calicheamicin)。可使用4-(4′-乙酰基苯氧基)丁酸(AcBut)或(3-乙酰基苯基)乙酸(AcPAc)连接子使卡奇霉素与所述非特异性抗体共轭结合。在另一实施例中,与细胞毒素共轭结合的非特异性抗原的抗体与生物活性剂(例如,抗癌剂)组合投与。
文档编号C07K16/30GK1997398SQ200580008484
公开日2007年7月11日 申请日期2005年3月15日 优先权日2004年3月15日
发明者欧文·雷蒙德·阿尔塞内·博格哈尔特, 希兰·马诺哈尔·卡恩德克, 尼廷·克里希纳基·达姆勒 申请人:惠氏公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1