专利名称:带有琥珀酸酐中间去除的两步法制取丁二醇的利记博彩app
技术领域:
本发明涉及一种通过底物的气相催化加氢制备任选烷基取代的丁二醇(即丁二醇可以被烷基取代,也可以不被烷基取代)的方法,所述底物选自马来酸和琥珀酸的衍生物和这些酸本身。为了达到本发明的目的,象这些酸一样,衍生物是可以带有一个或多个烷基取代基的酸酐。在第一氢化步骤之后去除琥珀酸酐使得催化剂在第二氢化步骤中的活性、选择性和寿命得到提高。
众所周知,马来酸酐MA的加氢经过琥珀酸酐中间体(SA)最初生成γ-丁内酯(GBL)。进一步加氢将生成四氢呋喃(THF)、正丁醇(BuOH)和/或正丁烷。在GBL和丁二醇(BDO)所处的平衡中,采取适当的措施可以使其充分移向丁二醇一侧。但是,丁二醇在过度氢化时会像GBL一样容易起反应而成丁醇和丁烷;丁二醇成环得到THF。这些产物不能转化回BDO和GBL。若希望的产物是BDO,特别应避免THF的形成。
纯马来酸酐(MA)到丁内酯(GBL)和纯GBL到BDO的转化的气相加氢是两个多年来已知的反应。为了实施这两个催化反应,文献中描述了多种催化系统。取决于催化剂的组成和反应参数的选择,这些催化剂会给出不同的产物分布。同样,从MA开始直接制备丁二醇的方法也是已知的。
当准备制备带有烷基取代基的GBL和BDO时,利用上面提到的反应物的相应的烷基取代的物质是可行的。
用于MA氢化生成上述产物之一的催化剂,特别是在以前的方法中,经常含有铬。这可以通过专利文献反映出来,其中大量的专利和专利申请公开的是在氢化反应中采用铬催化剂,尽管在大部分情况下氢化限于以MA作为反应物。
下文的文献描述的是铬催化剂在氢化MA中的用途。
EP-A-0322140公开了一种通过气相氢化MA和SA制备四氢呋喃(THF)和共同生产THF与GBL的连续方法。权利要求中的催化剂包含铜、锌和铝及另一种IIA、IIIA、VA、VIII、IIIB到VIIB族元素,镧系和锕系元素,以及Ag和Au。在40巴下,这些催化系统从纯MA开始得到THF的产率是90-95%,并且可在大约20巴的压力下获得GBL和THF的混合物。
然而,在US4965378和US5072009中使用了类似的催化剂,其还可包含Si、Ge、Sn和Pb。这些催化剂的使用导致了大量的不能转化成丁内酯和丁二醇的THF(从95%到31.4%)。
EP-A-0404408公开了一种MA加氢催化剂,其催化活性物质基本上相应于US5072009中的物质。它用作涂覆催化剂固定在载体上。在实施例中,仅使用了铬催化剂。在压力2巴时能实现高GBL产率,但当所用的压力越来越大时,THF的产率增加,而GBL的产率下降。
US5149836公开了制备GBL和THF的多步骤气相方法,通过在第一步中通过向包含铜、锌和铝的催化剂中通入纯MA和氢的混合物进行,其具有可变的产物选择性。接着将这种粗反应流出物通过铬催化剂以制备THF。
WO99/38856公开的催化剂只包含铜和铬,其允许从纯MA开始直接得到GBL的选择性为从92到96摩尔%。
EP-A-638565公开了包含铜、铬和硅的催化剂,其在一个实施例中组成为大约78%CuO、20%的Cr2O3和2%的SiO2。采用纯MA和氮-氢混合物可以获得的GBL产率为98%。
下文的文献公开了采用无铬催化剂氢化MA。
GB-A-1168220公开了气相制备GBL的方法,其通过二元铜-锌催化剂氢化MA或SA得到GBL。在所有的实施例中,操作在大气压强下进行并且从纯MA开始可以获得94摩尔%的GBL产率。
DE-A-2404493中也公开了一种制备GBL的方法,其用金属催化剂催化加氢MA、SA、马来酸、琥珀酸和水的混合物,而且也采用了亚铬酸铜催化剂、铜-锌和铜-锌-铝沉淀催化剂。
WO91/16132中公开的MA加氢形成GBL采用的催化剂包括CuO、ZnO和Al2O3,其在150℃到350℃下被还原并在400℃下被活化。该活化作用的目的是使催化系统的运行时间延长。
US6297389中公开了一种包含CuO和ZnO的催化剂。在活化之后,其将纯MSA转化到GBL的产率为从92%到96%,并且由纯MA开始直接得到。
WO95/22539公开了由MA和/或SA经催化剂催化加氢制备GBL的方法,该催化剂由铜、锌和锆组成。由纯MA开始获得GBL的产率为99%。
WO99/35136公开了一种由MA加氢制备GBL和THF,在第一步采用铜催化剂,并将该反应流出物通入酸性硅-铝催化剂中的二步方法。
WO97/24346公开了一种氧化铜-氧化铝催化剂,其氢化MA得到GBL的产率为92摩尔%。
由GBL转化到BDO的反应已是众所周知的,下文提到的文献公开了采用铬催化剂的这种反应。
DE1277233公开了一种用氢氢化内酯制备不同的醇的混合物的方法。所用催化剂为在惰性氧化铝载体上的掺杂钡的亚铬酸铜。
GB-A-1230276公开了在180℃到230℃的温度下由GBL经氧化铜-氧化铬催化剂制备BDO的方法。
根据DE-A-2231986,向亚铬酸铜催化剂中掺杂钾、钠、铷、铝、钛、铁、钴和镍提高了催化剂的运行时间。
根据DE-A-2501499,BDO采用二噁烷、GBL、水和羧酸的混合物制备。所述反应在高压(170巴)下液相进行,优选使用溶剂二噁烷,同时类似地使用铜-氧化铬作催化剂。
根据J0-A-1121228,亚铬酸铜催化剂掺杂Pd以获得较高的转化。
Dasunin和Maeva在Z.Org.chim.1965年第1卷第6期第996-1000页、JA5366/69、JA7240770、J4 9024-906、J49087-610中对其他亚铬酸铜催化剂作了描述,并且实施例涉及纯GBL到BDO的液相转化。
US4652685描述了在亚铬酸铜催化剂中纯GBL气相氢化形成丁二醇。压力为41巴,转化率为60-68%,可获得的BDO的选择性为92-97%。
US5406004和US5395990公开了纯GBL经铜催化剂加氢制备醇和二醇混合物的方法。在温度从150℃到350℃并且压力从10.3巴到138巴下填充铜催化剂的氢化区被加氢进料和氢充满,并且组成为醇和二醇产物被分离出来。实施例中描述了一系列包含铜、锌和铬的催化剂。
最后,下文引用的文献公开了采用无铬的铜催化剂氢化GBL形成BDO。
WO82/03854中描述的是组成为CuO和ZnO的催化剂。在压力28.5巴和温度217℃的气相中,其得到的BDO的选择性为98.4%。但是,纯GBL的转化率低,不能令人满意。
掺杂钯和钾的沉积铜催化剂在US4797382、US4885411和EP-A-0318129中有描述,它们适用于GBL到丁二醇的转化。
GBL和水作为原料料流并结合氧化铜-氧化锌催化剂的用途在US5030773中作了描述。其公开了当1%到6%的水混合进纯的GBL流时提高了这些催化剂的活性,并且这些混合物在气相中加氢。当该反应中采用纯GBL时,多余的水必须被混合并此后再被去除。如果所用的GBL来自MA的氢化,则在进料中会存在17%的水。因此,在加氢形成BDO之前至少要有11%的水必须被除去。
JP0634567-A描述一种包括铜、铁和铝的催化剂,其适宜于在高压(250巴)下氢化纯的GBL形成BDO。
WO99/35113中提到了一种开始由马来酸酯制备BDO的方法。氢化作用由三个连续步骤完成。开始由马来酸酯经贵金属催化剂制备得琥珀酸酯,并接着在第二步转化成GBL和THF。第三步中移出GBL并在高压下转化成BDO。
WO99/35114描述了一种压力从60巴到100巴、温度从180℃到250℃时液相氢化GBL、马来酸酯或二者的混合物制备BDO的方法。所用的催化剂为氧化铜-氧化锌催化剂。
另一个氢化GBL形成BDO的气相方案已在WO99/52845中公开,其中使用了氧化铜-氧化锌催化剂。除了常用的反应原料之外,还在氢中混合了一氧化碳以得到甲醇副产物。
EP-A-0382050涉及纯GBL的、使用包括氧化钴、氧化铜、氧化锰和氧化钼的催化剂的氢化。
由MA开始直接制备BDO也已是已知的。下文中引用的文献公开了这种反应,其中采用铬催化剂。
DE2845905描述一种由马来酸酐开始制备丁二醇的连续方法。溶解在含有一元脂肪醇中的MA与氢在250巴和350巴压力下经亚铬酸铜催化剂发生反应。
EP-A-0373947公开了一种开始由MA经含铜、铬和锰的催化剂共生产BDO和THF的方法。采用MA和GBL的混合物,MA和1,4-二噁烷的混合物及纯MA。在所有情况下,均得到THF和BDO的混合物。该方法的一个缺点是四氢呋喃产率高。
文献CN-A-1113831、CN-A-1116615、CN-A-1138018和CN-A-1047328公开了铬催化剂。CN-A-1137944采用的是铜、铬、锰、钡和钛催化剂。
依据CN-A-1182639的公开,铜、铬、锌和钛催化剂可以用于氢化GBL和MA的混合物。
CN-A-1182732描述了一种在200℃到250℃、压力从30到70巴下,MA经铜和铬催化剂气相氢化制备BDO的方法。MA溶解于适宜的溶剂中进行加氢。
最后,下文引用的文献公开了用无铬的催化剂直接氢化MA形成BDO。
例如,DE-A-2455617描述了三步法制备BDO。在第一步中,GBL中的MA溶液经镍催化剂氢化生成GBL中的SA。在第二步的高压(80-200巴)和相对高温下,这种SA和GBL的溶液在液相中氢化生成GBL,接着从GBL中去除水、琥珀酸酐和琥珀酸,并在第三步的液相中的铜-氧化锌催化剂及高压下将部分纯GBL循环利用并转化成丁二醇。
在US4301077中,使用钌催化剂氢化MA得到BDO。
DE-A-3726510公开了使用含有铜、钴和磷的催化剂直接氢化MA。
在J0 2025-434-A中使用了纯的氧化铜-氧化锌催化剂。根据实施例,纯MA可在40巴压力下进行转化。然而,得到的丁二醇的产率只有53.3摩尔%,并得到次产率为40.2摩尔%的GBL。
EP-A-373946公开了一种采用掺杂铼的氧化铜-氧化锌催化剂的气相MA直接转化成BDO的方法。
专利申请J0 2233-627-A(使用铜-锌-铝催化剂)、J0 2233-630-A(使用含有锰、钡和硅的铜-铬催化剂)和J0 2233-631-A(使用含有铜和铝的催化剂)提供了BDO和THF的共生产。这些催化剂的使用结果是由MA和BDO产生了大量THF和BDO。
J0-A 2233-632中描述了含有铜,锰和钾的催化剂。
EP-A-431923描述两步法制备BDO和THF,其中在第一步液相氢化MA制得GBL,并在第二步经含有铜和硅的催化剂气相反应将其转化成丁二醇。
US5196602公开了一种在两步法中用氢氢化MA或马来酸制备丁二醇的方法。在第一步中,MA氢化成SA和/或GBL,其接着在第二步中在存在含Ru催化剂时转化成BDO。
上面引用的文献的技术是基于使用纯的MA的,所述MA制备之后,通常经蒸馏与杂质分离,作为氢化反应的反应物MA通过包括苯、丁烯混合物和正丁烷(优选使用后者)的烃的部分氧化制备。氧化的粗产物,除了希望的MA之外,特别含有副产物,如水、一氧化碳、二氧化碳、未转化的起始的烃以及乙酸和丙烯酸,并且这些副产物独立于氧化时所用的烃。通常,该副产物要通过复杂方法去除,例如经上述的蒸馏法。特别必须进行纯化,因为氢化过程中所用的催化剂对这些杂质通常是敏感的。即使使用纯的MA,催化剂的钝化仍是一个问题,因为其中聚合产物的污染意味着催化剂通常必须在相对短的时间(经常是大约100小时)内进行再生。当可聚合杂质如丙烯酸存在时,进一步增加了钝化的倾向。这个事实对本领域的技术人员来说是已知的,也被描述于例如专利申请EP-A-322140A、WO91/16132和DE-A-2404493A中。
迄今为止,在现有技术中只有一篇文献公开了仅经粗预纯化的MA的氢化。WO97/43234公开了使用至少在30℃以上沸腾的吸收剂从源于烃氧化的含有马来酸酐的气流中吸收马来酸酐,借助于氢从这些吸收剂中除去马来酸酐,并在气相中使用非均相催化剂氢化含马来酸酐的氢料流。这样得到的主要为BDO,还有少量的GBL和THF。该氢化作用在大约150℃到300℃、5巴到100巴的压力下在气相中进行。所用催化剂为Catalysis150,177到185页(1994)中所述的经助催化的铜催化剂。这些是Cu/Mn/Ba/Cr和Cu/Zn/Mg/Cr类型的铬催化剂。因此,该申请公开了使用铬催化剂氢化含有上述杂质的级别的MA。但是,由于其毒性,目前尽量避免使用铬催化剂。
由于其毒性,新技术离使用铬催化剂愈来愈远了。在文献WO99/35139(Cu-Zn氧化物)、WO95/22539(Cu-Zn-Zr氧化物)和US5122495(Cu-Zn-Al氧化物)中都可以得到无铬催化剂系统的例子。
在MA氢化至随后的产物、特别是GBL、THF和/或BDO的领域中,实际存在几乎无数的文献,并且仅有一部分被引用于上文中。
简而言之,由于已经得到了BDO的选择性和令人满意的产率,即仅生成无足轻重的量的THF,可以说经氢化MA制备BDO中出现的技术问题已经得到了解决,这可以通过各种措施或各种措施的组合来获得。
总之,BDO已经通过直接氢化纯GBL获得,GBL则通过氢化MA获得,因此成本高,纯化不方便。在每一种情况下,所用的反应物为只含有少量杂质的纯MA,因为否则就不能获得满意的选择性和催化剂运行时间。尤其在第二步中,为得到高BDO选择性和希望的运行时间使用铬催化剂更需要如此。为了避免使用铬催化剂,可以选择用贵金属催化剂,但是,就产率,选择性和持久性而言,其可以与铬催化剂项比较,但更昂贵。
为了得到长的催化剂运行时间,特别对于希望的选择性,在两个分离步骤反应的优选工艺中还包括在第一步氢化之后GBL的高成本和不方便的纯化。迄今为止,只有上面提到的WO97/43234公开了使用粗预纯化MA作为反应物经氢化制备BDO的唯一方法。该方法一步进行,因此避免了在第一步氢化后的污染。但是,只有铬催化剂适用于这种转化。
本发明的目的是提供一种由MA制备BDO的方法,其不需要纯MA并且至少不需要第一步反应产物的昂贵和不方便的中间纯化,并且提供了非常好的丁二醇选择性和催化剂运行时间。该方法将还不需要铬催化剂,并且优选不含贵金属的催化剂,并且对BDO具有高选择性,尤其是几乎不产生THF。
我们已经发现,这个目的通过在气相中两步催化氢化C4-二羧酸和/或其衍生物制得任选烷基取代的1,4-丁二醇的方法实现,其具有如下步骤a)在200到300℃和从2到60巴下将C4-二羧酸或其衍生物的气流导入第一反应器,并在气相中催化氢化以得到主要包含任选烷基取代的γ-丁内酯的产物;b)去除在步骤a)中得到的产物流中的琥珀酸酐;c)在温度150℃到240℃和压力从15到100巴下将步骤b)中获得的产物流导入第二反应器,并在气相中催化氢化以得到任选烷基取代的1,4-丁二醇;d)从中间体,副产物和任何未转化的反应物中移走所希望的产物;e)将未转化的中间体循环导入任意一个或两个氢化步骤中,每个所述氢化步骤所用的催化剂包括按重量计算≤95%,优选按重量计算从5到95%,特别是按重量计算从10到80%的CuO,和按重量计算≥5%,优选按重量计算从5到95%,特别是按重量计算从20到90%的氧化载体,并且所述第二反应器具有比所述第一反应器高的压力。
为了能得到希望的BDO选择性,需要在两个氢化步骤中都维持特定的反应参数,在下面列举了这些参数。
研究得知SA对促使步骤c)中所用氢催化剂的快速失活有显著的贡献。因此根据本发明的旨在去除SA的方法,提供了高的BDO产率并伴随着长的催化剂运行时间和非常良好的BDO选择性。
根据本发明的方法,由于SA特别是其高沸点可以不需复杂装置即可从产物流中去除,所以从第一氢化步骤a)出来的产物流不打算进行昂贵和麻烦的纯化。因此,比较简单、便宜和便利的措施可使催化剂的选择性和运行时间得到提高。优选在部分冷凝中通过简单冷却去除SA。该去除方法将在下面进行较详细地描述。
依据本发明的方法,在氢化反应中可以用不同纯度的反应物。可以理解可以将高纯度的反应物,尤其是MA,用于氢化反应。然而,根据本发明的方法的优点是,还可以使用那些被氧化产生的常见物质,例如苯、丁烯或正丁烷和任何其他成分污染的反应物(尤其是MA)。因此,依据本发明的氢化方法在进一步的实施方案中可以包括一个前置步骤,其包含通过适宜烃的部分氧化制备将被氢化的反应物和从获得的产物料流中移出被氢化的反应物。优选只进行粗去除,其不需要烦复的操作并在反应物中允许有少量杂质存在,这在现有技术的方法中是难以接受的。
特别地,被氢化的反应物是MA。优选所用的MA源于烃的部分氧化。使用的烃包括苯、C4-烯烃(例如正丁烯,C4-提余液流)或正丁烷。尤为优选使用正丁烷,因为它是既便宜又经济的起始材料。例如,在《Ullmann工业化学百科全书》(Ullmann’s Encyclopedia of Industrial Chemistry)第六版,电子版,马来和富马酸-马来酸酐中描述了正丁烷的部分氧化方法。
优选接下来将以这种方式得到的反应流出物用于在大气压下沸点高于MA的沸点至少30℃的合适的有机溶剂或溶剂混合物的吸收中。
将这种溶剂(吸收剂)的温度调整到从20到160℃,优选从30到80℃。由部分氧化得到含有马来酸酐的气体料流以多种方式与溶剂接触(i)将气流通入溶剂(例如借助进气喷嘴或喷射环),(ii)将溶剂喷入气流中,和(iii)在塔板塔或填充塔中气流朝上、溶剂朝下进行逆流接触。在全部三种方案中,可将本领域的技术人员已知的设备用于气体吸收。在选择所用溶剂时,必须注意到其不能与反应物反应,例如优选使用MA。有用的溶剂为磷酸三甲苯酯、马来酸二丁酯、马来酸丁酯、高分子量蜡、分子量从150-400且沸点高于140℃的芳香烃(例如二苄基苯)、具有C1-C18烷基的邻苯二甲酸烷基酯和邻苯二甲酸二烷基酯(例如邻苯二甲酸二甲酯、邻苯二甲酸二乙酯、邻苯二甲酸二丁酯、邻苯二甲酸二正丙酯和邻苯二甲酸二异丙酯、邻苯二甲酸十一烷基酯、邻苯二甲酸双十一烷基酯、邻苯二甲酸甲酯、邻苯二甲酸乙酯、邻苯二甲酸丁酯、邻苯二甲酸正丙酯或邻苯二甲酸异丙酯;其他芳香或脂肪族二羧酸的二C1-C4-烷基酯,例如2,3-萘二甲酸二甲酯、1,4-环己烷二羧酸二甲基酯;其他芳香族和脂肪族二羧酸的C1-C4烷基酯,例如2,3-萘二羧酸甲酯、1,4-环己烷二羧酸甲酯;具有例如14到30个碳原子的长链脂肪酸的甲酯、高沸点醚(如聚乙二醇二甲醚,如四乙二醇二甲醚)。
优选邻苯二酸酯。
由吸收剂处理产生的溶液通常每升含有大约5到400克MA组分。
用吸收剂处理之后剩余的气流主要含有前述的部分氧化的副产物,如水、一氧化碳、二氧化碳、未转化的丁烷、乙酸和丙烯酸。废气流中实际上不含MA。
接下来将溶解的MA从吸收剂中气提。这用氢在此后的氢化作用的压力下或在最高高出其10%的压力下或者在降低了的压力下在残余MA的冷凝的同时进行。在气提塔中,观测到了这样的温度曲线,即在每一种情况下,在顶部为MA沸点,在塔底部为实际上不含MA的溶剂的沸点,并使用载气(在第一种情况下为氢)稀释。
为了避免损失溶剂,可以在粗MA料流进料位置之上设置内部精馏部件,事实上不含MA的吸收剂从底部除去并反馈回吸收区。H2/MA的比约为从20到400。此外,冷凝的MA被泵入蒸发器并在这里被蒸发进循环气流中。
MA-氢料流还包括产自使用含氧气体的正丁烷、丁烯或苯的部分氧化的副产物,和未去除的吸收剂。该副产物特别是乙酸和丙烯酸,并且还有水,马来酸和邻苯二甲酸二烷基酯(优选作为吸收剂)。MA含有乙酸的量按重量计算为从0.01到1%,优选按重量计算为从0.1到0.8%,丙烯酸的量按重量计算为从0.01到1%,优选按重量计算从0.1到0.8%(以MA为基准)。在氢化步骤中,乙酸和丙烯酸分别被部分或全部氢化为乙醇和丙醇。马来酸的含量以MA为基准按重量计算为从0.01到1%,优选按重量计算为从0.05到0.3%。
当邻苯二甲酸二烷基酯用作吸收剂时,其在MA中的含量强烈依赖于气提塔、尤其是精馏部分的正确操作。当塔以适宜的方式运行时,邻苯二甲酸酯的含量不应超过按重量计算最高为1.0%,特别是按重量计算最高为0.5%,因为否则会使吸收剂损失过高。
氢/马来酸酐料流优选通过上述方法获得并接着导入第一氢化反应器并进行加氢。事实上催化剂的活性和运行时间与普遍使用的如蒸馏的纯MA相比没有改变。
根据本发明,离开第一反应器的气流不含SA并接着以多种方式进行再处理。SA可以通过本领域公知的技术去除,例如通过部分冷凝,任选在逆流中进行冷凝或蒸馏。上述措施显然减少了气流中SA的含量。该过程中残余SA可以接受的含量是可以改变并依赖于许多因素,例如第二氢化步骤中催化剂的组成。通常希望得到的残余SA的含量按重量计算<大约0.3到0.2%。这个值特别是当方法中第一氢化步骤以排出料流的SA的含量以按重量计算大约1%的方式进行时获得的。
根据一种方案,不含SA的气流被第二氢化步骤中的更高压力压缩并以这种形式和任何重复使用的GBL提供给第二氢化反应。
在进一步的方案中,气流可以冷却到10到60℃。冷凝出反应产物并通入分离器。未冷凝的气体可以被去除并优选在供给循环气体压缩机之后返回第一氢化循环。重复使用的气流中生成的副产物可以采用本领域公知的技术去除,优选通过除去少量循环气体去除。从系统中提取冷凝的反应产物并导入第二氢化循环中。在压力下与所有循环使用的GBL一起使反应产物成为气相并与第二催化剂接触。所有循环使用的GBL也可以在气态直接通入第二氢化反应器。
在进一步的方案中,从第一步骤中出来的负载GBL的气流被第二步骤的压力压缩并且第二步骤循环的气体膨胀到第一步骤的入口,在操作的同时进行。
在所有的反应方案中,第二反应器中出来的气流可进行冷却,优选到从10到60℃。将反应产物冷凝出下来并通入分离器中。在分离器中提取未冷凝的气流并导入循环气体压缩机中。少量循环气体被除去。优选连续提取从系统冷凝的反应产物并进行检测。液相中冷凝出的副产物大部分为THF和正丁醇,以及少量的丙醇。
接下来将副产物和水以及希望的产物BDO从第二步的残留氢化液体中分离出来。这通常通过分馏完成。副产物和中间体,例如GBL和二聚-BDO,可重新回到第一和/或第二步的氢化中,优选回到第二步的氢化中,或选择通过蒸馏进行后处理。
本发明的方法可以分批地、半连续地或连续地进行。优选连续进行。
一个重要参数是保持两个氢化步骤中的适宜的反应温度。
在第一氢化步骤中,优选反应物从足够高的温度进入第一氢化反应器。该开始氢化的温度从200℃到300℃,优选从235℃到270℃。为了在第一步中到达预期的选择性和产率,该反应优选以这样一种方式进行,即发生反应的催化剂床在适宜的高反应温度下进行。在反应物进入反应器之后,设置热点温度,并优选从210℃到310℃,尤其是从245到280℃。该方法优选以这样一种方式进行,即反应气体的入口温度和出口温度都低于该热点温度。热点温度位于反应器的中间处有利,特别是当其为管束反应器时。热点温度优选高于入口温度5到30℃,特别优选5到15℃,更优选5到10℃。当氢化反应在低于入口和热点温度的最低值进行并且MA用作反应物时,SA的量一般会增加然而同时GBL和BDO的量会减少。这种温度也引起在氢化作用期间由于琥珀酸,富马来酸和/或SA对催化剂的污损和机械损伤而观测到催化剂钝化。相反,当MA作高于入口和热点温度的最高值的反应物时,BDO的产率和选择性通常会降为使人不满意的值。会观测到THF,正丁醇和正丁烷的形成增加,即,产物被进一步氢化。
在第二氢化步骤中,入口温度(起始氢化的温度)从150℃到260℃,优选从175℃到225℃,特别是从180到200℃。当氢化作用在低于入口温度的最低值进行时,BDO形成的量会下降。催化剂会失去活性。在低于温度的最低值时,可以预料到原材料会冷凝并且水会损害铜催化剂。相反,当GBL作为高于最高入口温度的氢化的反应物时,BDO的产率和选择性会降为使人不满意的值。在这些温度下,BDO和GBL之间的氢化平衡偏向GBL一侧以至于所获得转化较少,但在相对高的温度下可以观测到由于过度氢化生成THF、正丁醇和正丁烷而增加了副产物的生成。
反应器中气流的温度增加不应超过110℃,优选为40℃,并特别不应该高于20℃。这里的温度的大量增加也会导致过度氢化反应并使(BDO+GBL)的选择性丢失。
在第一氢化步骤中,压力从2到60巴,优选从2到20巴,并且更优选的压力是从5到15巴。在这个压力范围内,MA在进行氢化时由最初形成的中间体GBL形成的THF非常显著地得到抑制。
在第二氢化步骤中,压力从15到100巴,优选从35到80巴,并且更优选的压力是从50到70巴。在第二氢化步骤的选定温度下,GBL到BDO的转化随压力增加。因此压力越高所选择的GBL再循环速率越低。第二氢化步骤的压力高于第一氢化步骤的压力。
第一氢化步骤的催化剂时空间速度优选范围从0.02到1,特别是从0.05到0.5,千克反应物/升催化剂·小时。在MA的情况下,当第一步骤的催化剂时空间速度增加到高出这个范围时,观察到的氢化流出物中SA和琥珀酸的含量增加。第二氢化步骤的催化剂时空间速度优选范围从0.02到1.5,特别是从0.1到1,千克反应物/升催化剂·小时。当催化剂的时空间速度增加到高出这个范围时,可以预料到GBL不能完全转化。这可以通过任选地通过增加循环速率进行补偿,尽管应意识到这不是优选的。
根据本发明,氢/反应物的摩尔比率也是影响到产品分布和方法的经济可行性的一个参数。从经济的观点出发,希望低的氢/反应物的比率。较低的极限值是5,尽管较高的氢/反应物的摩尔比率从20到600是常用的。根据本发明所用催化剂的使用和依据本发明的特定温度的维持可以得到有益的效果,第一氢化步骤中低的氢/反应物的比率优选从20到200,更优选从40到150。最有利的范围是从50到100。
根据本发明,为了达到使用的氢/反应物的摩尔比,氢的一部分(更有利的是其大部分)在第一和第二两个氢化步骤中都依惯例进行循环。为此,使用本领域的技术人员所熟悉的循环气体压缩机。补充氢化作用消耗的氢的量。在优选实施方案中,将一部分循环气体除去,以去除惰性化合物,例如正丁烷。该循环的氢(任选在预热之后)可用于反应物料流的蒸发。
与氢循环气体一起,当离开氢化反应的气体料流被冷却时,所有不冷凝或不完全冷凝的产物被循环。这些特别是THF、水和如甲烷和丁烷的副产物。冷却温度优选从0到60℃,更优选从20到45℃。
有用的反应器类型包括适合具有气体反应和产物料流的非均相催化反应的所有设备。优选管式反应器、轴式反应器(shaft reactor)或带有内部热去除装置的反应器,例如管束反应器,也可以使用流化床。特别优选在第一氢化步骤中采用管束反应器,在第二氢化步骤采用轴式反应器。在第一和第二两个氢化步骤中,采用多个反应器并联或串联。理论上,在催化剂床中间还可以有中间体加入。也可以在两个催化剂床中或其中间提供中间冷却。当采用固定床反应器时,可以添加惰性物质对催化剂进行稀释。
本发明重要的一点是两个步骤中催化剂的选择,其含有氧化铜作为主要催化活性成分。催化剂施于可含有少量酸性位点(acidic site)的氧化载体。当所用的催化剂含有的酸性位点太多时,BDO会脱水形成THF。
适宜的含有酸性位点的数量足够低的载体材料选自ZnO、Al2O3、SiO2、TiO2、ZrO2、CeO2、MgO、CaO、SrO、BaO和Mn2O3及其混合物。优选的载体材料为ZnO/Al2O3混合物,Al2O3的δ-、θ-、α-、η-变体,以及这样的混合物,即其包含至少一种每一种首先选自SiO2、TiO2、ZrO2、其次选自ZnO、MgO、CaO、SrO和BaO的成分。特别优选的载体材料为纯的ZnO,ZnO/Al2O3的重量比从100∶1到1∶2的混合物和SiO2与MgO、CaO和/或ZnO的重量比从200∶1到1∶1的混合物。
氧化铜按重量计算≤95%,优选按重量计算从5到95%,特别是按重量计算从15到80%;所用载体按重量计算≥5%,优选按重量计算从5到95%,特别是按重量计算从20到85%。
因为铬催化剂的毒性,优选采用无铬的催化剂。本领域的技术人员可以理解本发明的方法还可以使用相应的铬催化剂,尽管所希望的优点、特别是在环境和技术方面的优点不能得到体现。
两个氢化步骤可以采用相同催化剂,但是优选使用不同的催化剂。
根据本发明采用的催化剂任选包含一种或多种其他金属或其化合物,优选氧化物,所述金属从元素周期表中1到14族(IUPAC命名的IA到VIIIA和IB到IVB族)。若使用其他金属,优选采用Pd,其按重量计算≤1%,优选按重量计算≤0.5%,特别是按重量计算≤0.2%。但是,使用其他金属或金属氧化物不是优选的。
此外,所用的催化剂可以含有助剂,其按重量计算的量为从0到10%。助剂为有助于改善催化剂制备过程的处理和/或能提高催化剂成型体机械稳定性的有机或无机物。有用的助剂是本领域的技术人员已知的;例如包括石墨,硬脂酸,硅胶和铜粉末。
催化剂可以采用本领域的技术人员已知的方法进行制备。优选提供氧化铜细微粉末并与其他组分紧密混合的方法,更优选浸渍和沉淀反应。
这些原材料可以采用已知的方法成型,例如挤出、压片或附聚,可选择使用助剂。
另外,根据本发明的催化剂可以通过例如在载体上使用活性成分、如经涂覆或蒸气沉积进行制备。根据本发明的催化剂还可以通过将活性组分或其前体化合物与载体组分或其前体化合物的非均相混合物成型而获得。
除MA之外,根据本发明的氢化还可以采用其他上述C4-二羧酸或其衍生物作为反应物,使用还原活化形式的催化剂进行。该催化剂用还原气体进行活化,优选用氢或氢/惰性气体混合物在安装在实施本发明的反应器中之前或之后进行活化。若已经装在反应器中的催化剂为氧化态,可以在根据本发明的氢化的设备启动之前或者在启动过程中进行活化(即原位活化)。在启动设备之前的单独的活化通常由还原气体(优选为升高的温度下的氢或氢/惰性气体混合物)完成,所述温度优选从100到350℃。原位活化可以在设备启动时在升高的温度下通过与氢接触实现。
所用催化剂优选成型体的形式。例子包括挤出物、肋形挤出物、其他挤出物形式、片、环、球和碎片。
氧化态的铜催化剂的BET表面积应为从10到300m2/g,优选从15到175m2/g,特别是从20到150m2/g。安装后的还原催化剂的铜表面积(N2O分解)应为>0.2m2/g,优选>1m2/g,特别是>2m2/g。
在本发明的一个方案中,所用催化剂具有规定的孔隙率。在这些催化剂的成型体中,孔直径为>50nm的孔的容积≥0.01ml/g,优选孔直径为>100nm的孔的孔容积为≥0.025ml/g,特别是孔直径为>200nm的孔的孔容积为≥0.05ml/g。直径>50nm的大孔与直径>4nm的孔的总孔容积的比也为>10%,优选>20%,特别是>30%。所提及的孔隙率根据DIN66133经压汞法进行确定。由测得的数据得到孔直径为从4nm到300μm。
根据本发明所使用的催化剂通常具有足够的运行时间。然而,如果在运行时间的过程中催化剂的活性和/或选择性下降,可以通过本领域的技术人员已知的方法进行再生。这些方法包括优选在升高的温度下在氢气流中对催化剂进行还原处理。还原处理后可以任选进行氧化处理。为此,在升高的温度下,将含有分子氧的气体混合物(如空气)通入催化剂床。也可以使用合适的溶剂如乙醇、THF、BDO或GBL清洗催化剂,并接着将其在气流中干燥。
根据本发明的方法通过下面的实施例进行说明。
实施例1ssa)催化剂的制备b)催化剂的活化在开始反应之前,催化剂先在氢化装置中进行氢化处理。该反应器加热到180℃和催化剂按表1中列举的时间在常压下在每个实例中使用所述氢和氮的混合物进行活化。
表1c)氢化装置用于氢化反应的压力装置由蒸发器、反应器、带有骤冷物的冷凝器、氢气入口、废气管线和循环气体吹风机组成。装置中的压力保持常数。
将熔融的MA泵入上面预热(245℃)的蒸发器中进行汽化。新鲜氢和循环气体的混合物也到达上面的蒸发器中。在这种方式下,氢和MA从下面通入加热的反应器中。反应器内容物由玻璃环和催化剂的混合物组成。氢化后,形成的THF伴随着水、其他反应产物和反应器中剩余的氢离开反应器并通过瞬冷在冷凝器中保留下来。一部分循环气体在剩余物混合新的氢重新进入蒸发器之前被排出。
冷凝的液态反应流出物、废气和循环气体的量通过气相色谱定量分析。
实施例1dd)得自正丁烷的马来酸酐的氢化实施例1b所述的氢化装置的反应器填充由实施例1a制备的220ml的催化剂和130ml的玻璃环。活化如实施例1b所述进行。
所用反应物是得自正丁烷的马来酸酐,其包含500ppm的丙烯酸、1500ppm的乙酸和100ppm的邻苯二甲酸二丁酯。反应进行1000h。在整段时间内没有观测到催化剂钝化,即没有观察到马来酸酐的转化和/或四氢呋喃的产率的减少。经气相色谱没有观测到丁二醇。该氢化反应参数和结果在表2中总结。
实施例1a)催化剂的制备由含有硝酸铜和硝酸锌的金属盐溶液,用碳酸钠在50℃、pH大约为6.2时沉淀碱金属碳酸盐混合物。所用的金属盐溶液包括相应于组成为70%的CuO和30%的ZnO的催化剂的金属。
沉淀经过滤、清洗、干燥、在300℃下煅烧,并与按重量计算含有3%的石墨压成其高和直径都为3mm的小片。
b)催化剂的活化在开始反应之前,催化剂先在氢化装置中进行氢化处理。该反应器加热到180℃和催化剂按表1中列举的时间在常压下在每个实例中使用所述氢和氮的混合物进行活化。
表1c)氢化装置用于氢化反应的压力装置由蒸发器、反应器、带有骤冷物的冷凝器、氢气入口、废气管线和循环气体吹风机组成。装置中的压力保持常数。
将熔融的MA泵入上面预热(245℃)的蒸发器中进行汽化。新鲜氢和循环气体的混合物也到达上面的蒸发器中。在这种方式下,氢和MA从下面通入加热的反应器中。反应器内容物由玻璃环和催化剂的混合物组成。氢化后,形成的GBL伴随着水、其他反应产物和反应器中剩余的氢离开反应器并通过瞬冷在冷凝器中保留下来。一部分循环气体在剩余物混合新的氢重新进入蒸发器之前被排出。
冷凝的液态反应流出物、废气和循环气体的量通过气相色谱定量分析。
当反应器在255℃温度,5巴压力和催化剂的时空间速度为0.27Kg/Lcath,氢∶MA的摩尔比率为85∶1时,反应流出物的组成为91%的GBL、5%的THF、1%的BDO和1%的BSA。
实施例2a)催化剂的制备由硝酸锌和硝酸铝的水溶液,用碳酸钠在50℃、pH为6.8时沉淀组成为64%的ZnO和36%的Al2O3(基于100%的氧化物)的固体,过滤并清洗。滤饼干燥并在425℃下煅烧1小时。
在上述载体中加入硝酸铜和硝酸锌(金属比按重量计算为16.6%的CuO和83.4%的ZnO)的硝酸溶液并在70℃下紧密混合。由这些混合物,用碳酸钠溶液在70℃和pH为7.4时沉淀固体并将悬浮液在恒定温度和pH下再搅拌2h。滤出固体、清洗、干燥并在430℃下煅烧1小时。用这种方法得到的催化剂粉末按重量计算与1.5重量%的石墨和5重量%的铜粉末混合,并压制成直径1.5mm、高1.5mm的片。最后将这些片在330℃下煅烧1h,其侧压碎强度为50N,化学组成为66%CuO/24%ZnO/5%Al2O3/5%Cu。
b)催化剂的活化类似于例1bc)氢化装置实施例1c所述的氢化装置的反应器填充由实施例2a的制备的220ml的催化剂和130ml的玻璃环。该活化如实施例1b所述进行。
所用反应物是实施例1的MA氢化反应流出物,其中50%以上的SA组分已通过部分冷凝而除去。当反应器在180℃温度、60巴压力和催化剂的时空间速度0.15Kg/Lcath(氢∶GBL的摩尔比率为200∶1)时,得到的反应流出物的组成为87%的BDO,7%的GBL,5%的THF。
权利要求
1.一种通过在气相中对C4-二羧酸和/或其衍生物进行催化加氢的两步法制备任选烷基取代的1,4-丁二醇的方法,其具有如下步骤a)在200到300℃和2到60巴下将C4-二羧酸或其衍生物的气流导入第一反应器,并在气相中催化氢化以得到主要包含任选烷基取代的γ-丁内酯的产物;b)去除在步骤a)中得到的产物中的琥珀酸酐,优选至残余量按重量计算<大约0.3到0.2%;c)在温度150℃到240℃和压力15到100巴下将步骤b)中获得的产物流导入第二反应器,并在气相中催化氢化以得到任选烷基取代的1,4-丁二醇;d)从中间体、副产物和任何未转化的反应物中移走所希望的产物;e)任选将未转化的中间体循环导入一个或两个氢化步骤中,每个所述氢化步骤所用的催化剂包括按重量计算≤95%、优选按重量计算从5到95%、特别是按重量计算从10到80%的CuO,和按重量计算≥5%、优选按重量计算从5到95%、特别是按重量计算从20到90%的氧化载体,并且所述第二反应器具有比第一反应器高的压力。
2.如权利要求1所述的方法,其中进入第一反应器的入口温度是从235到270℃,进入第二反应器的入口温度是从175℃到225℃,特别是从180到200℃。
3.如权利要求1或2所述的方法,其中在第一反应器中的热点温度为从210到310℃、优选从245℃到280℃,并且该方法以这样一种方式进行,即热点温度高于反应气体的入口温度和出口温度,并且高出入口温度5到30℃、特别是5到15℃、更优选5到10℃。
4.如权利要求1到3中任意一项所述的方法,其中第一氢化步骤的压力为从2到20巴、优选从5到15巴,第二氢化步骤的压力为从35到80巴、优选从50到70巴。
5.如权利要求1到4中任意一项所述的方法,其中第一氢化步骤的催化剂时空间速度范围为从0.02到1、特别是从0.05到0.5千克反应物/升催化剂·小时,并且第二氢化步骤的催化剂时空间速度范围为从0.02到1.5、特别是从0.1到1千克反应物/升催化剂·小时。
6.如权利要求1到5中任意一项所述的方法,其中在两个反应步骤中的氢/反应物的摩尔比率都>5、优选从20到600。
7.如权利要求6所述的方法,其中第一氢化步骤中的氢/反应物的摩尔比率从20到200、优选从40到150、特别是从50到100。
8.如权利要求1到7中任意一项所述的方法,其中所用的反应器选自管式反应器、轴反应器、带有内部热去除装置的反应器、管束反应器和流化床反应器。
9.如权利要求8所述的方法,其中在第一氢化步骤中使用管束反应器。
10.如权利要求8或9所述的方法,其中在第二氢化步骤中使用轴反应器。
11.如权利要求1到10中任意一项所述的方法,其中在第一和/或第二氢化步骤中使用并联或串联的多于一个反应器。
12.如权利要求1到11中任意一项所述的方法,其中催化剂的载体材料选自ZnO、Al2O3、SiO2、TiO2、ZrO2、CeO2、MgO、CaO、SrO、BaO和Mn2O3及其混合物,优选选自ZnO/Al2O3的混合物、Al2O3的δ-、θ-、α-、η-变体,以及这样的混合物,即其包含至少一种每一种首先选自SiO2、TiO2、ZrO2、其次选自ZnO、MgO、CaO、SrO和BaO的成分。
13.如权利要求1到12中任意一项所述的方法,其中载体材料选自ZnO、ZnO/Al2O3的重量比为从100∶1到1∶2的混合物,以及SiO2与MgO、CaO和/或ZnO的重量比为从200∶1到1∶1的混合物。
14.如权利要求1到13中任意一项所述的方法,其中催化剂包括一种或多种元素周期表中1到14族的其他金属,优选为Pd,或一种或多种其他金属的化合物,优选氧化物。
15.如权利要求1到14中任意一项所述的方法,其中所用催化剂为成型体的形式,优选压出物、肋形压出物、片、环、球或碎片。
16.如权利要求1到15中任意一项所述的方法,其中氧化态的铜催化剂的BET表面积为从10到300m2/g,优选从15到175m2/g,特别是从20到150m2/g。
17.如权利要求1到16中任意一项所述的方法,其中安装后的还原催化剂的铜表面积为>0.2m2/g、优选>1m2/g、特别是>2m2/g。
18.如权利要求1到17中任意一项所述的方法,其中第一和第二反应器所用的催化剂为相同的或不同的、优选不同的。
19.如权利要求1到18中任意一项所述的方法,其中所用催化剂的成型体中孔直径>50nm的孔的容积≥0.01ml/g,优选孔直径为>100nm的孔的孔容积为≥0.025ml/g,特别是孔直径为>200nm的孔的孔容积为≥0.05ml/g。
20.如权利要求1到19中任意一项所述的方法,其中直径>50nm的微孔与直径>4nm的孔的总孔容积的比>10%、优选>20%、特别是>30%。
21.如权利要求1到20中任意一项所述的方法,其中反应中使用的反应物为马来酸酐。
22.如权利要求1到21中任意一项所述的方法,其中所用的马来酸酐通过氧化苯、C4-烯烃或正丁烷制备,经氧化得到的粗马来酸酐用溶剂从粗产品混合物中提取,并接着用氢从溶剂中气提出来。
23.如权利要求1到22中任意一项所述的方法,其中吸收剂选自磷酸三甲苯酯,马来酸二丁酯,高分子量蜡,分子量从150-400并且沸点高于140℃的芳香烃,优选Dibenzol,芳香或脂肪族二羧酸的二-C1-C4-烷基酯,优选2,3-萘二羧酸二甲酯和/或1,4-环己烷二羧酸二甲酯,具有14到30个碳原子的长链脂肪酸的甲酯,高沸点醚,优选聚乙二醇的二甲醚,优选四醇的二甲醚,具有C1-C18烷基的邻苯二甲酸二烷基酯和邻苯二甲酸烷基酯,优选选自邻苯二甲酸二甲酯,邻苯二甲酸二乙酯,邻苯二甲酸二丁酯,邻苯二甲酸二正丙酯和邻苯二甲酸二异丙酯,邻苯二甲酸十一烷基酯,邻苯二甲酸双十一烷基酯,邻苯二甲酸甲酯,邻苯二甲酸乙酯,邻苯二甲酸丁酯,邻苯二甲酸正丙酯和异丙酯。
24.如权利要求1到23中任意一项所述的方法,其中马来酸酐在减压或对应于氢化压力或高于该压力最多10%的压力下气提。
25.如权利要求1到24中任意一项所述的方法,其分批、半连续或连续进行,优选连续进行。
26.如权利要求1到25中任意一项所述的方法,其中SA通过部分冷凝,任选在逆流中,冷凝或蒸馏去除。
全文摘要
本发明涉及一种通过在气相中对C
文档编号C07C31/20GK1668560SQ03816533
公开日2005年9月14日 申请日期2003年6月11日 优先权日2002年6月11日
发明者M·黑塞, S·施利特尔, H·博彻特, M·舒伯特, M·勒施, N·博特克, R-H·菲舍尔, A·韦克, G·温德克尔, G·海德里希 申请人:巴斯福股份公司