用于通过原子层沉积来沉积铜膜的挥发性铜(ii)配合物的利记博彩app

文档序号:3528055阅读:280来源:国知局
专利名称:用于通过原子层沉积来沉积铜膜的挥发性铜(ii)配合物的利记博彩app
技术领域
本发明涉及新的1,3-二亚胺铜配合物以及1,3-二亚胺铜配合物用于在原子层沉积法中在基材上沉积铜或在多孔固体之中或之上沉积铜的用途。本发明还提供一种生产氨基亚胺的方法以及新的氨基亚胺化合物。
背景技术
ALD(原子层沉积)方法用于形成薄膜,如M.Ritala和M.Leskela在Handbook of Thin Film Materials中的“Atomic LayerDeposition”所述(H.S.Nalwa编辑,Academic Press,San Diego,2001,第1卷,第2章)。这些膜,特别是金属和金属氧化物膜,是在生产电路和电子设备中的关键组分。
在用于沉积铜膜的ALD法中,铜前体和还原剂被交替地引入反应室中。在铜前体被引入反应室中并被吸收在基材上之后,过量的(未吸收的)前体蒸气从该反应室中泵出或吹扫出来。然后,引入能与铜前体反应形成铜金属和游离形式配体的还原剂。这种循环可以在需要时重复进行以达到所需的膜厚度。
该方法与化学气相沉积(CVD)的区别在于金属配合物的沉积化学机理。在CVD方法中,配合物在与表面接触时分解,得到所需的膜。在ALD方法中,配合物在与表面接触时不会分解。而膜的形成是在引入第二种试剂时发生,该试剂能与沉积的金属配合物反应。在由铜(II)配合物制备铜膜的过程中,第二种试剂是还原剂。
为了用于ALD方法,铜配合物必须具有足够的挥发性以便在没有热分解的情况下升华。一般,含三氟甲基的配体已经用于提高铜配合物的挥发性。但是,这种方法在互联层的制备中有缺陷,因为卤化物不利地影响互联层的性能。
在ALD方法中使用的配体必须还对于分解是稳定的并能从配合物中以不含金属的形式解吸。在铜的还原之后,配体被释放出来并必须从表面上除去以防止它进入正在形成的金属层中。
US5464666描述了1,3-二亚胺铜配合物在氢气存在下分解形成铜。该专利还描述了1,3-二亚胺铜配合物在用于生产铜-铝合金的化学气相沉积法中的用途。
DE4202889描述了1,3-二亚胺金属配合物用于沉积涂层的用途,优选通过化学气相沉积法进行。公开了金属配合物在还原气氛、优选氢气中的分解。
S.G.McGeachin在Canadian Journal of Chemistry,46,1903-1912(1968)中描述了1,3-二亚胺以及这些配体的金属配合物的合成。
N.A.Domnin和S.I.Yakimovich,Zh.Organ.Khim,1965,1(4),658描述了脂族β-二酮与不对称N,N-二烷基肼反应形成双(二烷基腙)。
发明概述本发明描述了-种在基材上形成铜沉积物的方法,包括a.使基材与铜配合物(I)接触,形成铜配合物在该基材上的沉积物;和 b.使沉积的铜配合物与还原剂接触,其中R1和R4独立地选自H、C1-C5烷基和二甲基氨基;R2和R3独立地选自H、C1-C5烷基、苯基、苄基和4-吡啶基,前提是在R1至R4中的碳总数是4-12;和还原剂选自9-BBN、硼烷、二氢苯并呋喃、吡唑啉、二乙基硅烷、二甲基硅烷、乙基硅烷、甲基硅烷、苯基硅烷和硅烷。
在另一个实施方案中,本发明提供1,3-二亚胺铜配合物(II),
其中R5和R8是二甲基氨基;和R6和R7独立地选自H、C1-C5烷基、苯基、苄基和4-吡啶基,前提是在R5至R8中的碳总数是4-14;或R5和R8独立地选自H、C1-C5烷基和二甲基氨基;和R6和R7选自H、C1-C5烷基、苯基、苄基和4-吡啶基,前提是R6或R7是4-吡啶基,和前提是在R5至R8中的碳总数是4-14。
在另一个实施方案中,本发明提供含有沉积在基材上的1,3-二亚胺铜配合物(II)的制品。
在另一个实施方案中,本发明提供合成二亚胺化合物的方法,包括a.使烷基亚氨基-单酮(III)与烷基化剂接触,形成相应的O-烷基化衍生物(IV); b.使步骤(a)的O-烷基化衍生物(IV)与伯烷基胺NH2R13接触,形成亚胺鎓盐(V);和
c.使步骤(b)的亚胺鎓盐(V)与强碱接触,形成相应的中性氨基亚胺(VI) 其中R10和R11独立地选自H、C1-C5烷基、苯基、苄基和4-吡啶基;R12是Me或Et;R9和R13独立地选自H和C1-C5烷基,前提是在R9、R10、R11和R13中的碳总数是4-12;烷基化试剂选自硫酸二甲酯、苯磺酸甲酯、甲苯磺酸甲酯、硫酸二乙酯、苯磺酸乙酯、三氟甲烷磺酸甲酯和甲苯磺酸乙酯;和X-是衍生自烷基化试剂的阴离子。
在另一个实施方案中,本发明提供新的氨基亚胺化合物(VII) 其中R14和R17独立地选自H、C1-C5烷基和二甲基氨基;和R15和R16独立地选自H、C1-C5烷基、苯基、苄基和4-吡啶基,前提是R15或R16是4-吡啶基,和前提是在R14至R17中的碳总数是4-14。
发明详述申请人已经发现适用于产生用作在形成集成电路的铜互联网中的种子层或用于装饰性应用或催化应用的原子层沉积(ALD)方法。该方法使用铜(II)配合物,它是挥发性的、热稳定的并衍生自仅含C、H和N的配体。选择这些配体以形成在适宜温度范围内是挥发性的但在该温度范围内不分解的铜(II)配合物;另外,这些配合物在添加合适的还原剂时分解成金属。进一步选择这些配体,使得它们在接触还原剂时不分解的情况下解吸。通过易得的还原剂将这些铜配合物还原成铜金属的过程已经证明可以完全在温和的温度下进行。
在本发明方法中,通过以下步骤将铜沉积在基材上a.使基材与铜配合物(I)接触,形成铜配合物在该基材上的沉积物;和 b.使沉积的铜配合物与还原剂接触,其中R1和R4独立地选自H、C1-C5烷基和二甲基氨基;R2和R3独立地选自H、C1-C5烷基、苯基、苄基和4-吡啶基,前提是在R1至R4中的碳总数是4-12;和还原剂选自9-BBN、硼烷、二氢苯并呋喃、吡唑啉、二乙基硅烷、二甲基硅烷、乙基硅烷、苯基硅烷和硅烷。
通过允许在较低温下进行且制得更均匀的膜,本发明的沉积方法改进了现有技术中所述的方法。
在本发明的铜沉积方法中,铜可以沉积在基材的表面上、基材的孔隙之中或之上。合适基材包括铜、硅片、在生产超大规模集成电路中使用的芯片,用具有比二氧化硅更低的介电常数的介电材料制备的芯片、以及涂有阻隔层的二氧化硅和低k基材。用于防止铜迁移的阻隔层包括钽、氮化钽、钛、氮化钛、氮化硅钽、氮化硅钛、氮化碳钽和氮化铌。
该方法可以在溶液中进行,即通过使铜配合物的溶液与还原剂接触进行。但是,优选将基材暴露在铜配合物的蒸气中,然后在沉积的配合物与还原剂蒸气接触之前通过真空或吹扫除去任何多余的铜配合物(即未沉积的配合物)。在铜配合物还原之后,可以通过真空、吹扫、加热、用合适的溶剂洗涤或这些步骤的组合来除去游离形式的配体。
该方法重复进行,直到获得更厚的铜层或消除针孔。
铜配合物的沉积通常在0-120℃下进行。铜配合物的还原通常在相似的温度0-120℃下进行。
需要强还原剂来快速完全地还原铜配合物。还原剂必须是挥发性的,且在加热时不会分解。它们还必须具有足够的还原能力,从而在与沉积在铜表面上的铜配合物接触时能快速地反应。已经确定了一组合适的还原剂,它们以前未曾用于在ALD方法中铜(II)的还原。这些试剂的一个特征是存在质子给体。该试剂必须能转移至少一个电子以还原配合物的铜离子,并能转移至少一个质子以将配体质子化。被氧化的还原剂和被质子化的配体随后必须能容易地从新形成的铜沉积物表面上除去。
适用于本发明铜沉积方法的还原剂包括9-BBN、硼烷、二氢苯并呋喃、吡唑啉、二乙基硅烷、二甲基硅烷、乙基硅烷、苯基硅烷和硅烷。优选二乙基硅烷和硅烷。
在铜沉积方法的工业实施方案中,将铜配合物在温度、时间和压力条件下加入反应器中以实现配合物对基材表面的适当作用。本领域技术人员将能理解到这些参数的选择取决于各室和系统设计以及所要求的工艺速率。在沉积在基材上之后(例如涂覆的硅片),从室中泵出或吹扫出配合物蒸气,将还原剂在约50-760mTorr的压力下引入室中以便还原被吸收的铜配合物。在还原期间,将基材保持在约0-120℃的温度下。该反应必须是迅速且完全的。还原剂的暴露时间可以是从少于1秒到几分钟。该反应产物然后必须脱离表面。优选的试剂是铜1,3-二亚胺配合物(I,其中R1、R3和R4是Me,和R2是苯基)和二乙基硅烷。
在本发明的铜沉积方法中使用的铜(II)配合物分为两类具有对称配体的那些(R1=R4和R2=R3)和具有不对称配体的那些(R1≠R4和/或R2≠R3)。具有对称配体的铜(II)配合物是显示良好挥发性和稳定性的固体。选自该组的优选配体是N,N’-二乙基衍生物,其中R1=R4=乙基,和R2=R3=甲基。但是,不对称配体倾向于得到挥发性更强的配合物,这是由更低的升华温度显示的。例如,对称的N,N’-二乙基衍生物可以在45-50℃在100mTorr压力下升华,而N-甲基-N’-乙基衍生物(R1=乙基,和R2=R3=R4=甲基)在约25℃在100mTorr下升华。不对称配合物可以在比衍生自对称配体的那些更低的操作温度下使用,有助于避免不利的反应例如铜配合物的分解。
在另一个实施方案中,本发明提供新的1,3-二亚胺铜配合物(II) 其中R5和R8是二甲基氨基;和R6和R7独立地选自H、C1-C5烷基、苯基、苄基和4-吡啶基,前提是在R5至R8中的碳总数是4-14;或R5和R8独立地选自H、C1-C5烷基和二甲基氨基;和R6和R7选自H、C1-C5烷基、苯基、苄基和4-吡啶基,前提是R6或R7是4-吡啶基,和前提是在R5至R8中的碳总数是4-14。
新的铜配合物(II)用于本发明的铜沉积方法中。优选的是,R5和R8是二甲基氨基,R6和R7是C1-C5烷基,前提是R5至R8中的碳总数是5-10。
在另一个实施方案中,本发明提供含有沉积在基材上的1,3-二亚胺铜配合物(II)的制品,所述基材例如是铜、硅片、在生产超大规模集成电路中使用的芯片、用具有比二氧化硅更低的介电常数的介电材料制备的芯片、以及涂有阻隔层的二氧化硅和低k基材。用于防止铜迁移的阻隔层包括钽、氮化钽、钛、氮化钛、氮化硅钽、氮化硅钛、氮化碳钽和氮化铌。
本发明人还发现了制备氨基亚胺化合物(1,3-二亚胺配体的前体)的新合成方法。McGeachin描述的文献方法需要使用昂贵且不稳定的烷基化试剂(四氟硼酸三乙基氧鎓)。更实用的工业规模方法必须以高产率进行,并使用稳定的更低成本的试剂。本申请人已经发现硫酸二甲酯和其它便宜的烷基化试剂可以用于代替四氟硼酸三乙基氧鎓盐。这些烷基化剂以高产率产生所需的氨基亚胺化合物,如下面的实施例所示。本发明还通过不需要使用助溶剂并简化了目标产物的分离过程来改进现有技术所述的方法。
本申请人的合成氨基亚胺化合物的方法包括a.使烷基亚氨基-单酮(III)与烷基化试剂接触,形成相应的O-烷基化衍生物(IV); b.使步骤(a)的O-烷基化衍生物(IV)与伯烷基胺NH2R13接触,形成亚胺鎓盐(V);和
c.使步骤(b)的亚胺鎓盐(V)与强碱接触,形成相应的中性氨基亚胺(VI) 其中R14和R11独立地选自H、C1-C5烷基、苯基、苄基和4-吡啶基;R12是Me或Et;R9和R13独立地选自H和C1-C5烷基,前提是在R9、R10、R11和R13中的碳总数是4-12;烷基化试剂选自硫酸二甲酯、苯磺酸甲酯、甲苯磺酸甲酯、硫酸二乙酯、苯磺酸乙酯、三氟甲烷磺酸甲酯和甲苯磺酸乙酯;和X-是衍生自烷基化试剂的阴离子。
在制备氨基亚胺化合物的上述方法中,烷基亚氨基-单酮(III)可以容易地从β-二酮与胺的反应获得。优选的伯烷基胺NH2R13选自甲胺、乙胺和丙胺。强碱选自甲醇钠、甲醇铜和叔丁醇钾。
在另一个实施方案中,本发明提供新的氨基亚胺化合物(VII) 其中R14和R17独立地选自H、C1-C5烷基和二甲基氨基;和R15和R16独立地选自H、C1-C5烷基、苯基、苄基和4-吡啶基,前提是R15或R16是4-吡啶基,和前提是在R14至R17中的碳总数是4-14。
优选的是,R14和R17是二甲基氨基,R15和R16是C1-C5烷基;或R15是4-吡啶基,R14、R16和R17是C1-C4烷基。
其中R14和R17独立地选自H、C1-C5烷基的氨基亚胺(VII)可以通过上述制备这些配体前体的方法来制备。其中R14和R17是二甲基氨基且R15和R16是甲基的氨基亚胺的制备在实施例7中给出;具有其它R15和R16取代基的类似的二甲基氨基配体可以类似地制备。
实施例所有有机试剂从Sigma-Aldrich(940W.St.PaulAvenue,Milwaukee,WI,USA)获得。乙醇酮购自Alfa Aesar(30BondStreet,Ward Hill,MA,USA)。
实施例1二(N-乙基-4-乙基亚氨基-2-戊烯-2-胺化)酮(II)的制备和还原按照文献所述的方法(McGeachin)制备1,3-二亚胺配体,即CH3CH2N=C(CH3)-CH2-C(CH3)=N-CH2CH3·HBF4。铜(II)配合物通过游离碱与甲醇铜(II)在甲醇中反应来制备。将甲醇铜(0.268g)称量加入50ml的Erlenmeyer烧瓶中。加入磁力搅拌棒和5ml的甲醇。通过四氟硼酸盐(1.00g)与甲醇钠的反应制备游离的配体;甲醇盐溶液通过将NaH(0.105g)缓慢加入5ml甲醇中来制备。将该甲醇溶液一次全部与另外5ml甲醇一起加入快速搅拌的甲醇铜溶液中。立即形成了紫色溶液。将该混合物于室温搅拌1小时。真空除去溶剂。所得的固体与己烷混合;所得的混合物经由烧结的玻璃料用Celite545床过滤。滤饼用己烷洗涤,直到不再看到紫色。真空汽提出溶剂。在约100mTorr压力和40-115℃下的升华获得了熔点为98-110℃的固体。该材料的样品(约0.0250g)在约100mTorr压力和70-80℃下升华到用干冰冷却的玻璃冷指(cold finger)上。在玻璃表面上获得紫色膜。在冷却之后,含有铜配合物的釜用含有二乙基硅烷的釜代替。将该装置于50℃真空下加热。铜配合物的紫色褪成白色,然后变成淡淡的铜色,表明开始的铜配合物被还原成金属。
实施侧2MeC(NHMe)=CHC(=O)Me的制备将含水的甲胺(100g,在水中40%)滴加入100g的2,4-戊二酮中。这种添加温和地放热;添加速率调整到保持温度为约35-40℃。在完成添加之后,所得的黄色液体于室温搅拌1小时,然后进行真空蒸馏。将蒸馏釜在部分真空下加热,使得在30-35℃下获得第一蒸馏馏分(假设是水)。在除去该馏分之后,中止蒸馏。釜内的物料在冷却下固化。通过NMR分析,以良好的产率(大于90%)获得了标题化合物(纯度大于95%)。
实施例3[MeC(NHMe)=CHC(=OMe)Me][MeOSO3]的制备在干燥箱中,将实施例2的4-(甲基氨基)-3-戊烯-2-酮(1.00g)溶解在二氯甲烷(2ml)中,并与硫酸二甲酯(1.00g)混合。该混合物起初形成黄色溶液,在1小时的过程中冷却至可接触温度,在些许加热下形成浓浆液。过滤该浆液,用二氯甲烷洗涤固体,分离产率是0.90g(47%,基于硫酸二甲酯计)。固体产物的NMR谱与标题化合物相同。
在干燥箱中,将4-(甲基氨基)-3-戊烯-2-酮(1.08g)与二氯甲烷(0.5ml)混合,并将该浆液与硫酸二甲酯(1.00g)混合。先将所得溶液冷却至可接触温度,但在1小时的过程中固化,温度热得可接触。使该混合物在室温下在搅拌板上静置过夜,然后用于随后的下述反应。现场产率接近NMR谱量化值。
实施例4[MeC(NHMe)=CHC(NHEt)Me][MeOSO3]的制备将通过实施例9中方法制备的[MeC(NHMe)=CHC(=OMe)Me][MeOSO3]、二氯甲烷和未反应的过量MeC(NHMe)=CHC(=O)Me的固化混合物用2ml四氢呋喃第一次处理,然后用6ml(2M乙胺在四氢呋喃中)处理。所得的浆液在搅拌板温度(约30℃)下搅拌15分钟,然后过滤,干燥,得到1.63g的灰白色固体。NMR谱与以几种互变异构体的形式存在的标题组成相同,但没有获得绝对纯度。标题组合物的总的粗分离产率是81%,基于硫酸二甲酯计。
实施例5二(N-甲基-4-乙基亚氨基-2-戊烯-2-胺化)铜(II)的制备将1,3-二亚胺[MeC(NHMe)=CHC(NHEt)Me][MeOSO3](1.6g,如实施例4所述制备)溶解在15ml甲醇中。在搅拌下,加入叔丁醇钾(0.71g)。立即形成白色沉淀,在室温下搅拌15分钟后过滤除去该沉淀物。白色沉淀的1H NMR谱[D2O]与K[MeOSO3]相同。过滤的溶液用Cu(OCH3)2(0.40g)处理。所得的紫色浆液于室温搅拌过夜。除去溶剂,残余物被萃取入己烷中,通过过滤除去不溶性物质。己烷通过蒸发去除,留下标题化合物,是不纯的紫色糊状物。该物质通过于室温真空(约0.02托)下升华到干冰冷却的玻璃表面上或在高温(约100℃)下升华到室温下的玻璃表面上来提纯。
实施例6用铜(II)1,3-二亚胺配合物评价还原剂在干燥箱中,将选择的还原剂(10当量)滴加入(通过吸管)实施例1所述的铜配合物的深紫色溶液中(约7-16mg在5ml甲苯中)。将反应混合物逐步从室温加热到100℃。如果没有可观察到的变化,于100℃加入另外10当量的还原剂。
a)9-BBN(0.5M的四氢呋喃溶液)。深紫色溶液在于80℃加热时变成灰色/黑色。最后获得黑色沉淀物。黑色沉淀物表明形成了小的铜颗粒。
b)硼烷(1M的四氢呋喃溶液)。深紫色溶液立刻变透明,然后变成褐色/棕色,随后变成灰色/绿色。于45℃轻微加热,该溶液变黑。最后,形成了黑色沉淀物。
c)二氢苯并呋喃。深紫色溶液在于100℃加热时变暗。再加入10当量,该溶液逐渐变成暗的铜色溶液,其中含有褐色沉淀物。
d)吡唑啉。在加热时,深紫色溶液逐渐变蓝,然后变成绿色/灰色(77℃),然后变成绿色/铜色(85℃),最后变成黄色(100℃)。形成了褐色沉淀物。
e)二乙基硅烷。在加热(70-80℃)时,在管形瓶上形成黑色环,然后形成铜色的细致镜面。观察到黑色沉淀物。
实施例7二(N-二甲基氨基-4-二甲基氨基亚氨基-2-戊烯-2-胺化)铜(II)的制备将4.0g的戊烷-2,4-二酮和6.0g的N,N-二甲基肼的混合物于环境温度下搅拌过夜。该液体然后在压力下真空蒸馏,使得于89-90℃收集主要的馏出物。然后将0.92g的该馏出物与0.31g的甲醇铜(II)在5ml甲醇中混合,于环境温度下搅拌3天。过滤该溶液,然后蒸发成紫色油,它可溶于己烷且是可升华的(约100℃,0.015托)。
实施例8二(N-甲基-4-甲基亚氨基-4-苯基-2-丁烯-2-胺化)铜(II)的制备和还原按照文献所述的方法(McGeachin)制备1,3-二亚胺配体,即CH3N=C(CH3)-CH2-C(C6H5)=N-CH3·HBF4。铜(II)配合物通过游离碱与乙醇铜(II)在四氢呋喃中反应来制备;游离碱通过四氟硼酸盐与甲醇钠的反应来制备(实施例1)。将乙醇铜(0.408g)称量加入50ml烧瓶中。加入磁力搅拌棒和约30ml。将在几毫升四氢呋喃中的游离碱配体(1.00g)一次加入快速搅拌的乙醇铜溶液中。立即形成了紫色溶液。将该混合物于室温搅拌过夜,然后经由烧结的玻璃料用Celite545床过滤。真空汽提出溶剂,获得干燥的固体。在约100mTorr压力和110-120℃下的升华获得了熔点为98-100℃的固体。
将铜(II)配合物(约0.018g)放入管形瓶中,然后将其放入管中。将该管用氮气流加热到165℃(入口压力是5托);该管的出口压力是30mTorr或更低。该管中的第二区域(朝向管的出口)保持在100℃。铜样品从初始区域升华并在冷却区沉积,这由管壁上的紫色沉积物证实。将该装置排空,然后用二乙基硅烷反填充。铜沉积物在玻璃壁上在100℃区域中形成,这由紫色的消失和出现铜色沉淀物来证实。
实施例9N,N’-二乙基-2,4-戊二酮亚胺的制备在干燥箱中,向250ml圆底烧瓶中加入4-(乙基氨基)-3-戊烯-2-酮(30.0g,237mmol)和硫酸二甲酯(30.0g,238mmol)。将反应溶液搅拌,然后静置(12小时),得到粘性油。在剧烈搅拌下加入乙胺在THF(150ml)中的2M溶液。搅拌该溶液(1小时)直至它固化。中间体盐可以分离(如实施例4的方法所述)或直接使用。
将甲醇钠(12.8g,237mmol)在甲醇(40ml)中的溶液加入中间体盐(vida supra),并于环境温度搅拌(1小时)。除去溶剂(真空),得到油状物,用戊烷萃取,过滤,浓缩,得到粗的黄色油。产物N,N’-二乙基-2,4-戊二酮亚胺通过分馏分离,得到黄色油(28.6g),产率是72%,基于初始的4-(乙基氨基)-3-戊烯-2-酮计。
权利要求
1.一种在基材上形成铜沉积物的方法,包括a.使基材与铜配合物(I)接触,形成铜配合物在该基材上的沉积物;和 b.使沉积的铜配合物与还原剂接触,其中R1和R4独立地选自H、C1-C5烷基和二甲基氨基;R2和R3独立地选自H、C1-C5烷基、苯基、苄基和4-吡啶基,前提是在R1至R4中的碳总数是4-12;和还原剂选自9-BBN、硼烷、二氢苯并呋喃、吡唑啉、二乙基硅烷、二甲基硅烷、乙基硅烷、甲基硅烷、苯基硅烷和硅烷。
2.根据权利要求1的方法,其中R1、R3和R4是甲基,R2是苯基。
3.根据权利要求1的方法,其中基材选自铜、硅片和涂有阻隔层的二氧化硅。
4.根据权利要求1的方法,其中基材暴露于铜配合物的蒸气中。
5.根据权利要求1的方法,其中沉积在0-120℃下进行。
6.根据权利要求1的方法,其中还原剂是硅烷或二乙基硅烷。
7.1,3-二亚胺铜配合物(II) 其中R5和R8是二甲基氨基;和R6和R7独立地选自H、C1-C5烷基、苯基、苄基和4-吡啶基,前提是在R5至R8中的碳总数是4-14;或R5和R8独立地选自H、C1-C5烷基和二甲基氨基;和R6和R7选自H、C1-C5烷基、苯基、苄基和4-吡啶基,前提是R6或R7是4-吡啶基,和前提是在R5至R8中的碳总数是4-14。
8.根据权利要求7的1,3-二亚胺铜配合物,其中R5和R8是二甲基氨基。
9.一种含有沉积在基材上的权利要求7的1,3-二亚胺铜配合物(II)的制品。
10.根据权利要求9的制品,其中基材选自铜、硅片和涂有阻隔层的二氧化硅。
11.根据权利要求10的制品,其中阻隔层选自钽、氮化钽、钛、氮化钛、氮化硅钽、氮化硅钛、氮化碳钽和氮化铌。
12.一种合成二亚胺化合物的方法,包括a.使烷基亚氨基-单酮(III)与烷基化试剂接触,形成相应的O-烷基化衍生物(IV); b.使步骤(a)的O-烷基化衍生物(IV)与伯烷基胺NH2R13接触,形成亚胺鎓盐(V);和 c.使步骤(b)的亚胺鎓盐(V)与强碱接触,形成相应的中性氨基亚胺(VI) 其中R10和R11独立地选自H、C1-C5烷基、苯基、苄基和4-吡啶基;R12是Me或Et;R9和R13独立地选自H和C1-C5烷基,前提是在R9、R10、R11和R13中的碳总数是4-12;烷基化试剂选自硫酸二甲酯、苯磺酸甲酯、甲苯磺酸甲酯、硫酸二乙酯、苯磺酸乙酯、三氟甲烷磺酸甲酯和甲苯磺酸乙酯;和X-是衍生自烷基化试剂的阴离子。
13.根据权利要求12的方法,其中烷基化试剂是硫酸二甲酯。
14.根据权利要求12的方法,其中R13选自甲基、乙基和正丙基。
15.根据权利要求12的方法,其中强碱选自甲醇钠、甲醇铜和叔丁醇钾。
16.一种组合物,含有氨基亚胺化合物(VII) 其中R14和R17独立地选自H、C1-C5烷基和二甲基氨基;和R15和R16选自H、C1-C5烷基、苯基、苄基和4-吡啶基,前提是R15或R16是4-吡啶基,和前提是在R14至R17中的碳总数是4-14。
17.根据权利要求16的氨基亚胺化合物,其中R15是4-吡啶基,R14、R16和R17是C1-C4烷基。
全文摘要
本发明涉及新的1,3-二亚胺铜配合物以及1,3-二亚胺铜配合物用于在原子层沉积法中在基材上沉积铜或在多孔固体之中或之上沉积铜的用途。本发明还提供一种生产氨基亚胺的方法以及新的氨基亚胺化合物。
文档编号C07C249/02GK1617948SQ03802302
公开日2005年5月18日 申请日期2003年1月21日 优先权日2002年1月18日
发明者A·Z·布拉利, D·L·托恩, J·S·汤普森 申请人:纳幕尔杜邦公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1