一种高开孔率多孔碳化硅陶瓷材料的制备方法

文档序号:10587404阅读:898来源:国知局
一种高开孔率多孔碳化硅陶瓷材料的制备方法
【专利摘要】本发明公开了一种高开孔率多孔碳化硅陶瓷材料的制备方法,通过将具有耐高温、抗氧化的碳化硅短纤维与碳化硅陶瓷先驱体粘结剂混合,制成水浆料,真空抽滤成型得到湿坯,随后加热干燥并固化陶瓷先驱体,最后在惰性气氛下裂解,得到碳化硅陶瓷粘结碳化硅纤维的多孔碳化硅材料。本发明制备的多孔碳化硅材料具有开孔率高、比表面高、透气性好、机械强度高,抗热冲击、耐腐蚀等特点,可广泛用作高温及腐蚀性气氛下的过滤材料,也可以用作化学反应的载体材料以及高温隔热材料。
【专利说明】
一种高开孔率多孔碳化硅陶瓷材料的制备方法
技术领域
[0001] 本发明涉及一种高开孔率多孔碳化硅陶瓷材料的制备方法,属于多孔陶瓷材料领 域。
【背景技术】
[0002] 多孔碳化硅陶瓷材料具有低密度、低热膨胀系数、耐高温、耐腐蚀、耐辐照、高渗透 率以及抗氧化、抗热震等优点,广泛用作隔热材料、过滤材料、化学催化剂载体等。例如,在 冶金领域,用作熔融金属过滤器、出铁槽、出钢口、冷滑轨和蒸馏器等;在硅酸盐生产领域, 用作各种窑炉的内衬和匣钵等;在空间科学领域,用作火箭喷管和高温燃气透平叶片等;在 核能领域,用作过滤器来过滤高温气冷堆燃料元件制备过程中产生的放射性废液和高温气 冷堆中含有石墨颗粒的高温氦气等;在环境领域,被广泛用于过滤各种流体,尤其被视为柴 油机尾气过滤器的最佳候选材料。
[0003] 目前,制备多孔碳化硅陶瓷的方法主要有添加造孔剂法、模板复制法、发泡法、颗 粒堆积法和溶胶凝胶法。例如,中国专利CN1369463报道了含反应合成碳硼铝化合物相的碳 化硅陶瓷及其液相烧结法。中国专利CN101333112报道了制备多孔碳化硅陶瓷的燃烧合成 法。CN101323524报道了一种定向排列孔碳化硅多孔陶瓷的制备方法。中国专利CN1442392 报道了以酵母粉为造孔剂的多孔碳化硅陶瓷的制备方法。中国专利CN1769241报道了原位 反应法制备莫来石结合的碳化硅多孔陶瓷。中国专利CN201780040U报道了碳化硅蜂窝陶瓷 热交换器。中国专利CN1807356和CN101747078A报道了纳米碳化硅助剂烧结高纯碳化硅蜂 窝陶瓷体的制造方法。
[0004] 上述专利虽然在多孔碳化硅陶瓷材料及应用方面取得很好进展,但大多采用有机 物造孔或原位反应、发泡造孔,虽然造孔效果理想,但多孔陶瓷的密度较高,显孔隙率即开 孔率不高,比表面、透气性相对较差,多孔陶瓷的开孔率越大,在过滤或催化剂载体等应用 中效率越高。因此,目前多孔碳化硅陶瓷材料的制备工艺极大限制了此类材料的应用。

【发明内容】

[0005] 本发明的技术解决问题是:克服现有技术的不足,提供一种高开孔率多孔碳化硅 陶瓷材料的制备方法,该方法制备的多孔碳化硅陶瓷材料与现有方法制备的碳化硅陶瓷材 料相比,密度低、显气孔率高、比表面积大、透气性好,同时在具有相同空隙率的条件下,能 够提尚机械强度。
[0006] 本发明的技术解决方案是:一种高开孔率多孔碳化硅陶瓷材料的制备方法,包括 如下步骤:
[0007] (1)、将碳化硅短纤维与颗粒状未固化的碳化硅陶瓷先驱体粘结剂在水中充分搅 拌,得到混合均匀的水浆料,其中碳化硅纤维与水的比例为每100克碳化硅纤维加入1~50 升水;
[0008] (2)、将混合均匀的水浆料在真空条件下抽滤成型,得到带有开孔的湿坯;
[0009] (3)、将带有开孔的湿坯加热至60~300°C,除去残留水分,并固化得到预成型品;
[0010] (4)、将固化后的预成型品在惰性气氛中加热至800~1500°C进行陶瓷化处理,使 固化的碳化硅陶瓷先驱体粘结剂转变为碳化硅,得到高开孔率多孔碳化硅陶瓷材料。
[0011] 所述步骤(1)中碳化硅纤维与碳化硅陶瓷先驱体粘结剂的质量比为0.5:1~5.0: 1〇
[0012] 所述碳化硅短纤维长度为0.1-5mm。
[0013] 所述碳化硅陶瓷先驱体粘结剂的粒径为10~50微米。
[0014] 所述碳化硅陶瓷先驱体粘结剂为固体聚碳硅烷。
[0015] 所述步骤(2)的真空条件为真空度小于lOKPa。
[0016] 本发明与现有技术相比具有如下有益效果:
[0017] (1)本发明以碳化硅短纤维为原料,以水作为固体物料的分散介质,混合均匀后在 真空条件下抽滤成型,得到高开孔率的湿坯(纤维质多孔结构),所形成的孔隙都为连续贯 通的开孔,使材料的显孔隙率最大化,与传统方法制备的粒状多孔过滤材料相比,碳化硅陶 瓷材料的显气孔率更高,透气性好,比表面积较大,有更大的界面吸附并能截留悬浮物,过 滤效果好;同时密度更低,从而提高利用率,相比于传统的泡沫陶瓷,具有更小的孔径,更高 的过滤精度。
[0018] (2)本发明以水作为固体物料的分散介质,避免使用溶剂型分散剂,且水作为固体 物质的分散介质,还具有环保的作用。
[0019] (3)本发明粘结剂以固体颗粒形式存在,真空成型时与纤维同时留在坯体内,避免 了溶剂型分散剂体系成型时粘结剂随分散介质流失,通过对粘结剂粒径进行选择(10~50 微米)实现粘结剂在湿坯中的均匀分布,且陶瓷粘结碳化硅纤维的结构可同时兼顾高孔隙 率和高强度,有效降低材料的密度,较通过烧结方式制备的碳化硅陶瓷材料提高了机械强 度。
[0020] (4)本发明碳化硅纤维与碳化硅陶瓷先驱体粘结剂的质量比以及碳化硅短纤维长 度关系到碳化硅材料的密度和强度,质量比越高或者长度越短,密度越高,强度越高,空隙 率越低,本发明质量比为0.5:1~5.0:1,短纤维长度为0.1-5_,在密度、强度和空隙率上进 行平衡,既保证低密度高空隙率,又保证强度尽量高。
[0021] (5)碳化硅短纤维与碳化硅陶瓷先驱体粘结剂在抽滤成型过程中沉降速度不一 样,通过控制真空度小于lOKPa可以保证碳化硅短纤维与粘结剂在湿坯中均匀分布,同时对 真空度的控制可以有效提高碳化硅陶瓷材料的强度。
【附图说明】
[0022]图1为本发明流程图;
[0023]图2为本发明实施例2组成的SEM图。
【具体实施方式】
[0024]下面结合附图和具体实施例对本发明作进一步详细的描述:
[0025]碳化硅材料具有优良的热稳定性和化学稳定性,可在高达1400°C温度下工作,并 且在氧化、还原等高温环境下具有很好的抗腐蚀性,还具有强度高、导热性好、线胀系数小、 抗热冲击性强、透气性好等优良性能,是高温过滤分离、催化剂载体的优良选材之一。
[0026] 本发明采用碳化硅短纤维和聚碳硅烷为原料,经分散、湿坯成型、干燥固化、高温 陶瓷化等工艺得到具有高开孔率和较高强度的多孔碳化硅陶瓷材料。
[0027] 如图1所示,本发明提出的一种高强度、高开孔率多孔碳化硅材料的制备方法包括 如下步骤:
[0028] 步骤一、将碳化硅短纤维与颗粒状碳化硅硅陶瓷先驱体粘结剂在水中充分搅拌, 混合均匀,碳化硅纤维与粘结剂的质量比为0.5:1~5.0:1,碳化硅纤维与水的比例为每100 克碳化硅纤维加入1~50升水,碳化硅短纤维长度为0.1-5mm,为碳化硅纤维经短切或研磨 加工而成。
[0029] 步骤二、将混合均匀的水浆料真空脱水,即在真空作用下进行真空(真空度小于 lOKPa)抽滤成型,得到具有一定形状和厚度的湿坯。
[0030] 步骤三、将成型后的湿坯加热至60~300°C,除去残留水分,并使粘结剂固化;
[0031]步骤四、将固化后的预成型品在惰性气氛中加热至800~1500°C进行陶瓷化处理, 使固化的粘结剂转变为碳化硅,得到高开孔率多孔碳化硅陶瓷材料。开孔率大于70%。
[0032] 纤维间的有效粘结是通过陶瓷先驱体固化实现的,取决于陶瓷先驱体的流变性 能。粘结剂在真空抽滤成型过程中为固体颗粒,并未固化,成型后的湿坯先烘干,除去残留 水分,之后随着加热温度升高,陶瓷先驱体先发生软化、流动,由于毛细作用,主要分布在纤 维交接处,当温度继续升高,陶瓷先驱体发生交联反应,流动性急剧变差,完全固化后在纤 维交接处形成粘结,陶瓷化后,形成牢固的碳化硅粘结结构。若温度未达到使陶瓷先驱体软 化、流动、发生交联反应的程度,陶瓷化后先驱体仍为颗粒状,离散地分布在纤维表面,导致 纤维间非常弱或无效的粘结。
[0033] 本发明作为粘结剂的陶瓷先驱体具有非水溶性,但在水中易于分散。热固型树脂 的粒径控制在约10~50微米之间,粒径过大不易与纤维分散均匀,粒径过小在真空抽滤时 会穿过模具随水排出。陶瓷先驱体粘结剂选择聚碳硅烷,陶瓷化后转变成碳化硅。
[0034] 成型后的坯体在加热固化粘结剂时,要根据所选陶瓷先驱体固化特性设置合理的 温度,达到有效粘结纤维的目的。
[0035] 以下通过具体实施例对本发明作详细说明,但这些实施例不得用于解释对本发明 保护枢围的限制。
[0036] 实施例1
[0037] 碳化硅纤维短切至长度1mm,以固体聚碳硅烷为粘结剂,平均粒径约10~30微米。 以粘结剂与纤维质量比为0.5:1,每100克碳化硅纤维10升水的比例配制水浆料。水浆料搅 拌30分钟后真空抽滤成型。真空脱水完成后,将带有模具的湿坯放入烘箱中升温至180°C, 维持10小时使粘结剂固化。从模具中取出预成型品,在氩气环境中加热至1400°C处理1小时 使粘结剂陶瓷化,得到多孔碳化硅材料。
[0038]所得多孔碳化硅材料密度为0.45g/cm3,开孔率为81%,机械强度(抗压强度)为 0.85MPa〇
[0039] 实施例2
[0040] 碳化硅纤维短切至长度0.5mm,以聚碳硅烷为粘结剂,平均粒径约10~30微米。以 粘结剂与纤维重量比为0.75:1,每100克纤维8升水的比例配制水浆料。水浆料搅拌30分钟 后真空抽滤成型。真空脱水完成后,将带有模具的湿坯放入烘箱中先升温至120°C,维持4小 时,再升温至200°C,维持2小时使粘结剂固化。从模具中取出预成型品,在氩气环境中加热 至1200°C处理2小时使粘结剂陶瓷化,得到多孔碳化硅材料。如图2所示为本实施例组成的 SEM 图。
[0041 ] 所得多孔碳化硅材料密度为〇.63g/cm3,开孔率为72%,抗压强度为2.57MPa。
[0042] 实施例3
[0043] 碳化硅纤维短切至长度1.5mm,以聚碳硅烷为粘结剂,平均粒径约20~50微米。以 粘结剂与纤维质量比为2:1,每100克纤维15升水的比例配制水浆料。水浆料搅拌30分钟后 真空抽滤成型。真空脱水完成后,将带有模具的湿坯放入烘箱中先升温至100 °C,维持6小 时,再升温至250°C,维持1小时使粘结剂固化。从模具中取出预成型体,在氩气环境中加热 至1300°C处理2小时使粘结剂陶瓷化,得到多孔碳化硅材料。
[0044] 所得多孔碳化硅材料密度为0.37g/cm3,开孔率为85%,抗压强度为1.18MPa。
[0045] 实施例4
[0046] 碳化硅纤维短切至长度2.5mm,以聚碳硅烷为粘结剂,平均粒径约20~50微米。以 粘结剂与纤维重量比为1:1,每100克纤维20升水的比例配制水浆料。水浆料搅拌30分钟后 真空抽滤成型。真空脱水完成后,将带有模具的湿坯放入烘箱中先升温至ll〇°C,维持4小 时,再升温至220°C,维持1小时使粘结剂固化。从模具中取出预成型体,在氩气环境中加热 至1400°C处理1小时使粘结剂陶瓷化,得到多孔碳化硅材料。
[0047] 所得多孔碳化硅材料密度为0.26g/cm3,开孔率为90%,抗压强度为0.61MPa。
[0048] 实施例5
[0049] 碳化硅纤维短切至长度3.0mm,以聚碳硅烷为粘结剂,平均粒径约20~50微米。以 粘结剂与纤维重量比为3:1,每100克纤维30升水的比例配制水浆料。水浆料搅拌30分钟后 真空抽滤成型。真空脱水完成后,将带有模具的湿坯放入烘箱中先升温至ll〇°C,维持4小 时,再升温至250°C,维持1小时使粘结剂固化。从模具中取出预成型体,在氩气环境中加热 至1200°C处理2小时使粘结剂陶瓷化,得到多孔碳化硅材料。
[0050] 所得多孔碳化硅材料密度为〇.32g/cm3,开孔率为88%,抗压强度为1.09MPa。
[0051] 现有技术中各种制备方法的孔隙率、密度如下表所示。
[0053]从实施例以及上表可以看出,利用本发明方法制备的多孔碳化硅陶瓷材料,相较 于现有技术的制备方法,密度更低,开孔率更高,能够克服现有制备方法密度高,开孔率不 高,比表面、透气性相对较差的问题,同时还具有一定的机械强度。
[0054] 利用本发明方法制备的多孔碳化硅陶瓷材料,具有较好的力学性能和抗热震性、 开孔率高、比表面高、透气性好、机械强度高,抗热冲击、耐腐蚀等特点,可广泛用作高温及 腐蚀性气氛下的过滤材料,也可以用作化学反应的载体材料以及高温隔热材料。
[0055] 以上所述,仅为本发明最佳的【具体实施方式】,但本发明的保护范围并不局限于此, 任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到的变化或替换, 都应涵盖在本发明的保护范围之内。
[0056] 本发明说明书中未作详细描述的内容属于本领域专业技术人员的公知技术。
【主权项】
1. 一种高开孔率多孔碳化硅陶瓷材料的制备方法,其特征在于,包括如下步骤: (1) 、将碳化硅短纤维与颗粒状未固化的碳化硅陶瓷先驱体粘结剂在水中充分搅拌,得 到混合均匀的水浆料,其中碳化硅纤维与水的比例为每100克碳化硅纤维加入1~50升水; (2) 、将混合均匀的水浆料在真空条件下抽滤成型,得到带有开孔的湿坯; (3) 、将带有开孔的湿坯加热至60~300°C,除去残留水分,并固化得到预成型品; (4) 、将固化后的预成型品在惰性气氛中加热至800~1500°C进行陶瓷化处理,使固化 的碳化硅陶瓷先驱体粘结剂转变为碳化硅,得到高开孔率多孔碳化硅陶瓷材料。2. 根据权利要求1所述的一种高开孔率多孔碳化硅陶瓷材料的制备方法,其特征在于: 所述步骤(1)中碳化硅纤维与碳化硅陶瓷先驱体粘结剂的质量比为〇. 5:1~5.0:1。3. 根据权利要求1所述的一种高开孔率多孔碳化硅陶瓷材料的制备方法,其特征在于: 所述碳化娃短纤维长度为〇. 1-5_。4. 根据权利要求1所述的一种高开孔率多孔碳化硅陶瓷材料的制备方法,其特征在于: 所述碳化硅陶瓷先驱体粘结剂的粒径为10~50微米。5. 根据权利要求4所述的一种高开孔率多孔碳化硅陶瓷材料的制备方法,其特征在于: 所述碳化硅陶瓷先驱体粘结剂为固体聚碳硅烷。6. 根据权利要求1所述的一种高开孔率多孔碳化硅陶瓷材料的制备方法,其特征在于: 所述步骤(2)的真空条件为真空度小于lOKPa。
【文档编号】C04B35/634GK105948781SQ201610282312
【公开日】2016年9月21日
【申请日】2016年4月29日
【发明人】冯志海, 王筠, 师建军, 杨云华, 左小彪, 余瑞莲
【申请人】航天材料及工艺研究所, 中国运载火箭技术研究院
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1