从天然气得到的氮/氢混合物生产氨的方法

文档序号:3436555阅读:298来源:国知局
专利名称:从天然气得到的氮/氢混合物生产氨的方法
技术领域
本发明涉及从氮氢混合物催化生产氨的方法。
从德国专利2007441可知氨合成气的生产,其中原料气通过气化烃生产,该原料气经脱硫、转化、去除CO2,最后经液氮洗涤以除去残余杂质。类似的方法描述于EP 0307983,其中将转化的合成气送入铵合成液氮洗涤的上游。催化生产氨的详细方法见诸于Ullmann’sEncyclopedia of Industrial Chemistry,5thedition,volume A2,pages 143-215;尿素的生产描述于该书Volume A27,pages 333-350。在EP-A-0905127中描述了联合生产氨和尿素的方法。
本发明的目的是在低成本下操作氨合成的过程,以提供非常适合于大装置的方法。根据本发明,通过如下可实现上述目的通入天然气与富氧气体结合进入自热重整器中,其中在重整催化剂存在下,温度为900~1200℃,压力为40~100巴,得到未精制的合成气,基于干基,具有55~75%(体积)的H2、15~30%(体积)的CO和5~30%(体积)的CO2,H2/CO体积比为1.6~4,从自热重整器中提取未精制的合成气、冷却,送入催化转化器中使CO2转化为H2,提取转化的合成气,基于干基,H2含量不小于55%(体积),CO2含量不大于8%(体积),将该转化的合成气送入多段气体洗涤以除去CO2、CO和CH4,生产N2-H2混合物,然后送入氨合成装置催化生产氨。
对于该方法重要的是没有用于生产未精制的合成气的蒸气重整装置。自热重整器可以在相对高的压力30~100巴、优选为40~80巴下操作。重整器下游基本上可保持如此高的压力,这样在进入氨合成装置前,气体仅能被略微压缩。与传统的包括仅允许相对低压的蒸气重整方法相比,本发明的方法更加节约成本。自热重整器比蒸气重整具有另一个优点,在于它们以适当的H2/CO2比提供气体,这样在转化后CO2在气体洗涤中自然增加,产生的所有的NH3可转化为尿素。
有利的先进的实施方式在于氨合成装置中产生的氨用CO2至少部分转化为尿素。在这种情况下有利的是CO2可从至少一个气体洗涤阶段中转化的合成气中除去用于生产尿素。几种可能之一是如EP-A-0905127中描述的联合工艺。在通常情况下,相对于传统工艺,在气体洗涤阶段得到的CO2完全足以满足尿素合成中CO2的需要。
优选CO2通过物理洗涤方法,例如在-20~-70℃的温度下用甲醇操作,从转化的气体混合物中除去。在该方法中,只消耗相对少量的能量包括压缩能。同时,至少一半的CO2在例如2~8巴的压力下,在洗涤液体的再生中被回收,这样在随后的CO2应用于生产尿素中可节约压缩能。
有利的是,提供到自热重整器中的富O2气体应具有的O2浓度不小于70%(体积),优选至少为90%(体积)。用这样的方法,减少了未精制的合成气中的杂质含量,因此气体洗涤段可设计得更小。
参考附图解释本发明方法实施方式的选择。


图1是工艺流程图。
图2是另一种工艺流程图。
根据图1,根据现有技术,通过管线(1)将天然气送入预处理装置(40),并通过管线(1a)送入水蒸气以进行脱硫,加热除去CO2+组分。同时通过管线(42)将含有甲烷的气体送入预处理装置(40)。通过管线(43)将主要由甲烷和水蒸气组成的混合物送入自热重整器(3)的燃烧器(2)中,同时通过管线(4)提供氧气含量通常为70%(体积)的富氧气体,但优选不小于95%(体积)。富氧气体来自空分装置(5)。重整器(3)包括现有技术的基于例如镍的颗粒重整催化剂的固定床(3a)。在该反应器中,压力为30~100巴,优选为40~80巴,同时温度为900~1200℃。通过管线(7)提取的未精制的合成气H2含量为55~75%(体积)、CO含量为15~30%(体积)和CO2的含量为5~30%(体积),及H2/CO体积比为1.6~4。在热交换器(8)中冷却后,通过管线(9)将未精制的合成气送入也由几个反应器组成的变换阶段(10)。使用基于例如铁的现有技术的催化剂,施加的温度为150~500℃,优选为280~450℃。CO+H2O催化转化为CO2+H2。在管线(11)中的气体优选具有H2/CO2的体积比为2.5~3(干基)。
通过管线(11)抽出的转化的合成气,基于干基,H2的含量不小于55%(体积),优选至少为65%(体积),而且CO2的含量不大于8%(体积)。该气体起初通过间接冷却阶段(12),随后通过管线(13)被送入气体洗涤装置(14)以除去特别是CO2。上述可以通过例如如下的方式进行在约-70~-20℃的温度下用甲醇物理洗涤,可选择例如甲基二乙基胺洗涤或聚乙二醇二甲醚洗涤。用过的含有CO2的洗涤液通过管线(16)抽出,送入再生器(17)中以从洗涤液中除去CO2。再生的洗涤液通过管线(18)返回气体洗涤(14)。增加的CO2最适合通过管线(20)送入尿素合成装置(21)中。
部分精制的合成气通过管线(22)从气体洗涤(14)中引出,在第二洗涤装置(23)中处理,其中液氮作为洗涤液。为此目的需要的氮来自空分装置(5),通过管线(6)提供。用于生产NH3合成气的液氮洗涤的细节见诸于如上所述的EP 0307983。通常,洗涤装置(23)产生含有CO的气体,该气体通过管线(41)返回变换变换阶段(10)。如果同时产生富CH4气体,通过管线(42)返回。为支持致冷,通过管线(1b)提供压力为10~100巴,优选不小于30巴的天然气物流。该物流可在洗涤装置(23)中膨胀以使压力减少至少8巴,优选不小于25。然后同样例如通过管线(42)提取膨胀的天然气。
控制洗涤(23)使已经在管线(24)中累积的合成气具有H2/N2的摩尔比约3/1。在间接热交换器(45)中加热该合成气,在压缩器(46)中压缩,通过管线(24a)流到包括间接冷却反应器(25)和绝热反应器(26)的氨合成装置中。从管线(27)循环的合成气与来自管线(24a)的新鲜合成气一起在100~200℃的温度下通过管线(27a)进入反应器(25),从该反应器流入传热管(28)或导管,气体作为冷却流体从催化剂床(25a)中移去热量。另外,可使用沸水作为氨合成装置中的冷却流体。
在300~500℃的温度下,合成气通过管线(29)离开反应器(25),当到达反应器(26)时与催化剂床接触。NH3形成反应是放热反应,因此通过管线(30)离开的混合物温度为400~600℃,因此必须通过冷却器(31)。随后,含有NH3的合成气通过管线(32)达到并进入反应器(25),流过其间接冷却的催化剂床。通过管线(33)出口的温度为300~500℃,优选为380~430℃。在管线(33)中的产品混合物中的NH3浓度不小于20%(体积),另外含有主要是N2和H2。该混合物被送入多段冷却(34),随后送入分离器(35)中,从其中粗NH3以液态通过管线(36)被引出。通过管线(27)提取气态组分并作为循环气体返回。
产生的粗NH3可通过管线(37)部分或全部除去,送入现有技术中使用。而且,粗NH3可全部或部分通过管线(38)送入现有技术的尿素合成装置。合成的尿素通过管线(39)引出。在图2中的方法,通过管线(11)来自变换阶段(10)的合成气被通过间接冷却阶段(12),在压缩器(15)中压缩,并通过管线(13)送入CO2吸收器中。在吸收器中,使用弱氨基甲酸盐溶液除去CO2,所述的溶液来自尿素合成装置通过管线(18)提供。用过的饱和CO2的洗涤液通过管线(16)引出送入合成(21)。部分精制的合成气流过管线(22)到达精筛装置(23a),其可设计例如作为液氮洗涤系统、作为变压吸收装置或作为催化剂甲烷化系统。管线(1b)仅适合用于液氮洗涤。
如图1描述氨合成的操作。来自冷却段(34)的产品混合物通过管线(33a)到达吸收器(35a),其中通过水从管线(50)洗脱NH3。含有NH3的水通过管线(51)送入尿素合成阶段(21);详细描述见EP-A-0905127。至于其余部分,图2中的附图标号具有如图1相同的含义。
相对于已知的工艺,本发明的方法具有如下主要的优点1、不需要蒸气重整,意味着可省去大的而且昂贵的装置。另外的优点是可以施加比蒸气重整可行的较大的压力用于裂解甲烷和其它烃。
2、优选,用于H2-N2合成气所需的氮仅加入液氮洗涤中,不必要通过气体载带通过上游氢生产和精制阶段。
3、在液氮洗涤阶段,甲烷气体也可方便地分离并返回到自热重整器中。这使重整器可在相对低的温度约950℃下操作,而不必保证在重整器中产生的气体混合物不含甲烷。而且,以10~100巴的压力提供的天然气物流在使用液化氮的洗涤装置中可膨胀,用于致冷目的(焦耳-汤姆逊效应)。
4、在用液氮洗涤中,适当的也产生富CO气体物流,该物流返回到CO转化阶段。因此在转化的气体混合物中残余的CO含量没有害处,可以高达8%(体积),大多数不大于4%(体积)。结果,可以使用稳定的低成本的铁催化剂用于变换,因此不需要更敏感的铜催化剂。
5、通过液氮洗涤进行气体清洁可以得到超纯H2-N2合成气,因此对于所有的或绝大多数装置,可省去从NH3合成中释放部分循环气。
6、产生的废热足以满足包括NH3合成和随后尿素合成的压缩能量的总能量需求。
7、消耗的天然气净热值对于NH3生产仅为约27.3GJ/t,对于尿素生产为约19GJ/t,该值与现有工艺相比极低。在以下的实施例中天然气的消耗作为基准。
8、该方法的装置可被模块化,在相对小的区域上建立。
通过管线(1)提供天然气,通过管线(1a)提供水蒸气,根据本发明水蒸气/碳摩尔比为2.55。有关数量、温度、压力和气体组成的数据(体积%)列于表1中。
表1
管线(4)中的氧含量为95%(体积)。管线(24)中的合成气含有小于5ppm(体积)的CO和约25ppm(体积)的Ar。NiO催化剂(3a)和NH3合成催化剂是商业级(如德国Munich SüdChemie制造的G-90和AS-4型)。重整器(3)在出口温度950℃下操作,该水平的温度对应于最低的总气体消耗。
变换阶段(10)包括类似反应器(25)设计的第一气体冷却反应器,及随后的中间冷却器和具有催化剂床的绝热反应器。转化催化剂为商业级的Fe-Cr催化剂(Süd-Chemie的G-3C型)。残余的转化气体的CO含量仅为1.6%(体积)(基于干基计算),H2/CO2的体积比为2.84(基于干基计算)。
对于气体洗涤装置(14、17),应用整溶(Rectisol)方法,其中CO2用-58℃的甲醇除去。在液氮洗涤(23)中,合成气起初被冷却到-185℃,由此CH4被浓缩、分离并通过管线(42)除去。
在与液N2接触中,CO2的浓度得以浓缩、分离并通过管线(41)送入转化阶段。管线(41)和(42)中物流的组成列于表II中(%体积)。
表II
在冷却系统(34)中,通过应用冷却水使产生的65%的NH3液化。部分物流(吹扫气体)被引出以从NH3合成装置的循环气体中除去杂质。
权利要求
1.一种从氮氢混合物催化生产氨的方法,其中天然气与富氧气体一起送入自热重整器中,其中在重整催化剂存在下,温度为900~1200℃,压力为40~100巴,得到未精制的合成气,基于干基计算,具有55~75%(体积)的H2、15~30%(体积)的CO和5~30%(体积)的CO2,H2/CO体积比为1.6~4,从自热重整器中提取的未精制的合成气冷却,通过变换阶段使CO转化为H2,提取的转化合成气,基于干基,H2含量不小于55%(体积),CO含量不大于8%(体积),将该转化的合成气然后送入多段气体洗涤过程中以除去CO2、CO和CH4,生产N2-H2混合物,然后送入氨合成装置催化生产氨。
2.如权利要求1的方法,其中在氨合成装置中生产的氨用CO2至少部分转化为尿素。
3.如权利要求1或2的方法,其中从至少一个气体洗涤阶段的转化合成气中除去CO2,除去的CO2至少部分被回收用于尿素的生产。
4.如前述权利要求任一项的方法,其中在-70~-20℃下用甲醇从转化合成气中物理洗涤除去CO2。
5.如前述权利要求任一项的方法,其中提供到自热重整器的富氧气体的氧气含量不小于70%(体积)。
6.如前述权利要求任一项的方法,其中在气体洗涤阶段从合成气中用液氮操作分离含有CO的气体并送入催化转化。
7.如前述权利要求任一项的方法,其中氮氢混合物送入氨合成装置的至少两个含有催化剂的反应器中,其中氮氢混合物作为反应器中的冷却流体用于间接催化剂冷却。
8.如前述权利要求任一项的方法,其中离开变换阶段的合成气的H2/CO2体积比为2.5~3.0(以干基计算)。
9.如前述权利要求任一项的方法,其中压力为10~100巴的天然气物流送入液化氮操作的气体洗涤装置,其中所述物流的压力至少减少8巴。
全文摘要
本发明涉及基于由天然气得到的氮氢混合物生产氨的方法。为此目的,天然气与富氧气体一起送入自热重整器中。在裂化催化剂存在下,温度为900~1200℃,压力为40~100巴,得到未精制的合成气。所述的气体,基于干态计算,具有55~75%(体积)的H
文档编号C01B3/38GK1474782SQ01818660
公开日2004年2月11日 申请日期2001年10月24日 优先权日2000年11月10日
发明者威廉·达韦, 叶尔曼罗·菲利皮, 威廉 达韦, 罗 菲利皮 申请人:金属技术股份有限公司, 阿莫尼卡萨尔公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1