利用PLD技术在IBAD-MgO基带上快速制备简化单一CeO<sub>2</sub>缓冲层的方法

文档序号:3281638阅读:239来源:国知局
专利名称:利用PLD技术在IBAD-MgO基带上快速制备简化单一CeO<sub>2</sub>缓冲层的方法
技术领域
本发明涉及一种用于稀土氧化物高温超导(REBCO)带材的缓冲层及其制备方法,尤其涉及一种利用PLD (脉冲激光沉积)技术在IBAD-MgO基带上快速制备简化单一 CeO2缓冲层的方法。
背景技术
稀土氧化物高温超导体的化学组分为RE1Ba2Cu3O7 (REBC0),其中RE为除Pr以外的稀土族元素。稀土氧化物高温超导系列材料中典型代表为钇钡铜氧(YBa2Cu307_ x,简称SYBCO)高温超导材料。稀土氧化物高温超导带材具有高临界电流密度(J。)、磁场(JfB)特性和低价的特点,将来很有可能取代铋系高温超导带材,应用在超导强电技术领域,如电机、马达、变压器、限流器、磁体、超导储能、核磁共振成像等。利用超导带材制备的超导电缆、超导变压器和超导限流器等器件与设备具有体积小、重量轻、效率高和能耗低等优点,在电力、能源、医疗设备、国防装备等多个领域具有广泛的应用前景。故而国外给予了高度关注,美国每年投入研究经费1000万美元,日本每年投入研究经费10亿日元,开发了接近商业化水平的制造和检测设备。我国在过去十年中也作了不少摸索,在YBCO涂层导体研制方面取得了一定成果。第二代高温超导带材,就是采用各种镀膜手段在很薄(40 - 100微米)的传统金属基带(镍基合金或不锈钢等合金)上镀一层大约I到几个微米厚的钇钡铜氧高温超导薄膜。直接沉积在金属基带上的YBCO超导膜的超导性能很差,必须在金属基带上加一缓冲层。缓冲层的作用一方面可以诱导YBCO超导膜取向生长,另一方面又可作为隔离层防止YBCO与金属基带反应,并且阻止氧向基带中扩散。这就要求缓冲层与超导层和金属基底要有较小的晶格失配度,且能够形成致密无裂纹的薄膜,有效阻碍金属基底被氧化及阻碍基底金属原子向超导层扩散,且不与金属基底和超导层反应。根据涂层导体技术路线的不同,缓冲层的选材也会有所不同。·目前,涂层导体的技术路线主要以下两种:第一是轧制辅助双轴织构基带(RABiTS)工艺路线。在这个路线中,首先制备出具有良好双轴织构取向的金属基底,然后再采用各种真空或者非真空方法制备缓冲层和超导层,其最大的优越性在于很有希望用于缓冲层和超导层的全化学溶液方法低成本制备。但是由于要求金属基底材料必须首先形成良好的双轴织构取向,金属材料的选择范围受到了很大限制。这样对于实际的应用要求,比如低交流损耗等,其优越性将大大受到影响。第二种是离子束辅助沉积(IBAD)工艺路线。可以在没有任何晶粒外延关系和其他附加过程的条件下成功得到双轴织构薄膜,因而可以任意的选择基带材料以满足机械性能,热稳定性和低磁性的要求。同时需要的工作温度很低,可避免薄膜沉积过程中基带的热损伤。采用这种方法得到的缓冲层的表面质量很高,有利于在其上继续沉积出高质量的薄膜。特别是近年来采用IBAD沉积的MgO在厚度仅为IOnm时就能有比较好的双轴织构,因而采用MgO来作为缓冲层有很大的潜力大大减少涂层导线的制备时间,从而使得IBAD工艺可以有效的运用于YBCO涂层导体的制备。由于采用IBAD工艺生长出的MgO薄膜其织构质量不是足够好,并且特别薄,所以一般需要采用真空或非真空工艺在其上面继续沉积缓冲层,然后再采用真空或者非真空工艺沉积超导层。IBAD-MgO基带上沉积缓冲层的常用典型结构如图1所示,金属基带上沉积氧化物阻挡层,氧化物阻挡层上沉积BAD-MgO基带,在BAD-MgO基带上采用磁控溅射方法依次外延生长MgO层和LMO (LaMnO3)层,再在LMO层上沉积超导层。在这一典型的多层缓冲层结构(MgO层和LMO层)中,若不将多层巧妙地层叠而提高晶面取向度,则作为YBCO超导层正下面的层的取向度无法获得7°以下,从而很难获得临界电流密度高的YBCO超导层。因此,为了降低YBCO超导体的制造成本,需要在尽可能少的缓冲层中达到面内取向度在7°以下。

发明内容
本发明提供的一种利用PLD技术在IBAD-MgO基带上快速制备简化单一 CeO2缓冲层的方法,能够在成为YBCO超导层的高取向度的缓冲层中不使用外延同质MgO就能获得优异的结晶取向性,实现YBCO超导体用缓冲层的制造工艺的简单化和低成本化。为了达到上述目的,本发明提供一种利用PLD技术在IBAD-MgO基带上快速制备简化单一 CeO2缓冲层的方法,利用脉冲激光沉积技术在IBAD-MgO层上直接形成结晶取向度比MgO层更高的CeO2缓冲层,该方法包含以下步骤:
步骤1、把经高温烧结制备的CeO2氧化物靶材装入多通道激光镀膜系统腔体中的靶
托;
步骤2、将IBAD-MgO基带缠绕在多通道激光镀膜系统内的辊轴上;
步骤3、关闭多通道激光镀膜系统的门,并抽真空到所需真空度IX 10_7-6X 10_6Torr,然后启动加热器,升温到CeO2缓冲层镀膜工艺所需的温度值;
步骤4、多通道激光镀膜系统中通入氧气,将气体的气压调节到CeO2缓冲层镀膜工艺所需的气压值;
步骤5、启动激光靶旋转与扫描系统,启动准分子激光器,使激光器的能量和频率升到CeO2缓冲层镀膜工艺所需的值;
步骤6、等加热温度、气压、激光能量、激光频率稳定后,打开激光光路开关,开始靶材表面预溅射过程;
步骤7、等激光蒸发形成的椭球状等离子体稳定后,启动多通道传动装置的步进电机开关,并将金属基带的行走速度调到所需值,进行镀膜,金属基带通过多次缠绕在多通道传动装置的辊轴上,多次通过镀膜区;
步骤8、完成锻I吴后,关闭步进电机和激光光路开关;
步骤9、等加热器温度降到50°C以下,打开氮气充气阀门,使多通道激光镀膜系统的真空腔内充氮气到I个大气压,取出样品;
也可以在不打开多通道激光镀膜系统的真空腔门的情况下,通过原位换靶,直接进行下一道工艺。所述的步骤3中,CeO2缓冲层镀膜工艺所需的真空度为I X 10_7_6 X KT6Torr ; 所述的步骤3中,CeO2缓冲层镀膜工艺所需的温度值为500-800°C ;所述的步骤4中,CeO2缓冲层镀膜工艺所需的气压值为I X 10_3-4X KT1Torr;
所述的步骤5中,激光器的能量为200-1000mJ,频率为40-300HZ ;
所述的步骤6中,预溅射过程持续5-10分钟;
所述的步骤7中,金属基带的行走速度为20m/h-500m/h ;
本发明采用多通道PLD技术制备CeO2缓冲层,通过控制气压、温度、行走速度、激光能量和激光频率等参数严格控制CeO2缓冲层的取向,取向度在7°以下。利用本发明提供的一种利用PLD技术在IBAD-MgO基带上快速制备简化单一CeO2缓冲层的方法,得到适合于外延生长YBCO超导层的CeO2缓冲层,CeO2缓冲层厚度为20_1000nm。本发明的优点在于:
1、减少缓冲层的层数,采用单层缓冲层结构,制造工艺简单;
2、CeO2缓冲层和YBCO超导层的晶格失配度都很小,在其上很容易得到高质量的YBCO超导层;
3、制备方法简单,生长过程中的实验 参数容易控制,制备出的CeO2缓冲层具有优良的面内织构度,面内织构度在r以下。


图1是背景技术中的LMO/MgO/IBAD-MgO缓冲层的结构示意 图2是本发明采用的多通道激光镀膜系统的结构示意 图3是本发明中的Ce02/IBAD-Mg0缓冲层的结构示意 图4是本发明提供的CeO2ABAD-MgO缓冲层的X射线Θ -2 Θ衍射谱 图5是本发明提供的CeO2ABAD-MgO缓冲层的X射线Φ扫描的衍射谱 图6是本发明提供的CeO2ABAD-MgO缓冲层的X射线ω扫描的衍射谱 图7是在本发明的缓冲层上制备出的超导层的临界电流图,超导临界电流达到760Α/cm。
具体实施例方式以下根据图2 图7,具体说明本发明的较佳实施例。如图2所示,是本发明所采用的多通道激光镀膜系统的结构示意图,本发明利用多通道激光蒸发技术在基带上制备CeO2缓冲层,在图2中,金属基带I缠绕在多通道传动装置辊轴2上,辊轴2的滚动,带动金属基带I通过加热器3的上方,靶材5和激光蒸发束4处于金属基带I和加热器3的下方,上述部件组成多通道激光镀膜系统。实施例1
一种利用PLD技术在IBAD-MgO基带上快速制备简化单一 CeO2缓冲层的方法,该方法包含以下步骤:
步骤1、把经高温烧结制备的CeO2氧化物靶材装入多通道激光镀膜系统腔体中的靶
托;
步骤2、将IBAD-MgO基带缠绕在多通道激光镀膜系统内的辊轴上;
步骤3、关闭多通道激光镀膜系统的门,并抽真空到I X KTTorr,然后启动加热器,按照10°C /分钟的升温速度将加热器升到CeO2缓冲层镀膜工艺所需的温度值,即500°C ;步骤4、待温度稳定后,打开氧气通道,通入氧气,氧气的流量由气体质量流量计控制,氧气流量为10SCCM,由分子泵闸板阀门将气体的气压调节到CeO2缓冲层镀膜工艺所需的气压值,即 IXKT3Torr ;
步骤5、启动激光祀旋转与扫描系统,启动准分子激光器,打开激光器的光路出口,开始对CeO2靶预蒸发,逐步将激光器量和频率升到CeO2缓冲层镀膜工艺所需的值,即能量为250mJ,频率为 40Hz ;
步骤6、等加热温度、气压、激光能量、激光频率稳定后,启动多通道传动装置的步进电机开关,并将基带的行走速度调到20m/h,进行镀膜,IBAD-MgO基带通过多次缠绕在多通道传动装置的辊轴上,多次通过镀膜区;
步骤8、完成锻I吴后,关闭步进电机和激光光路开关,关闭加热器电源开关,关闭氧气,逐步降低激光器频率并关闭激光器;
步骤9、等加热器温度降到50°C以下,打开氮气充气阀门,使真空腔内充氮气至I个大气压,取出样品;
也可以在不打开镀膜腔门的情况下,通过原位换靶,直接进行下一道工艺。实施例2
一种利用PLD技术在IBAD-MgO基带上快速制备简化单一 CeO2缓冲层的方法,该方法包含以下步骤:
步骤1、把经高温烧结制备的CeO2氧化物靶材装入多通道激光镀膜系统腔体中的靶
托;`
步骤2、将IBAD-MgO基带缠绕在多通道激光镀膜系统内的辊轴上;
步骤3、关闭多通道激光镀膜系统的门,并抽真空到I X IO-6Torr,然后启动加热器,按照10°C /分钟的升温速度将加热器升到CeO2缓冲层镀膜工艺所需的温度值,即600°C ;步骤4、待温度稳定后,打开氧气通道,通入氧气,氧气的流量由气体质量流量计控制,氧气流量为15SCCM,由分子泵闸板阀门将气体的气压调节到CeO2缓冲层镀膜工艺所需的气压值,即 8 X KT3Torr ;
步骤5、启动激光祀旋转与扫描系统,启动准分子激光器,打开激光器的光路出口,开始对CeO2靶预蒸发,逐步将激光器量和频率升到CeO2缓冲层镀膜工艺所需的值,即能量为350mJ,频率为 IOOHz ;
步骤6、等加热温度、气压、激光能量、激光频率稳定后,启动多通道传动装置的步进电机开关,并将基带的行走速度调到80m/h,进行镀膜,IBAD-MgO基带通过多次缠绕在多通道传动装置的辊轴上,多次通过镀膜区;
步骤8、完成锻I吴后,关闭步进电机和激光光路开关,关闭加热器电源开关,关闭氧气,逐步降低激光器频率并关闭激光器;
步骤9、等加热器温度降到50°C以下,打开氮气充气阀门,使真空腔内充氮气至I个大气压,取出样品;
也可以在不打开镀膜腔门的情况下,通过原位换靶,直接进行下一道工艺。实施例3
一种利用PLD技术在IBAD-MgO基带上快速制备简化单一 CeO2缓冲层的方法,该方法包含以下步骤:
步骤1、把经高温烧结制备的CeO2氧化物靶材装入多通道激光镀膜系统腔体中的靶
托;
步骤2、将IBAD-MgO基带缠绕在多通道激光镀膜系统内的辊轴上;
步骤3、关闭多通道激光镀膜系统的门,并抽真空到5X IO-6Torr,然后启动加热器,按照10°C /分钟的升温速度将加热器升到CeO2缓冲层镀膜工艺所需的温度值,即750°C ;步骤4、待温度稳定后,打开氧气通道,通入氧气,氧气的流量由气体质量流量计控制,氧气流量为15SCCM,由分子泵闸板阀门将气体的气压调节到CeO2缓冲层镀膜工艺所需的气压值,即 9 X KT3Torr ;
步骤5、启动激光祀旋转与扫描系统,启动准分子激光器,打开激光器的光路出口,开始对CeO2靶预蒸发,逐步将激光器量和频率升到CeO2缓冲层镀膜工艺所需的值,即能量为400mJ,频率为 120Hz ;
步骤6、等加热温度、气压、激光能量、激光频率稳定后,启动多通道传动装置的步进电机开关,并将基带的行走速度调到120m/h,进行镀膜,IBAD-MgO基带通过多次缠绕在多通道传动装置的辊轴上,多次通过镀膜区;
步骤8、完成锻I吴后,关闭步进电机和激光光路开关,关闭加热器电源开关,关闭氧气,逐步降低激光器频率并关闭激光器;
步骤9、等加热器温度降到50°C以下,打开氮气充气阀门,使真空腔内充氮气至I个大气压,取出样品;
也可以在不打开镀膜腔门的情况下,通过原位换靶,直接进行下一道工艺。实施例4
一种利用PLD技术在IBAD-MgO基带上快速制备简化单一 CeO2缓冲层的方法,该方法包含以下步骤:
步骤1、把经高温烧结制备的CeO2氧化物靶材装入多通道激光镀膜系统腔体中的靶
托;
步骤2、将IBAD-MgO基带缠绕在多通道激光镀膜系统内的辊轴上;
步骤3、关闭多通道激光镀膜系统的门,并抽真空到6X IO-6Torr,然后启动加热器,按照10°C /分钟的升温速度将加热器升到CeO2缓冲层镀膜工艺所需的温度值,即800°C ;步骤4、待温度稳定后,打开氧气通道,通入氧气,氧气的流量由气体质量流量计控制,氧气流量为15SCCM, 由分子泵闸板阀门将气体的气压调节到CeO2缓冲层镀膜工艺所需的气压值,即 5 X KT2Torr ;
步骤5、启动激光祀旋转与扫描系统,启动准分子激光器,打开激光器的光路出口,开始对CeO2靶预蒸发,逐步将激光器量和频率升到CeO2缓冲层镀膜工艺所需的值,即能量为600mJ,频率为 200Hz ;
步骤6、等加热温度、气压、激光能量、激光频率稳定后,启动多通道传动装置的步进电机开关,并将基带的行走速度调到200m/h,进行镀膜,IBAD-MgO基带通过多次缠绕在多通道传动装置的辊轴上,多次通过镀膜区;
步骤8、完成锻I吴后,关闭步进电机和激光光路开关,关闭加热器电源开关,关闭氧气,逐步降低激光器频率并关闭激光器;步骤9、等加热器温度降到50°C以下,打开氮气充气阀门,使真空腔内充氮气至I个大气压,取出样品;
也可以在不打开镀膜腔门的情况下,通过原位换靶,直接进行下一道工艺。实施例5
一种利用PLD技术在IBAD-MgO基带上快速制备简化单一 CeO2缓冲层的方法,该方法包含以下步骤:
步骤1、把经高温烧结制备的CeO2氧化物靶材装入多通道激光镀膜系统腔体中的靶
托;
步骤2、将IBAD-MgO基带缠绕在多通道激光镀膜系统内的辊轴上;
步骤3、关闭多通道激光镀膜系统的门,并抽真空到6X IO-6Torr,然后启动加热器,按照10°C /分钟的升温速度将加热器升到CeO2缓冲层镀膜工艺所需的温度值,即800°C ;步骤4、待温度稳定后,打开氧气通道,通入氧气,氧气的流量由气体质量流量计控制,氧气流量为20SCCM,由分子泵闸板阀门将气体的气压调节到CeO2缓冲层镀膜工艺所需的气压值,即 2 X KT1Torr ;
步骤5、启动激光祀旋转与扫描系统,启动准分子激光器,打开激光器的光路出口,开始对CeO2靶预蒸发,逐步将激光器量和频率升到CeO2缓冲层镀膜工艺所需的值,即能量为750mJ,频率为 250Hz ;
步骤6、等加热温度、气压、激光能量、激光频率稳定后,启动多通道传动装置的步进电机开关,并将基带的行走速度调到300m/h,进行镀膜,IBAD-MgO基带通过多次缠绕在多通道传动装置的辊轴上 ,多次通过镀膜区;
步骤8、完成锻I吴后,关闭步进电机和激光光路开关,关闭加热器电源开关,关闭氧气,逐步降低激光器频率并关闭激光器;
步骤9、等加热器温度降到50°C以下,打开氮气充气阀门,使真空腔内充氮气至I个大气压,取出样品;
也可以在不打开镀膜腔门的情况下,通过原位换靶,直接进行下一道工艺。如图3所示,是本发明提供的CeO2缓冲层结构示意图,金属基带I上沉积氧化物阻挡层2,氧化物阻挡层2上沉积IBAD-MgO基带层3,IBAD-MgO基带层3沉积CeO2缓冲层
4,CeO2缓冲层4上沉积超导层5,本发明得到的缓冲层结构是基于IBAD-MgO基带上制备的CeO2缓冲层,该缓冲层采用单层CeO2结构,CeO2缓冲层的厚度为20_1000nm。所述的金属基带I为强度和耐热性优异的Cu,或Ni,或Ti,或Mo,或Nb,或Fe等金属或者它们的合金。从耐腐蚀性和耐热性方面考虑,特别优选的是不锈钢、哈氏合金或者其他镍合金(N1-alloy)基带。CeO2缓冲层的作为表示面内结晶取向度的指标的面内织构度(FWHM:半高宽)Δ φ的值,以Λφ (111)计可为7°以下。图4所示为在IBAD-MgO基带上制备CeO2缓冲层的X射线Θ -2 Θ衍射谱图。在图4中,只有CeO2 (200)峰出现,证明CeO2缓冲层具有单一取向,无其他杂相。图5所示为在IBAD-MgO基带上制备CeO2缓冲层的Φ扫描的衍射谱图。图5中,CeO2缓冲层的面内织构度为4.8度。图6所示为在IBAD-MgO基带上制备CeO2缓冲层的的ω扫描的衍射谱图。图6中,CeO2缓冲层的面外织构度为1.25度。图7是在本发明的缓冲层上制备出的超导层的临界电流图,超导临界电流达到760A/cm。尽管本发明的内容已经通过上述优选实施例作了详细介绍,但应当认识到上述的描述不应被认为是对本发明的限制。在本领域技术人员阅读了上述内容后,对于本发明的多种修改和替代都将是显而易 见的。因此,本发明的保护范围应由所附的权利要求来限定。
权利要求
1.一种利用PLD技术在IBAD-MgO基带上快速制备简化单一 CeO2缓冲层的方法,其特征在于,该方法包含以下步骤: 步骤1、把经高温烧结制备的CeO2氧化物靶材装入多通道激光镀膜系统腔体中的靶托; 步骤2、将IBAD-MgO基带缠绕在多通道激光镀膜系统内的辊轴上; 步骤3、关闭多通道激光镀膜系统的门,并抽真空到所需真空度,然后启动加热器,升温到CeO2缓冲层镀膜工艺所需的温度值; 步骤4、多通道激光镀膜系统中通入氧气,将气体的气压调节到CeO2缓冲层镀膜工艺所需的气压值; 步骤5、启动激光靶旋转与扫描系统,启动准分子激光器,使激光器的能量和频率升到CeO2缓冲层镀膜工艺所需的值; 步骤6、等加热温度、气压、激光能量、激光频率稳定后,打开激光光路开关,开始靶材表面预溅射过程; 步骤7、等激光蒸发形成的椭球状等离子体稳定后,启动多通道传动装置的步进电机开关,并将金属基带的行走速度调到所需值,进行镀膜,金属基带通过多次缠绕在多通道传动装置的辊轴上,多次通过镀膜区; 步骤8、完成锻I吴后 ,关闭步进电机和激光光路开关。
2.如权利要求1所述的利用PLD技术在IBAD-MgO基带上快速制备简化单一CeO2缓冲层的方法,其特征在于,该方法还包含步骤9: 步骤9、等加热器温度降到50°C以下,打开氮气充气阀门,使多通道激光镀膜系统的真空腔内充氮气到I个大气压,取出样品。
3.如权利要求1所述的利用PLD技术在IBAD-MgO基带上快速制备简化单一CeO2缓冲层的方法,其特征在于,该方法还包含步骤9: 步骤9、在不打开多通道激光镀膜系统的真空腔门的情况下,通过原位换靶,直接进行下一道工艺。
4.如权利要求2或3所述的利用PLD技术在IBAD-MgO基带上快速制备简化单一CeO2缓冲层的方法,其特征在于,所述的步骤3中,CeO2缓冲层镀膜工艺所需的真空度为lX10_7-6X10_6Torr。
5.如权利要求2或3所述的利用PLD技术在IBAD-MgO基带上快速制备简化单一CeO2缓冲层的方法,其特征在于,所述的步骤3中,CeO2缓冲层镀膜工艺所需的温度值为500-800。。。
6.如权利要求2或3所述的利用PLD技术在IBAD-MgO基带上快速制备简化单一CeO2缓冲层的方法,其特征在于,所述的步骤4中,CeO2缓冲层镀膜工艺所需的气压值为I X KTMXKT1Tom
7.如权利要求2或3所述的利用PLD技术在IBAD-MgO基带上快速制备简化单一CeO2缓冲层的方法,其特征在于,所述的步骤5中,激光器的能量为200-1000mJ,频率为40-300HZ。
8.如权利要求2或3所述的利用PLD技术在IBAD-MgO基带上快速制备简化单一CeO2缓冲层的方法,其特征在于,所述的步骤6中,预溅射过程持续5-10分钟。
9.如权利要求2或3所述的利用PLD技术在IBAD-MgO基带上快速制备简化单一CeO2缓冲层的方法,其特征在于,所述的步骤7中,金属基带的行走速度为20m/h-500m/h。
10.一种利用如权利要求2或3所述的方法得到的用于YBCO超导体的缓冲层结构,该缓冲层结构包含沉积在IBAD-MgO基带上的CeO2缓冲层,该缓冲层结构为单层CeO2缓冲层,CeO2缓冲层厚 度为20-1000nm。
全文摘要
一种利用PLD技术在IBAD-MgO基带上快速制备简化单一CeO2缓冲层的方法,能够在外延生长YBCO超导层所必需的单一取向高织构度的缓冲层结构中不使用外延同质MgO层就能获得优异的结晶取向性,实现YBCO超导带材制备工艺中,缓冲层制造工艺的简单化和低成本化。
文档编号C23C14/34GK103233205SQ201310177028
公开日2013年8月7日 申请日期2013年5月14日 优先权日2013年5月14日
发明者李贻杰, 刘林飞 申请人:上海超导科技股份有限公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1