具有均匀的Ga分布的CIGS薄膜的制造方法

文档序号:3287279阅读:245来源:国知局
具有均匀的Ga分布的CIGS薄膜的制造方法
【专利摘要】本发明提供一种具有均匀的Ga分布的CIGS薄膜的制造方法及利用该方法的太阳能电池的制造方法。本发明的太阳能电池用CIGS薄膜的制造方法包括下列步骤:步骤a,在基板上形成包含硒化物(selenide)系列化合物的Cu-In-Ga-Se前驱体薄膜,该硒化物系列化合物具备共价结构;及步骤b,把上述a步骤所形成的前驱体薄膜予以硒化(selenization)热处理。凭此,把CIGS前驱体薄膜改成共价结构的硒化物系列化合物而在Se氛围进行热处理时抑制Ga的偏析,让CIGS薄膜内Ga分布均匀化,最后得以提高利用它的太阳能电池的效率。
【专利说明】具有均匀的Ga分布的CIGS薄膜的制造方法
【【技术领域】】[0001]本发明涉及一种CIGS薄膜制造方法,更具体地说,本发明涉及一种把前驱体(precursor)薄膜的结构改成共价结构以尽量减少CIGS薄膜内Ga的偏析现象而得以具有均匀的Ga分布的CIGS薄膜的制造方法。
【【背景技术】】
[0002]近来,由于严重的环境污染问题及化石能量枯竭而使得新一代清净能量的开发日益重要。其中,太阳能电池是一种把太阳能量直接转换到电能量的装置,太阳能电池的公害少,资源无限并且能够半永久性地使用,被人们期待为能够解决未来能量问题的能量源。
[0003]太阳能电池根据应用于吸光层的物质而分为很多种类,目前使用最多的是利用硅的硅太阳能电池。但近来硅的供应不足而使其价格飙升,人们对薄膜型太阳能电池的关注也日益强烈。薄膜型太阳能电池制成较薄的厚度而能够减少材料消耗量,而且其重量较轻而能够应用到广泛的范围。在该薄膜型太阳能电池的材料方面,对非晶质硅与CdTe、CIS或CIGS的研究非常活跃。
[0004]CIS薄膜或CIGS薄膜是1-1I1-VI化合物半导体之一,在实验室制造的薄膜太阳能电池中具有最高的转换效率。尤其是可以制成10微米(Micron)以下的厚度,即使长期使用时也能发挥出稳定的特性,因此被视为能够替代硅的低廉高效型太阳能电池。
[0005]尤其是,CIS薄膜作为直接迁移型半导体而能够薄膜化,能带隙为1.04eV而比较适合光转换,是一种吸光系数较大的材料。CIGS薄膜是一种为了改善CIS薄膜的较低开路电压而以Ga替代In的一部分或者以S替代Se后开发出来的材料。
[0006]CIGS薄膜制造方法主要分为在真空沉积的方法与非真空涂层法。其中,真空沉积方法包括共蒸发法(co-evaporation)、在线蒸发法(in-line evaporation)、二步工艺(two-step process ;precursor_reaction)等。其中,高效率CIGS薄膜太阳能电池通常以共蒸发法制造,但其工序复杂、比较难以大面积化而阻碍了商用化。为了解决该问题而开发了能够轻易批量生产的沉积/硒化的二步工艺。
[0007]但是把Cu、In、Ga金属或合金溅射后在H2Se气体或Se蒸气的Se氛围下进行热处理时,由于In、Se之间的反应速度与Ga、Se之间的反应速度存在差异而使得其组成不均匀。也就是说,In朝CIGS薄膜表面发生偏析而Ga则朝CIGS与Mo界面发生偏析,从而无法期待添加Ga所带来的能带隙增加及开路电压效果,反而越添加Ga越使得太阳能电池的效率降低。
[0008]【解决的技术课题】
[0009]本发明的目的在于,鉴于具备共价结构的硒化物(selenide)内的Ga移动速度比具备金属结合结构的金属或合金内的Ga移动速度慢很多,派射(sputtering)前驱体不使用纯粹金属或合金而改成硒化物系列化合物以抑制Ga偏析,诱导CIGS薄膜内Ga分布的均匀化,最终提高利用它的太阳能电池的效率。
[0010]【解决课题的技术方案】[0011 ] 根据本发明的具有均匀的Ga分布的太阳能电池用CIGS薄膜制造方法能够实现上述目的的,本发明包括下列步骤:步骤a,形成包含硒化物系列化合物的Cu-1n-Ga-Se前驱体薄膜,该硒化物系列化合物具备共价结构;及步骤b,把上述步骤a所形成的前驱体薄膜予以硒化热处理。
[0012]在本发明的较佳实施例中,上述前驱体薄膜的形成可以由派射(sputtering)法实现。
[0013]在溅射法中可以按照下列方式组合后进行,即至少包括一个含硒的靶(target)。为了充分地提供前驱体内的硒,通过I)金属(Cu、In、Ga及它们的合金)与多个硒化物化合物的组合、2)金属(Cu、In、Ga及它们的合金)与Se的组合、3)硒化物金属化合物的组合妥当地组合Cu、In、Ga、Se后使用。例如,可以如下所示地组合靶:Cu、InSe, GaSe的组合;CuGa、InSe、CuSe 的组合;In、CuSe> GaSe 的组合;Cu、In、CuGa、Se 的组合;CuIn、CuGa、Se的组合;CuInGa、Se的组合;CuSe、InSe、GaSe的组合;CuSe、InGaSe的组合等。较佳地,革巴组合可以是下列祀组合中的某一个:Cu-Se、In-Se、Ga-Se革巴组合;Cu-Se、In-Se、Cu-Ga革巴组合;Cu、In-Se、Ga-Se 祀组合;Cu_Se、In、Cu-Ga 祀组合;及 Cu_In_Se、Cu-Ga 祀组合。较佳地,可以使用CuSe、In、CuGa革巴组合或CuSe、In2Se3、CuGa革巴组合。
[0014]本说明书中使用的术语“元素-元素”被定义为包含各元素可形成的一切化合物。例如,“Cu-Se” 被定义为包含诸如 CuS e、Cu2Se3、Cu2Se, Cu3Se2, Cu2_xSe (x=0 ~I)之类的由Cu与Se在化学计量学(stoichiometry)上可形成的一切化合物。
[0015]溅射可以同时溅射各靶或者有时间差地依次进行。溅射方式可以使用公知的方法,具体条件可以根据靶的种类而妥当地选择,在此不予特别限制。
[0016]前驱体薄膜的Se的原子比(Se/ (Cu+In+Ga))为0.3~1.0较佳,0.8~1.0更佳。在上述范围内,有足够的Se来形成CIGS前驱体薄膜并且能够减少Ga偏析,使前驱体内的大部分Ga成为Ga-Se共价键,显著地降低Ga的移动速度而得以实现均匀的分布。
[0017]硒化热处理可以在Se蒸气或H2Se气体的Se氛围下实现。较佳地,在上述基板温度维持400到530°C的状态下进行硒化热处理10分钟到60分钟。上述温度及时间范围一般来说是针对硒化热处理进行了优化的条件。
[0018]【有益效果】
[0019]本发明中沉积/硒化的二步工艺的溅射前驱体不使用纯粹金属或合金而改成共价结构的硒化物系列化合物,进行Se氛围热处理时显著地降低Ga的移动速度而抑制Ga的偏析,让CIGS薄膜内的Ga分布均匀化,从而提高了利用它的太阳能电池的效率。
【【专利附图】

【附图说明】】
[0020]图1是示出通过本发明的实施例1形成的CIGS薄膜的侧截面结构的SEM图像。
[0021]图2是示出通过本发明的实施例1形成的CIGS薄膜的AES深度剖面(AES depthprofile)的曲线图。
[0022]图3是示出利用通过本发明的实施例1制成的CIGS薄膜的太阳能电池的输出特性的曲线图。
[0023]图4是示出通过本发明的实施例2形成的CIGS薄膜的侧截面结构的SEM图像。
[0024]图5是示出通过本发明的实施例2形成的CIGS薄膜的AES深度剖面(AES depthprofile)的曲线图。
[0025]图6是示出利用通过本发明的实施例2制成的CIGS薄膜的太阳能电池的输出特性的曲线图。
[0026]图7是示出通过本发明的比较例形成的CIGS薄膜的侧截面结构的SEM图像。
[0027]图8是示出通过本发明的比较例形成的CIGS薄膜的AES深度剖面(AES depthprofile)的曲线图。
[0028]图9是示出利用通过本发明的比较例制成的CIGS薄膜的太阳能电池的输出特性的曲线图。
【【具体实施方式】】
[0029]下面结合附图详细说明本发明的较佳实施例。下面说明的实施例可以实现各种形态的变形,但下列实施例不会限定本发明的范围。本发明的实施例的目的是为了向具有本领域通常知识者完整地说明。
[0030] 首先说明具有均匀的Ga分布的CIGS薄膜的制造方法及利用该方法的太阳能电池的制造方法,然后通过较佳实施例揭示制造方法,再说明没有实现Ga均匀分布的比较例,从而针对其与本发明的CIGS薄膜之间的差异进行比较。
[0031]本发明的具有均匀的Ga分布的CIGS薄膜的制造方法以包括前驱体薄膜制造步骤及硒化步骤的二步工艺为基本。
[0032]第一步骤是一种包含硒(Se)地构成共价结构的硒化物(selenide)系前驱体薄膜的形成步骤。
[0033]包含硒的前驱体薄膜的形成方法可以由溅射法实现。进行上述溅射法的靶组合也可以在本发明的技术范畴内予以多样化地适用。
[0034]第二步骤是一种把上述第一步骤所形成的前驱体薄膜予以硒化热处理的步骤。
[0035]下面结合本发明的较佳实施例详细说明。
[0036]【实施例1】
[0037]在钠钙玻璃基板上通过DC溅射把钥(Mo)背面电极沉积I μ m左右的厚度。
[0038]之后,备妥由CuSe、In及CuGa构成的三个靶,在上述基板上同时溅射前驱体薄膜。此时,为了介于Cu/(In+Ga) =0.75~0.9范围、Ga/(In+Ga) =0.3~0.4范围而调整溅射功率(power)ο
[0039]凭此,让前驱体薄膜中Se的原子比,即Se/(Cu+In+Ga)的值成为0.3。
[0040]接着,利用Se蒸气在上述基板温度530 °C的情形下硒化热处理45分钟。
[0041]图1到图3示出了通过实施例1制成的薄膜及利用该薄膜的太阳能电池的特性结
果O
[0042]图1是示出通过本发明的实施例1形成的CIGS薄膜的侧截面结构的SEM图像,图2是示出通过本发明的实施例1形成的CIGS薄膜的AES深度剖面的曲线图,图3是示出利用通过本发明的实施例1制成的CIGS薄膜的太阳能电池的输出特性的曲线图。在此,Voc表示开路电压,Isc表示短路电流,FF表示填充因子(fill factor), Eff表示太阳能电池的效率。
[0043]请参阅图1到图3,通过本发明的实施例1制成的CIGS薄膜的Mo背面电极的厚度为1.22 μ m, CIGS薄膜的厚度为1.42 μ m。
[0044]图2的曲线图示出了如此形成的CIGS薄膜的表面到各深度的各元素分布。而且,利用通过本发明的实施例1制成的CIGS薄膜的太阳能电池的输出特性如图3所示,太阳能电池的效率为8.36%。
[0045]关于实施例1的CIGS薄膜的特性及利用它的太阳能电池的输出特性,先揭示前驱体薄膜不使用硒化物系列而使用纯粹金属或合金构成的CIGS薄膜比较例,然后进行比较。
[0046]【实施例2】
[0047]在钠钙玻璃基板上上通过DC溅射把钥(Mo)背面电极沉积I μ m左右的厚度。
[0048]之后,备妥由CuSe、In2Se3及CuGa构成的三个靶,在上述基板上同时溅射前驱体薄膜。此时,为了介于Cu/(In+Ga) =0.75~0.9范围、Ga/(In+Ga) =0.3~0.4范围而调整溅射功率(power)。
[0049]凭此,让前驱体薄膜让Se的原子比,即Se/ (Cu+In+Ga)的值成为0.8。
[0050]接着,利用Se蒸气在基板温度530°C的情形下硒化热处理45分钟。
[0051]图4到图6示出了通过实施例2制成的薄膜及利用该薄膜的太阳能电池的特性结
果O
[0052]图4是示出通过本发明的实施例2形成的CIGS薄膜的侧截面结构的SEM图像,图5是示出通过本发明的实施例2形成的CIGS薄膜的AES深度剖面的曲线图,图6是示出利用通过本发明的实施例2制成的CIGS薄膜的太阳能电池的输出特性的曲线图。
[0053]请参阅图4到图6,通过本发明的实施例2制成的CIGS薄膜的Mo背面电极的厚度为1.15 μ m, CIGS薄膜的厚度为670nm。
[0054]图5的曲线图示出了如此形成的CIGS薄膜的表面到各深度的各元素分布。而且,利用通过本发明的实施例2制成的CIGS薄膜的太阳能电池的输出特性如图6所示,太阳能电池的效率为13%。
[0055]关于实施例2的CIGS薄膜的特性及利用它的太阳能电池的输出特性,先揭示前驱体薄膜不使用硒化物系列而使用纯粹金属或合金构成的CIGS薄膜比较例,然后进行比较并且与实施例1一起观察。
[0056][比较例]
[0057]在钠钙玻璃基板上通过DC溅射把钥背面电极沉积I μ m左右的厚度。
[0058]之后,备妥由CuGa、CuIn及Cu构成而不包含Se的三个祀,在上述基板上同时派射前驱体薄膜。此时,为了介于Cu/(In+Ga) =0.75~0.9范围、Ga/(In+Ga) =0.3~0.4范围而调整溅射功率。
[0059]接着,利用Se蒸气在上述基板温度530 °C的情形下硒化热处理45分钟。。
[0060]图7到图9示出通过比较例制成的薄膜及利用该薄膜的太阳能电池的特性结果。
[0061]图7是示出通过本发明的比较例形成的CIGS薄膜的侧截面结构的SEM图像,图8是示出通过本发明的比较例形成的CIGS薄膜的AES深度剖面的曲线图,图9是示出利用通过本发明的比较例制成的CIGS薄膜的太阳能电池的输出特性的曲线图。
[0062]请参阅图7到图9,通过本发明的比较例制成的CIGS薄膜的Mo背面电极的厚度为
1.24 μ m,CIGS薄膜的厚度为2.22 μ m。
[0063]图8的曲线图示出了如此形成的CIGS薄膜的表面到各深度的各元素分布。而且,利用通过本发明的比较例制成的CIGS薄膜的太阳能电池的输出特性如图9所示,太阳能电池的效率只达到4.46%。
[0064]CIGS薄膜表面到各深度的元素分布特性比较
[0065]请参阅图2、图5及图8,与图2所示实施例1或图5所示实施例2相比,图8所示比较例越接近Mo背面电极界面Ga比率越显著地增高,偏析现象越发显著。
[0066]相反地,实施例1与比较例相比,Ga朝Mo背面电极界面的偏析现象稍微减少,实施例2则几乎没有发生Ga偏析现象,与CIGS薄膜的深度无关地均匀分布。
[0067]更进一步地,不仅Ga的分布如此,In也是在比较例中朝表面的偏析显著,实施例1中偏析程度有所减少,实施例2则在整体CIGS薄膜均匀地分布。
[0068]对于这样的结果,前驱体薄膜为金属结合结构的纯粹合金时,在硒化热处理步骤中Ga移动比较容易,但是如本发明的实施例1及2所示地前驱体薄膜为硒化物系列的共价结构时,可判断为Ga的移动速度相对较慢或几乎不移动。
[0069]更进一步地,实施例2与实施例1相比更能抑制Ga的偏析,亦即更能有效地均匀化,可以判断前驱体薄膜内Se比率越高Ga的均匀化程度越高。
[0070]利用CIGS薄膜的太阳能电池输出特性比较
[0071]从图3、图6及图9得知,利用通过实施例1与实施例2制成的CIGS薄膜的太阳能电池的输出大于利用通过比较例制成的CIGS薄膜的太阳能电池,因此其能量转换效率也较闻。
[0072]这样的结果表示,当Ga不根据CIGS薄膜内深度发生偏析而均匀分布的程度越高,越能提高太阳能电池的能量转换效率。
[0073]与实施例1相比,实施例2的能量效率大幅提高了 13%,这样的结果证明了在凭借硒化热处理完成CIGS薄膜之前,前驱体薄膜中的Se比率较高而使得共价键比率越高Ga的移动性越钝化,从而使得Ga更能均匀地分布,其结果使得适用它的太阳能电池的能量效率也跟着上升。
[0074]前文通过本发明的较佳实施例进行了详细说明,但不得凭此把本发明限定于上述实施例,具有本领域通常知识者能够在没有脱离本发明的技术思想的范畴内实现各种变形。
【权利要求】
1.一种具有均匀的Ga分布的CIGS薄膜的制造方法,其特征在于, 包括下列步骤: 步骤a,在基板上形成包含硒化物(selenide)系列化合物的Cu-1n-Ga-Se前驱体薄膜,该硒化物系列化合物具备共价结构;及 步骤b,把上述步骤a所形成的前驱体薄膜予以硒化(selenization)热处理。
2.根据权利要求1所述的具有均匀的Ga分布的CIGS薄膜的制造方法,其特征在于, 上述前驱体薄膜的形成方法是基于溅射法的沉积。
3.根据权利要求2所述的具有均匀的Ga分布的CIGS薄膜的制造方法,其特征在于, 上述溅射法按照下列方式组合后进行,即至少包括一个含硒的靶。
4.根据权利要求3所述的具有均匀的Ga分布的CIGS薄膜的制造方法,其特征在于, 上述祀组合是下列祀组合中的某一个:Cu-Se、In-Se、Ga-Se祀组合,Cu-Se> In_Se、Cu-Ga 祀组合,Cu、In-Se、Ga-Se 祀组合,Cu-Se、In、Cu-Ga 祀组合及 Cu-1n-Se、Cu-Ga 革巴组入口 ο
5.根据权利要求3所述的具有均匀的Ga分布的CIGS薄膜的制造方法,其特征在于, 上述派射法同时派射(co-sputtering)各组合的祀或者有时间差地依次进行。
6.根据权利要求1所述的具有均匀的Ga分布的CIGS薄膜的制造方法,其特征在于, 上述硒化热处理在Se蒸气或H2Se气体的Se氛围下实现。
7.根据权利要求6所述的具有均匀的Ga分布的CIGS薄膜的制造方法,其特征在于, 上述硒化热处理在上述基板温度为400到530°C的状态下进行。
8.根据权利要求6所述的具有均匀的Ga分布的CIGS薄膜的制造方法,其特征在于, 上述硒化热处理进行10分钟到60分钟。
9.根据权利要求1所述的具有均匀的Ga分布的CIGS薄膜的制造方法,其特征在于, 上述前驱体薄膜的Se的原子比(Se/(Cu+In+Ga))为0.3?1.0。
10.根据权利要求1所述的具有均匀的Ga分布的CIGS薄膜的制造方法,其特征在于, 上述前驱体薄膜的Se的原子比(Se/(Cu+In+Ga))为0.8?1.0。
11.根据权利要求3所述的具有均匀的Ga分布的CIGS薄膜的制造方法,其特征在于, 上述祀使用CuSe、In、CuGa革巴。
12.根据权利要求3所述的具有均匀的Ga分布的CIGS薄膜的制造方法,其特征在于, 上述祀使用CuSe、In2Se3、CuGa革巴。
13.—种具有均匀的Ga分布的CIGS薄膜,其特征在于, 由权利要求1到权利要求12中任一项所述的方法制造。
【文档编号】C23C14/34GK103548153SQ201280023367
【公开日】2014年1月29日 申请日期:2012年5月30日 优先权日:2011年5月31日
【发明者】安世镇, 尹载浩, 郭智惠, 赵雅拉, 尹庆勋, 申基植, 安承奎, 赵俊植, 朴相炫, 鱼英柱, 柳镇洙, 朴柱炯, 金庆岩 申请人:韩国能源技术研究院
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1