含有碳和铁磁性金属或合金的纳米粒子的利记博彩app

文档序号:3254132阅读:231来源:国知局
专利名称:含有碳和铁磁性金属或合金的纳米粒子的利记博彩app
技术领域
本发明涉及纳米粒子,该纳米粒子包括与无定形碳或石墨碳中任意一种结合的金属铁磁性纳米晶体,在该纳米晶体中或在该纳米晶体上存在能在水溶液中分离的化学基团。因此,本发明的领域包括例如用于磁共振成像和荧光成像的造影剂,药物递送,细胞标记以及局部热疗法,诸如热疗。
背景技术
目前,铁磁性纳米粒子的最重要的应用之一是作为磁共振成像的造影剂。磁场中局部存在的不均匀性导致显著地缩短了磁共振中的弛豫时间T1和T2。因此,局部存在的铁磁性粒子导致了质子的磁共振影像中的暗斑。良好的解决方案需要足够高磁化强度的小的铁磁性粒子。通常,采用铁磁性氧化物粒子用于磁共振成像。在大气中氧化性粒子相对稳定。最周知的铁磁性铁氧化物为磁铁矿,Fe3O4或Fe (II)Fe (IID2O4以及磁赤铁矿,Y-Fe2O3。与其他二价金属原子(例如钴或镍)的结合也提供了铁磁性氧化物,例如CoFe2O3和NiFe203。通常,通过混合含有Fe (II)和Fe (III)的化合物的溶液来生产小的磁铁矿粒子。通过混合,该方法能产生小的团聚的磁铁矿粒子。生产用于被磁共振成像采用的铁磁性铁氧化物已知为SPIO (超顺磁性铁氧化物),以及非常小的粒子如USPIO (超小的超顺磁性铁氧化物)。超顺磁性是指足够小的铁磁性粒子中的自旋在多畴中是无序的事实。磁性多畴的形成使得在没有外部磁场的情况下,磁性粒子不呈现出磁矩。足够小的铁磁性粒子并不形成多畴。因此,小的铁磁性粒子是单畴粒子,这表明存在于单个粒子中的磁性原子的磁矩在不同的畴中是无序的,但是该磁矩以相同方向取向。因此,同样在无外部磁场的情况下,单畴粒子显示出铁磁矩。当粒子在溶液中悬浮而未形成团聚物时,其可自由旋转。单个粒子的磁矩的取向能假定热力学平衡,该热力学平衡将取决于粒子的磁矩、外部磁场的强度以及热能(温度)。由于, 与顺磁性材料相比,铁磁性粒子的磁矩包括成千上万个原子磁矩,顺磁性行为是指超顺磁性。因此,在液体中可或多或少地自由移动的磁性粒子不显示出剩磁;在没有外部磁场情况下,悬浮在液体中的单畴粒子的磁化是可忽略的。当铁磁性粒子的磁性各向异性能量是热能的阶kT,当粒子不能自身旋转时,单个粒子的磁矩的取向也能达到热力学平衡。通常,悬浮在液体中的单畴粒子之间的磁性相互作用使得粒子形成团聚物,在团聚物中单个粒子的磁矩由此取向使得也不产生外部磁场。磁性粒子的团聚物的形成不适宜用于生物学应用。根据现有技术中的SPIO和USPIO粒子非常小,例如

图1中示出了 4至7nm的USPIO粒子。尽管SPio和USPIO粒子在磁共振成像中能提供适当的造影,但是还存在一些问题。商业材料,例如Feridex 和Resovist 带有负电荷且在血液中显示出相对较短(半衰期小于I小时)的寿命。含有涂覆有右旋糖酐的15至30nm的铁氧化物粒子的Combitran 在血液中显示出较长(24至36小时)的寿命。从铁氧化物粒子中溶解出的铁的种类对活细胞的健康产生不利的影响。小的铁氧化物粒子几乎始终是强烈地团聚。如图2中所示,铁磁性粒子以相对较大的团聚物吸收进入生物细胞。该细胞对由此吸收的相对大量的铁氧化物不能令人满意地应答。 示例性地列出关注用于磁共振成像的造影剂的多个近期的专利申请。W0-A-2004/107368描述了表面用氨基修饰的小于20nm的磁性铁氧化物粒子。等电点高于或等于10。W0-A-2009/109588论述了具有两种不同配体的铁氧化物粒子,第一种配体包含带静电电荷的配体且第二配体为亲水性的。W0-A-2009/135937关注于以第一端连接至聚乙烯亚胺聚合物且以另一端连接至纳米粒子核,或替代地连接至接枝到聚亚胺聚合物上的聚乙二醇聚合物的连接体。这些铁磁性氧化物也由于粒子尺寸的广泛分布,单个粒子的聚集,和由于反应或重结晶至非铁磁性铁氧化物的不稳定性以及毒性性质而呈现问题。特别成问题的因素是铁磁性粒子非常严重地团聚。通常,铁磁性氧化物颗粒是团聚的并显示出相对较低的磁矩。每个粒子高磁矩的不团聚的小的粒子在以低浓度提供更好的造影中具有较高的吸引力。由于在铁磁性金属和合金中的原子的磁矩定向平行,其磁化强度通常提高得更多。然而,当暴露在空气中时,小的金属粒子非常易于被氧化。因此,处理自燃的(pyrorphoric)小的金属磁性粒子是困难的。同样,足够大规模的粒径较窄分布的小的金属铁磁性颗粒的制备也是成问题的。最后,金属铁磁性粒子的相对高的磁矩导致更加难以阻止粒子的团聚。因此,在制备之后,对小的铁磁金属粒子涂覆惰性层是先决条件。因此,铁磁性粒子领域的现有技术包括在金属粒子上涂覆惰性层。US-A-4855091涉及通过在高度多孔的陶瓷载体上还原合适的前体且随后将小的粒子暴露在碳输送气流中来制备小的镍、铁或钴粒子。该气流既可包括烃(例如甲烷或甲苯),和氢气,或一氧化碳和氢气中任一种。暴露在上述气流中的结果是碳纳米纤维在金属粒子外的生长。通常,金属粒子终止在封闭在石墨层内的碳纳米纤维的末端或在碳纳米管中。随后,卡耐基梅隆大学得到了关于涂覆有石墨层的磁性金属或金属碳化物纳米粒子的专利US-A-5456986。该方法的实例是碳化钆纳米晶体。该方法难以大规模化并且不容易提供更大量的铁磁性粒子。根据该方法,在石墨棒中钻出孔并用磁性金属的氧化物或顺磁性稀土氧化物填充该孔。因此随后将制备的棒用于Kratschmer-HufTmann碳弧焊工艺中。该工艺产生许多粉尘和一些磁性粒子,这些磁性粒子以及所得的粉尘穿过不均匀的磁场来分离。磁性粒子显示出未完全被石墨层涂覆且因此仍然易于被氧化。W0-A-99/46782中提到根据更容易规模化的方法生产铁磁性粒子。该专利申请的数据通过引用整体并入本申请中。在该专利申请中公开的方法涉及在高度多孔的陶瓷载体(例如氧化铝或二氧化硅)上涂布铁磁性金属的前体。用于在载体上涂布前体的方法与担载的金属催化剂的制备中所采用的那些相同。在将前体还原成相应的金属之后,将金属粒子暴露在碳输送气流中,其中还原通常是把担载的载体维持在高温下的含氢气流中进行。碳输送气流分子的分解导致在金属粒子的表面上的一个或多个石墨层的生长。重要的是要注意石墨层在金属粒子的边缘和角落处是卷曲的。通过在低的氢气压力以及高温下操作,抑制金属粒子外的碳纳米纤维的生长。在金属粒子的封装之后,冷却材料至室温并通过溶解去除陶瓷载体。氧化铝可溶解在例如磷酸或氢氧化钠中,而二氧化硅可溶解在氢氧化钠中。由于所得到的金属硅酸盐在碱性溶液中是不溶的,因此二氧化硅载体与铁磁性金属的前体的反应不得不被阻止。如果硅酸盐的反应已经发生,必须通过用氢氟酸处理进行载体的溶解。由于氢氟酸的处理具有危险性,在工业应用中,用该酸处理不具有吸引力。W0-A-9946782进一步公开了具有永久磁矩的铁磁性粒子由于粒子在链中往往排成一排,所以这些粒子难以分散。对于在圆形链中排成一排,剩磁较低,但是,铁磁性粒子仍然是团聚的。因此W0-A-99/46782提议采用小的镍-铁合金粒子。由于特定镍铁合金的低磁性各向异性,因此只有在外部磁场的存在下,这些粒子才使其原子磁矩设定为单畴排列。尽管这些镍铁粒子的分散性良好,但是镍的致癌性质是不利的。在US-A-2008/0057001中提及了另一种生产被涂覆的金属铁磁性粒子的方法。该专利申请提及了在600至1200°C的高温下由相应的金属羰基化合物分解来生产小的铁磁性粒子的方法。通过冷却器从气流中分离金属或合金粒子。随后将该粒子引入聚乙二醇或聚合淀粉的溶液中。由饱和磁化强度明显可见不能完全阻止金属的氧化,上述饱和磁化强度对于平均大小为10和26nm的铁粒子分别为152. 5emu/g和60. Oemu/g。测得的饱和磁化强度大大低于块状铁(bulk iron)的值为222. 6emu/g的饱和磁化强度。重要的是根据未公开的方法平均直径为26nm的涂覆有碳的铁粒子呈现出119emu/g的更高的饱和磁化强度。在超声波处理所得到的被涂覆的金属粒子或合金粒子的分散体之后,可通过0.1ym孔径的过滤器进行过滤。通过扫描电子显微镜获得的这些所产生的粒子的分散体的图像反映出金属粒子或合金粒子的分散体的低剩磁的结果;如预期的,铁磁性粒子存在于闭合回路中,因此产生非常低的剩磁磁化强度。重要的是要注意,至少部分金属粒子的饱和磁化强度仍然显著高于铁氧化物粒子的饱和磁化强度,对于从Berlex unit有限公司BerlexImaging商业铁氧化物Feridex该值约为68emu/g。非常有趣的是,小利兰斯坦福大学董事会递交的专利申请中利用与上述专利W0-A-99/46782中完全相同的方法来生产封装在石墨层内的铁磁性粒子。该提及的专利申请为US-A-2008/0213189。该专利申请是聚焦在钴-铁合金粒子。FeCo粒子的饱和磁化强度为215emu/g,该值接近块状FeCo的值235emu/g。与要求保护用于官能化的极性脂类的US-A-2008/0213189相比,在W0-A-99/46782中未进行官能化的碳涂覆的金属或合金粒子。极性脂的定义为包括末端具有极性基团的脂肪族碳链的分子。更具体的要求保护磷脂,该磷脂定义为包括末端为磷酸酯基团的脂肪族碳链的分子。最后,所要求保护含有烷氧基或巯基以及烷胺基的分子。W0-A-03/057626描述了一种制备具有封装在含有杂原子的石墨壳中的铁磁性核的微粒子的方法。具体的说,W0-A-03/057626描述了根据该方法制备的涂覆碳的纳米粒子包含7表面原子%的氮,且这些粒子与其碳外壳仅包含碳原子且本质上由基本平面的板(planar plate)组成的纳米粒子在结构上和本质上是不同的。Ha B.等人,Physica B Condensed Matter, 404, 2009,1617-1620 描述了通过铁催化剂电弧放电合成的单壁碳纳米管,其中铁粒子存在于碳纳米纤维的束内。Borysiuk J.等人,Carbon, 46, 2008,1693-1701描述了碳封装的在碳纳米纤维和粉尘内的纳米粒子。Harris P. J. F.等人, Chemical Physical Letters, 293 (1998) 53-58 描述了一种制备被填充的碳纳米粒子的方法。在该文献中所公开的显微图像中,结合碳纳米纤维来生产被填充的碳纳米粒子。
US-A-2006/116443描述了通过用金属化合物浸溃碳黑并利用还原剂还原该金属化合物生产的金属涂覆的碳黑。本发明针对于未团聚的且根据改进的方法生产的改进的石墨涂覆的金属铁磁粒子。

发明内容
因此,本发明的目的在于提供一种纳米粒子,该纳米粒子包括均匀分布的,即避免了铁磁性粒子的团聚的小的铁磁性金属粒子。如果在纳米粒子中金属粒子的数目维持在一百个粒子以下,这被认为是有可能的。为了例如在MRI应用中使用所述纳米粒子,在各个纳米粒子中的金属粒子的数目应该至少为3个。优选地,在各个纳米粒子中存在少于20个铁磁性粒子,更优选地少于10个铁磁性粒子。通过用石墨层至少部分地封装单个铁磁性粒子来形成所述纳米粒子。如果该封装是部分的,铁磁性粒子的表面可进一步被金层覆盖。优选地,铁磁性粒子被石墨碳和金层的组合完全覆盖。所述铁磁性金属包括铁。其可完全或基本(例如> 99wt. % )由铁组成。此外,其可包含一小部分(例如I 5wt. % )的其他金属,尤其是可有助于铁还原的其他金属。通常,所述金属粒子的尺寸(最大直径)是I至200nm,优选10至lOOnm。所述纳米粒子通常具有的典型的尺寸(最大直径)小于500 u m,优选100至200 u m,优选小于
10u m,且甚至更优选小于Ium的尺寸。对于临床应用,优选 采用金属铁粒子,这是由于磁性金属,例如镍和钴以及含有这些元素的合金是有毒的。然而,封装在石墨层中可防止这些有毒金属接触活材料。因此,完全封装所有的铁磁性粒子是必需的。众所周知,难以将铁氧化物和其他铁前体还原至金属铁,这是由于热力学平衡需要非常低的水蒸汽压或非常高的温度。在亲水性载体例如二氧化硅或氧化铝的情况下,不可能显著地降低载体本体内的水蒸汽压。因此,氨合成催化剂包含不少于98wt. %的磁铁矿以及仅约Iwt. %的氧化铝和约Iwt. %的氧化钾。然而,在普通的高度多孔的氧化性载体的情况下,不可能通过用氢气还原来将涂布在载体表面的纯的铁氧化物或铁氧化物前体还原成金属铁。载体本体内的水蒸汽压保持太高。不可采用非常小的载体本体,这是由于还原性气流的压降太大,或者将会使小的担载的载体颗粒夹带在气流中。这就是在上述提到的US2008/0213189中特别提及铁钴合金粒子的制备的原因。众所周知,钴显著地促进铁氧化物的还原。另一个用常规载体即氧化铝和二氧化硅的问题是,在水蒸汽的存在下由还原反应所得到的铁(II)易于与载体反应成尖晶石Fe (II) A1204或硅酸盐。在那些高度多孔的陶瓷材料中的铁(II)不能在低于约900°C的温度下被还原。因此,本发明的第一个目的是纳米粒子的制备,该纳米粒子包括小的铁磁性粒子,所述小的铁磁性粒子包含有助于铁还原的其他金属的铁合金。另一个目的是提供一种包括小的铁磁性合金粒子的纳米粒子,所述小的铁磁性合金粒子通过完全或不完全覆盖铁粒子的表面的石墨层来防止被氧化。另一个目的是用薄金层涂覆包括铁磁性金属粒子的纳米粒子的部分表面,所述纳米粒子的该部分表面未被石墨层覆盖。进一步的目的是包括铁磁性粒子的纳米粒子的制备,该铁磁性粒子与生物体液相容且在水成液(aqueous liquid)中未显著地团聚。因此,本发明的该目的涉及在封装纳米粒子的铁磁性金属粒子的石墨层的表面上应用带静电电荷的基团。在W0-A-99/46782和US2008/0213189中描述的方法不利于在较大范围内进行。在使陶瓷载体粒子的固定床担载有铁磁性金属的前体的情况下,难以将担载的陶瓷载体的粒子暴露在均匀的气体组合物中。在封装之前的金属前体的还原期间,还原气流的水蒸汽含量是变化的。在陶瓷载体的本体的固定床情况下,固定床的还原气体进入的部分开始被还原,且还原中产生的水蒸汽流过固定床的保留部分。水蒸汽延迟了金属氧化物还原成相对应的金属或合金。利用铁氧化物,水蒸汽可促进铁(II)与载体的反应。因此,还原的程度可随陶瓷本体的床中的位置发生显著改变。在通过暴露在碳输送气流中的封装期间,难以得到铁粒子的均匀涂层。可能的是在床的完全还原的部分内进行碳纳米纤维的非常快速的生长,实际上该过程完全消耗了碳输送分子。因此,经担载的载体本体的固定床(最易想到的构造)可能不是最优的反应器配置。回转窑(rotating kiln)中担载有小金属粒子的载体本体的薄层,能更好地解决气相中的输送问题。然而,载体本体不能太小,这是因为窑中的气流将夹带小的载体本体。担载的载体本体的流化床是最具有吸引力的,但是处理流化床反应器是不容易的。因此,最大的问题是在担载的载体本体的非常大的容积中得到均一的条件,在担载的载体本体的容积中没有大规模的碳纳米纤维的生长且金属粒子被封装。通常大部分的金属粒子未被完全封装,这导致金属粒子在用酸溶液处理以除去载体的过程中溶解。因此,合适涂覆的金属粒子的产率相对较低。因此,本发明的最终目的在于提供一种比W0-A-99/46782中的方法更易于控制且更易于大规模化的方法。令人惊奇地发现,根据本发明的制备纳米粒子的方法的可非常顺利地实现许多上述目的,该方法包括通过用铁前体和少量的有助于铁还原成金属铁的金属前体浸溃含碳的本体,干燥该浸溃过的本体且在氮气流中保持所述`本体,同时将温度升高至本体分解成碳和气态物质的水平。相应地,本发明的另一实施方式涉及用于制备包括金属碳本体的纳米粒子的方法,其中所述金属碳本体包括至少部分地被封装在石墨碳内的铁磁性金属合金粒子,该方法包括用至少一种铁磁性金属前体的水溶液浸溃含碳的本体;干燥浸溃过的本体;随后在惰性且基本无氧的气氛中加热浸溃过的本体,由此将金属化合物还原成相应的金属合金。优选的碳本体材料是微晶纤维素,其可作为直径范围为0.1至约0. 5mm的球体商业购得。制备这种球体用于药物的缓释。可容易地实施用金属前体浸溃微晶纤维球体。水热处理过的糖(胶体碳)也可用作合适的碳本体。可由水热处理过的糖溶液于160至200°C的温度下制备胶体碳。活性碳也可用作合适的碳本体来实施铁氧化物的还原以及提供用于封装的石墨层的碳。用于铁磁性粒子的合适的前体是金属的盐。所采用的前体影响所需的还原方法。尽管使用硝酸铁(III)得到了可接受的结果,但是其与纤维素材料可发生爆炸反应。因此,优选的是有机酸(例如柠檬酸、醋酸或甲酸)的盐以及甚至更多的有机羟基酸的盐。高度优选的是柠檬酸铁铵,其是一种当与分解的碳本体材料接触时,在较低温度下容易分解并产生金属铁的化合物。
已发现,该令人惊奇地简单的方法容易产生包括被石墨层封装的金属粒子的纳米粒子,其中碳由微晶纤维素提供。因此,不涉及将碳输送气分子从穿过浸溃过的本体的气流传输至纳米粒子的被担载的金属粒子。包括在纳米粒子中的所有的金属粒子承受相同的条件,假设微晶纤维素本体的温度完全一致。该方法也可通过在活性碳本体上涂覆铁磁性金属或合金的前体,并且在惰性气体中将担载的活性碳本体保持在高温下来实施。因此,根据本发明,在该方法中不需要氢气。氢气的较宽爆炸极限使得氢气的使用不具备吸引力。达到金属前体的真正完全还原以及石墨涂层所需的温度水平首先取决于所采用的纤维素材料。通常约450°C的温度足以使得纤维素材料降解至无定形碳。金属前体的还原取决于前体的热力学稳定性。在450至约700°C的温度范围内,如果单独存在铁前体,其不能被还原。为了实现铁前体的还原,需要催化地促进该还原反应的组分。镍或钴能有助于铁前体的还原,且我们也可采用贵金属(例如钯或钼)来实现铁前体的还原。令人惊奇的是,观察到例如在600°C时热处理导致金属合金粒子封装在石墨层中。优选地,热处理温度为450至6000C o催化还原反应的金属的含量可相对较低,例如,小于5wt%的量,优选小于2wt%,更优选I至2wt%,基于总的金属计。产生的纳米粒子包括存在于无定形碳的基质内的被封装的合金粒子。

通过氧化至二氧化碳可容易地除去无定形碳。在约500°C以下的温度下,通过在含有氧气的气流中热处理来进行用气态氧进行的氧化。已经发现,其中的金属粒子被封装的石墨碳仅在约500°C以上的温度下通过气态氧而被氧化,而无定形碳在较低的温度下被氧化。通过用液态氧化剂处理,该氧化反应也能在低温下进行。优选地,上述氧化反应用硝酸或硝酸与硫酸的混合物进行。对根据本发明制得的纳米粒子重要的是,上述氧化反应在封装铁(合金)粒子的石墨层的表面上的缺陷位点处生成含氧基团。该含氧基团包括羧酸基团和酚基团。在超过约为3的pH值下羧酸基团离子化,在较低的pH值水平下,正电荷通过在羧酸基团的氧原子上吸附质子而产生。因此,在被涂覆的铁粒子的表面上引入的静电电荷防止了纳米粒子的团聚。由于由氧化处理得到的含有小的金属粒子的纳米粒子保留在液体中,且可以很容易地通过不均等的磁场从液体中分离,根据本发明该处理优选在低温下的液相中进行。令人惊奇地观察到,包含一个或多个在水溶液中可解离的取代基的多核芳族化合物(polynuclear aromatic compound)不可逆地从水溶液中吸附到石墨碳上。因此根据本发明的一个替代实施方式,这些多芳族化合物吸附在封装纳米粒子的合金粒子的石墨层的表面上。石墨上的静电电荷归因于取代进入聚芳烃化合物内的解离的化学基团,该静电电荷使粒子分散稳定。优选地,采用由芘衍生的化合物来吸附在石墨表面上。本发明的第一实施方式是上述纳米粒子包括在水成液中良好分散的铁磁性合金粒子,该铁磁性合金粒子包括封装在石墨层内的高含量的金属铁。纳米粒子的铁含量可在金属相的70至98被%之间变动;且优选在90wt%以上。从热力学的角度来看,未促进该还原反应,因此,纯的铁氧化物至金属铁更是非常困难的。然而由于不存在有毒金属纯金属铁粒子在临床应用上是优选的。在使用根据本发明的方法时,需要至少约700°C的温度来提供具有强铁磁性的金属铁粒子。令人惊奇地,在对于铁前体的还原反应相对较低的温度下,热处理相对短的时间段,由涂覆在微晶纤维本体、由通过糖的水热处理产生的胶体碳制得的本体或活性碳本体中的任意一种本体上的铁前体产生金属铁。因此,本发明的另一个实施方式是涉及用于生产纳米粒子的方法,该纳米粒子包括金属-碳粒子,其中所述金属-碳粒子包括至少部分被封装在石墨碳内的铁磁性金属粒子,该方法包括用铁磁性金属前体的水溶液浸溃含碳的本体,干燥浸溃过的本体,随后在惰性且基本无氧的气氛中于700°C以上的温度下加热浸溃过的本体,由此将金属化合物还原至相应的金属。我们已发现,浸溃溶液的不均匀分散可使得个别较大铁粒子和多得多的非常小的金属铁粒子存在于该碳本体的外部边缘处。这种形式的不均匀性可通过在反应期间彻底搅拌混合物来防止。

可通过使纤维素材料担载铁前体来控制小的铁粒子的尺寸。较高的担载产生较大的铁粒子。易于得到约为3nm的铁粒子。用盐酸处理纳米粒子并测量所释放的氢气的体积表明与在较低温度下产生的铁粒子相比,许多铁粒子被不完全地封装。采用包括未被完全封装的小的铁粒子的纳米粒子可能是具有吸引力的,这是由于生物细胞能更好地处理缓慢溶解的铁粒子。由于金属铁的高磁矩,包括少量铁粒子的纳米粒子足以能指示细胞在MRT实验中的位置。为了达到纳米粒子的完全封装,于大约500°C下用包括氢气和含碳分子的气流中处理是充分的,所述含碳分子例如包括苯和甲苯的芳香族化合物、CO、CH4, C2H4,或其他气体,例如低级烷烃、烯烃、醇类、炔烃、以及类似物。优选地,通过这种气流处理的纳米粒子不包括镍,因为这可导致不理想地产生碳纳米纤维。更优选地,通过这种气流处理的纳米粒子具有仅作为纳米粒子中的金属的铁,因为这产生了令人惊奇的良好的结果,尤其是因为其完全抑制了纳米纤维的产生。然后可研磨包括含有铁粒子和碳的本体的纳米粒子。然后在低强度的不均匀的磁场中可易于去除较大铁粒子。较大的铁粒子也未涂覆有石墨层。在小的铁粒子完全封装之后,较大的铁粒子也可通过用无机酸例如盐酸或硫酸处理来去除。由于许多生物学有用的基团可通过例如表面与硫醇(硫醇)、硫醚或二硫基反应而结合至金的表面,所以包括部分表面涂覆有金层的金属铁粒子的纳米粒子也是重要的。相应地,本发明的另一个实施方式是包括金属铁粒子的纳米粒子,该金属铁粒子部分地覆盖有石墨层且部分地覆盖有金层。通过将包括铁粒子的纳米粒子浸溃在金的化合物(例如氯化金)的溶液中,在纳米粒子的铁表面上可很容易地涂覆金层(gold layer)。纳米粒子表面的铁原子替换成金原子。已令人惊奇地观察到,在700°C以上的温度下处理担载有金属前体的微晶纤维素材料将导致无定形碳转化成石墨带(graphitic ribbon)。对于包括铁和铁镍粒子的纳米粒子,可几乎完全发生该转化。石墨碳呈现出吸附特定分子或化学结合特定分子的引人注意的性能。本发明的另一个实施方式是包括含有小的铁磁性铁粒子的石墨碳的纳米粒子,该铁磁性铁粒子完全被石墨层封装或不完全被石墨层封装。含有被封装的金属铁粒子和石墨碳的纳米粒子可易于被研磨至小的本体。通过磁性分离,含有铁磁性粒子的纳米粒子可与仅含碳材料的团聚体分离。非常重要的是,涂覆有石墨层和结合至石墨碳的纳米粒子之间的磁性相互作用相对较小,这是因为纳米粒子不能彼此靠得太近。由于磁力随着纳米粒子之间的距离的平方变化,较大的粒子间距导致低得多的磁性相互作用。优选地,包括石墨本体的纳米粒子含有少于100个,优选少于20个,甚至更优选少于10个铁磁性粒子。纳米粒子的石墨本体中的铁磁性粒子的磁矩设定了一个方向,在该方向中磁矩可以彼此完全或部分抵消,因此重要的是纳米粒子的每个石墨本体中铁磁性粒子的数目至少为3个。由于当根据本发明的纳米粒子的石墨碳本体中的铁磁性粒子多于3个时,外部磁矩大大减小,因而该纳米粒子的分散性显著地提高。本发明的上述替代的实施方式涉及在包括涂覆有石墨层的铁磁性粒子的纳米粒子的表面上涂覆含有多芳族基团的被合适地取代的分子。当由于最初无定形碳转化成石墨带,纳米粒子的被涂覆的铁磁性粒子结合至石墨碳时,含有多芳族基团的分子的吸附略微较高。首先,多芳族分子上的合适基团的取代涉及极性基团,例如磺酸基团或羧酸基团以及胺。其次,也可采用增加水溶性的取代基,例如低聚的(乙二醇),混合低聚的(乙二醇/丙二醇)。令人惊奇的是,被极性基团取代的多芳族分子从水溶液不可逆地吸附到石墨碳的表面上。因此,本发明的另一个实施方式涉及涂覆有石墨层的纯铁粒子,该石墨层存在于石墨本体中,其石墨表面上已吸附了合适取代的多芳族化合物。具体地,根据本发明的纳米粒子可悬浮在水溶液中,其中水溶液包括吸附在石墨碳的表面上的取代的多核芳族化合物。多核芳族化合物可被在水溶液中离解的化学基团取代,由此稳定在水溶液悬浮的纳米粒子。本发明优选的多芳族基团是芘且优选吸附在根据本发明的纳米粒子的石墨表面上的分子包括取代的花。被吸附的官能性的多芳族基团可被用作能使其他探针和靶分子联接的连接体和/或分隔体分子的共价结合用的骨架,和/或响应外部物理、化学和/或生物刺激的组件。根据本发明的纳米粒子还包括封装在石墨基质内的纯铁粒子,其中根据本领域用于碳纳米纤维的表面的现 有技术使石墨表面官能化。许多出版物中涉及碳纳米纤维表面的官能化。作为不例,我们参照 D. Tasis, N. Tagmatarchis, A. Bianco 和 M. Prato, Chem. Rev.(2006) 106第1105 1136页。非常重要的是,在700°C以上的温度下处理得到的材料含有石墨材料,该石墨材料可采用本领域进行碳纳米管表面的官能化的现有技术。根据本发明的纳米粒子适用于核磁共振成像和荧光成像的造影剂,药物递送、细胞标记以及局部热疗法,例如热疗,所述纳米粒子包括金属-碳本体,更具体包括封装在石墨碳内的铁磁性金属或金属合金粒子。
具体实施例方式实施例1商业可得到的尺寸范围为100至200iim的微结晶纤维(MCC)球体(Cellet,Syntapharm股份有限公司的中性颗粒,米尔海姆,德国),通过将这些球体浸溃在柠檬酸铁铵的水溶液中而进行担载。该球体在溶液中停留24小时,在该期间间或地搅拌上述溶液。然后,利用带有玻璃过滤器的布氏漏斗将浸溃过的球体与液体分离。在真空中于室温下干燥分离出的球体至恒重。随后,通过在流化床反应器中于惰性氮气流中热处理而使上述浸溃过的球体热解。加热速率为5°C/min且该样品于800°C下保持3小时。这得到具有约70um大小的包括含金属-碳的本体的纳米粒子,上述含金属-碳的本体具有铁磁性性质。还原的铁粒子均匀分散在整个纳米粒子的含金属碳的本体中。从图3中可见,包括金属铁粒子的纳米粒子部分被封装在石墨外壳中且,如研磨后的样品的透射电子显微镜图片中推断,其尺寸范围在10 IOOnm之间。如通过ICP-MS测得,在所描述的样品中的铁的量为8. 28wt%。在随后用浓盐酸进行处理期间,观察到有氢气的释放,这表明了并非所有铁粒子被完全封装。从所释放的氢气的量,可计算出溶解的铁的量约为原始铁含量的20%。实施例2商业可得到的尺寸范围为100至200iim的微结晶纤维(MCC)球体(Cellet,Syntapharm股份有限公司的中性颗粒,米尔海姆,德国),通过将这些球体浸溃在柠檬酸铁铵的水溶液中而进行担载。该球体在溶液中停留24小时,在该期间间或地搅拌上述溶液。利用带有玻璃过滤器的布氏漏斗将浸溃过的球体与液体分离。在真空中于室温下干燥分离出的球体至恒重。随后,通过在流化床反应器中于惰性氮气流中热处理而使上述浸溃过的球体热解。加热速率为5°C/min且该样品于800°C下保持3小时。在氢气-氮气(50/50)气流中使用甲苯的后续处理得到具有约70 y m大小的包括含金属-碳的本体的纳米粒子,上述含金属-碳的本体具有铁磁性性质。还原的铁粒子均匀分散在整个纳米粒子的金属-碳本体中。在随后用浓盐酸进行处理期间,观察到无氢气的产生,这表示在纳米粒子中所有铁粒子被完全封装。图4示出了通过研磨原始样品得到的被封装的铁粒子的透射电子显微镜图。
实施例3
商业可得到的尺寸范围为100至200iim的微结晶纤维(MCC)球体(Cellet,Syntapharm股份有限公司的中性颗粒,米尔海姆,德国),通过将这些球体浸溃在硝酸铁的水溶液中而进行担载。该球体在溶液中停留24小时,在该期间间或地搅拌上述溶液。然后,利用带有玻璃过滤器的布氏漏斗将浸溃过的球体与液体分离。在真空中于室温下干燥分离出的球体至恒重。随后,在炉管反应器中的静止惰性氮气流中热处理而使上述浸溃过的球体热解。加热速率为5°C/min且该样品于800°C下保持3小时。这得到具有约70 y m大小的包括含金属-碳的本体的纳米粒子,上述含金属-碳的本体具有铁磁性性质。除了数量多得多的非常小的金属铁粒子外,一些大的铁粒子形成在纳米粒子的碳本体的外部边缘处(参见图5,背散射电子显微图以相对高的强度指示较重的元素铁)。实施例4在N,N,N-三甲基-2-氧-2-(芘-1-基)乙基溴化铵(下述分子式(I))和根据 N. Nakashima, Y. Tomonari 和 H. Murakami, “Water-Soluble Single-ffalled CarbonNanotubes via Noncovalent Sidewall-Functionalization,,Chem. Lett. 31, P. 638-639,2002合成的带有铵离子的芘的水溶液中,加入包括石墨封装的铁粒子的纳米粒子。已知该探针与碳纳米管的石墨表面具有强烈的相互作用。带有铵离子的芘不可逆地吸附在纳米粒子的石墨表面上。通过UV-Vis-分光光度计观测溶液中携带铵离子的芘的消耗。在超声处理后,得到包括石墨封装的铁粒子的纳米粒子的稳定的均匀分散体。
权利要求
1.ー种纳米粒子,所述纳米粒子包括石墨碳本体和3至100个至少ー种铁磁性金属的金属粒子,其中所述金属粒子至少部分地被所述石墨碳本体封装。
2.根据权利要求1所述的纳米粒子,其中,所述铁磁性金属包括鉄。
3.根据前述权利要求中任ー项所述的纳米粒子,其中铁磁性粒子进ー步包括选自由镍、钴、贵金属以及它们的组合组成的组中的金属。
4.根据前述权利要求中任ー项所述的纳米粒子,其中所述铁磁性粒子至少部分地涂覆有石墨碳且至少部分地涂覆有金层。
5.根据权利要求1至3中任ー项所述的纳米粒子,其中所述铁磁性粒子完全被石墨碳封装。
6.根据前述权利要求中任ー项所述的纳米粒子,其中所述纳米粒子进ー步包括取代的多核芳族化合物,所述多核芳族化合物被吸附在所述石墨碳本体的表面上。
7.ー种用于制备包括金属-碳本体的纳米粒子的方法,其中所述金属-碳本体包括至少部分封装在石墨碳内的铁磁性金属合金粒子,所述方法包括用至少ー种铁磁性金属前体的水溶液浸溃含碳的本体;干燥浸溃过的所述本体;随后在惰性且基本无氧的气氛中于450至600°C的温度加热所述浸溃过的本体,由此将金属化合物还原成相应的金属合金。
8.ー种用于制备包括金属-碳粒子的纳米粒子的方法,其中所述金属-碳粒子包括至少部分封装在石墨碳内的铁磁性金属粒子,所述方法包括用金属前体的水溶液浸溃含碳的本体;干燥浸溃过的所述本体;随后在惰性且基本无氧的气氛中于700°C以上的温度加热所述浸溃过的本体,由此将金属化合物还原成相应的金属合金。
9.根据权利要求7或8所述的方法,其中,所述铁磁性金属是铁。
10.根据权利要求7至9所述的方法,其中,所述金属前体为ー种或多种有机酸的ー种或多种盐,所述有机酸选自由柠檬酸、醋酸、甲酸、羟基酸以及柠檬酸铵组成的组。
11.根据权利要求7至10所述的方法,其中所述含碳的本体选自由微晶纤维素、胶体碳以及它们的混合物组成的组。
12.根据权利要求7所述的方法,其中,所述金属合金进ー步包括另ー种金属,所述另ー种金属选自由镍、钴、贵金属以及它们的混合物组成的组。
13.根据权利要求7至12所述的方法,其中,所述纳米粒子包括无定形碳,其中所述纳米粒子用氧化剂处理,去除所述无定形碳并在所述石墨表面上产生羧酸基团。
14.根据权利要求7至13所述的方法,其中,在包括氢气和含碳的分子的流中处理所述纳米粒子,其中所述纳米粒子完全被石墨碳封装。
15.根据权利要求7至13所述的方法,其中,所述纳米粒子浸入在包括金化合物的水溶液中,其中所述纳米粒子部分涂覆有金层。
全文摘要
本发明涉及纳米粒子,该纳米粒子包括与无定形碳或石墨碳中任意一种结合的金属铁磁性纳米晶体,在该纳米晶体中或在该纳米晶体上存在能在水溶液中分离的化学基团。根据本发明,提供包括至少一种铁磁性金属的金属粒子的纳米粒子,所述金属粒子至少部分地被石墨碳封装。本发明的纳米粒子制备如下通过用至少一种铁磁性金属前体的水溶液浸渍含碳的本体,干燥浸渍过的所述本体,随后在惰性且基本无氧的气氛中加热浸渍过的本体,由此将金属化合物还原成对应的金属或金属合金。
文档编号B22F9/26GK103038401SQ201180028330
公开日2013年4月10日 申请日期2011年4月29日 优先权日2010年4月29日
发明者雷欧纳德斯·外南特·延尼斯肯斯, 约翰·威廉·戈伊斯, 贝纳德·亨德里克·里辛克, 彼得·希尔德哈尔德斯·贝尔本, J·胡克斯特拉 申请人:巴斯夫公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1