专利名称:温热加工性优异的高强度钢板的利记博彩app
技术领域:
本发明涉及一种温热加工性优异的高强度TRIP (应变诱导相变)钢板,具体来说,涉及在840 1380MPa级的超高强度域中利用温热加工明显地改善了 TRIP钢板的伸长率的高强度钢板。
背景技术:
对于冲压成形为机动车或工业用机械等而使用的钢板,要求兼具优异的强度和延展性。作为在具备此种要求特性的同时还以机动车的冲击安全性及轻质化为目的而开发出的高强度高延展性钢板的一种,可以举出TRIP钢板。TRIP钢板在组织中生成残留奥氏体(YR),有效地利用了该Y R在加工变形中产生诱导相变(应变诱导相变TRIP)而提高延展性的性质(例如参照专利文献I)。 但是,TRIP钢板具有在用于易于加工为复杂的形状的加工性[特别是延伸凸缘性(扩孔性)]方面差的问题。延伸凸缘性是特别针对作为机动车的行走部分部件等使用的钢板要求的特性,不仅迫切期望促进在最为期待由TRIP钢板带来的轻质化效果的行走部分部件等中的应用,而且还迫切期望改善TRIP钢板的延伸凸缘性。所以,为了提供在维持由YR带来的优异的强度·延展性的平衡的同时、在延伸凸缘性等的成形性方面也很优异的钢板,本申请人着眼于由温热加工所致的延伸凸缘性的提高效果(例如参照非专利文献I 3),反复进行了各种研究。其结果是,发现如果对恰当地控制了母相组织的平均硬度以及作为第二相的YR中的C浓度及YR的体积率的钢板进行温热加工,则可以得到延伸凸缘性及延展特性双方得到提高的高强度钢板,对于基于该见解完成的发明(以下称作“先行发明”,将该先行发明中的高强度钢板称作“先行发明钢板”。),已经进行了专利申请(参照专利文献2)。上述先行发明钢板是如下的高强度钢板,即,以质量%计,含有C :0.05 0.6%、Si+Al :0· 5 3%、Mn :0.5 3%、P :0· 15% 以下(不包括 0% )、S :0.02% 以下(包括 0% ), 并且母相组织相对于全部组织以占空系数计含有70 %以上的平均硬度以维氏硬度计为240Hv以上的贝氏体铁素体和/或粒状·贝氏体铁素体,第二相组织相对于全部组织以占空系数计含有5 30%的残留奥氏体,该残留奥氏体中的C浓度(Cyk)为I. O质量%以上,也可以还含有贝氏体和/或马氏体。文献认为,通过将上述先行发明钢板控制为如上所述的组织,就可以恰当地控制对带来由YR的应变诱导相变所致的TRIP效应产生很大影响的CYK( YR中所含的C浓度)、和对该YR的空间束缚状态产生很大影响的母相组织的硬度,因此特别是在100 4000C (优选150 250°C)的温度区域中,YR自身的塑性稳定性最高,可以发挥良好的特性(参照该文献的
段)。特别是,从有效地发挥TRIP (应变诱导相变加工)效应的观点考虑,上述先行发明钢板必须将Y R中的C浓度(Cyk)设为I. O质量%以上,该Cyk的含量越多越好(参照该文献的
段)。但是,其后本发明人等进行了进一步研究,结果发现,通过将Cyk降低为比上述先行发明的规定范围(I.O质量%以上)更低的、小于1.0质量%的范围,可以在变形时的应力诱导相变的驱动力变小的温热(100 250°C)下最大限度地发挥TRIP效应,此外通过导入给定量的多边形铁素体,与上述先行发明钢板相比,有可能获得虽然略微牺牲延伸凸缘性然而可以进一步实现高延展性化的钢板。专利文献 专利文献I :日本特开昭60-43425号公报专利文献2 :日本专利第4068950号公报非专利文献非专利文献I :长坂明彦,杉本公一,小林光征,《由残留奥氏体的相变诱导塑性造成的高强度钢板的延伸凸缘性的改善》,材料与工艺(日本钢铁协会论文集),CAMP-ISU《讨 35》,1995 年,第 8 卷,P. 556-559非专利文献2 :杉本公一,近藤刚,小林光征,桥本俊一,((TRIP型复合组织钢的热胀成形性(第二相形态的影响_2)》,材料与工艺(日本钢铁协会论文集),CAMP-ISIJ《讨518》,1994 年,第 7 卷,p. 754非专利文献3 :杉本公一,十代田哲夫,《TRIP型贝氏体冷却钢板的冲压成形性》,材料与工艺(日本钢铁协会论文集),CAMP-ISIJ,1998年,第11卷,第4号,p. 400-40
发明内容
本发明是着眼于上述情况而完成的,其目的在于,提供能够在温热加工中最大限度地发挥TRIP效应、与上述先行发明钢板相比进一步实现高延展性化的高强度钢板。技术方案I中所述的发明提供一种温热加工性优异的高强度钢板,其特征在于,具有如下的成分组成,即,以质量%计(以下,针对化学成分相同。),含有C :0. 05 0.4%、Si+Al :0· 5 3%、Mn :0.5 3%、P :0· 15% 以下(不包括 0% )、S :0.02% 以下(包括 0% ),余部由铁及杂质构成,具有如下的组织,SP,相对于全部组织以面积率计合计含有45 80 %的马氏体和/或贝氏体铁素体,相对于全部组织以面积率计含有5 40 %的多边形铁素体,相对于全部组织以面积率计含有5 20%的残留奥氏体,该残留奥氏体中的C浓度(Cyk)为0.6质量%以上且小于I. O质量也可以还含有贝氏体。技术方案2中所述的发明提供如下的技术方案I中所述的温热加工性优异的高强度钢板,即,成分组成还含有Mo :1% 以下(不包括 0% )、Ni 0. 5% 以下(不包括 0% )、Cu :0· 5% 以下(不包括 0% )、Cr:l%以下(不包括0%)的I种或2种以上。技术方案3中所述的发明提供如下的技术方案I或2中所述的温热加工性优异的高强度钢板,即, 成分组成还含有Ti :0. 1% 以下(不包括 0% )、Nb :0· 1% 以下(不包括 0% )、V :0· 1% 以下(不包括 0% )、Zr :0.1%以下(不包括0%)的I种或2种以上。技术方案4中所述的发明提供如下的技术方案I 3中任一项所述的温热加工性优异的高强度钢板,即,成分组成还含有Ca :0· 003%以下(不包括0% )、和/或REM :0· 003% 以下(不包括 0% )。发明效果根据本发明,通过在总量上相对于全部组织以面积率计含有45 80%的马氏体和/或贝氏体铁素体,相对于全部组织以面积率计含有5 40%的多边形铁素体,相对于全部组织以面积率计含有5 20%的残留奥氏体,将该残留奥氏体中的C浓度(Cyk)设为O. 6质量%以上且小于I. O质量%,就可以最大限度地发挥由温热加工带来的延展性提高作用,从而可以提供与上述先行发明钢板相比可以进一步实现高延展性化的高强度钢板。
图I是通过对比本发明钢板和比较钢板来表示改变加工温度时的对TS造成的影响的曲线图。图2是通过对比本发明钢板和比较钢板来表示改变加工温度时的对EL造成的影响的曲线图。
具体实施例方式如上所述,本发明人等着眼于与上述先行发明钢板相同的、含有具有位错密度高的下部组织的贝氏体铁素体(但是,在专利文献2中是贝氏体铁素体和/或粒状·贝氏体铁素体)和残留奥氏体(YR)的TRIP钢板,为了进一步提高由温热加工带来的延展性,又反复进行了研究。其结果是发现,通过将YR中的C浓度(Cyk)降低到作为比上述先行发明的规定范围(I. O质量%以上)低的范围的、O. 6质量%以上且小于I. O质量%,并且含有给定量的多边形铁素体(以下有时简称为“铁素体”。),就可以利用温热最大限度地发挥TRIP作用,与上述先行发明钢板相比,可以得到虽然略微牺牲(略微降低到上述先行发明钢板的约30%到10 20%左右)延伸凸缘性(λ )然而可以进一步实现高延展性化的高强度钢板,基于该见解完成了本发明。下面,首先说明的是对本发明钢板赋予特征的组织。〔本发明钢板的组织〕如上所述,本发明钢板虽然是以与上述先行发明钢板相同的TRIP钢的组织作为主体的钢板,然而特别是在含有给定量的多边形铁素体、并且将残留奥氏体中的C浓度(Cye)控制为O. 6质量%以上且小于I. O质量%这一点上,与不含有多边形铁素体且将Cyk控制为I. O质量%以上的上述先行发明钢板不同。<在总量上相对于全部组织以面积率计含有45 80%的马氏体和/或贝氏体铁素体> 本发明中的所谓“贝氏体铁素体”是指,贝氏体组织具有带有位错密度高的板条状组织的下部组织,在组织内不具有碳化物,在这一点上与贝氏体组织明显不同,另外,与具有没有位错密度或者极少的下部组织的多边形铁素体组织、或者带有细小的亚晶等的下部组织的准多边形铁素体组织也不同(参照日本铁钢协会基础研究会发行《钢的贝氏体照片集-I》)。当对该组织进行光学显微镜观察或SEM观察时,则呈现出针状,难以区别,因此要判定与贝氏体组织或多边形铁素体组织等的明确的差异,需要借助TEM观察的对下部组织的鉴定。像这样,本发明钢板的组织通过将马氏体和/或贝氏体铁素体设为主要组织,就可以拘束YR的周围而有效地发挥由YR的应变诱导相变效应带来的延展性提高作用。本发明钢板中,上述马氏体和/或贝氏体铁素体组织的总量需要相对于全部组织以面积率计为45 80% (优选为50 80%、更优选为53 60%)。这是因为,由此就可以有效地发挥由上述马氏体和/或贝氏体铁素体组织带来的效果。而且,上述马氏体和/或贝氏体铁素体组织的量是由与YR的平衡而定的,推荐以能够发挥所需的特性的方式恰当地加以控制。<相对于全部组织以面积率计含有5 40 %的多边形铁素体>像这样,通过在组织中含有给定量的多边形铁素体,虽然略微牺牲延伸凸缘性,然而可以与后述YR的TRIP作用相互结合而进一步提高总伸长率。为了有效地发挥此种作用,需要相对于全部组织以面积率计存在5%以上(优选为10%以上、更优选为20%以上)。另一方面,如果大量地存在,则延伸凸缘性就会过于劣化,因此将上限定为40%。<相对于全部组织以面积率计含有5 20%的残留奥氏体U R) >Y R对于总伸长率的提高十分有用,为了有效地发挥此种作用,需要相对于全部组织以面积率计存在5%以上(优选为10%以上、更优选为15%以上)。然而另一方面,如果大量地存在,则延伸凸缘性就会过于劣化,因此将上限定为20%。〈残留奥氏体UR)中的C浓度(Cyk):0. 6质量%以上且小于I. O质量% >此外,将上述Y R中的C浓度(Cyk)设为0.6质量%以上且小于I. O质量%。如前所述,Cyk对于TRIP (应变诱导相变加工)的特性产生很大影响,而以往必须像上述先行发明钢板那样设为1.0质量%以上,Cyk的含量越多越好。但是,在本发明钢板中,通过设为作为比该先行发明钢板低的范围的、0.6质量%以上且小于I. O质量%的范围,可以在变形时的应力诱导相变的驱动力变小的温热(100 250°C )下最大限度地发挥TRIP效应而进一步高延展性化。优选为O. 7质量%以上且为O. 9质量%以下。<其他贝氏体(包括O % ) >本发明的钢板也可以仅由上述组织(马氏体和/或贝氏体铁素体、多边形铁素体以及YR的混合组织)构成,然而也可以在不损害本发明的作用的范围中,作为其他的异种组织具有贝氏体。该组织是在本发明钢板的制造过程必然残存的组织,然而越少越好,推荐相对于全部组织以面积率计控制为5%以下,更优选控制为3%以下。〔各相的面积率及YR中的C浓度(C Y R)的各测定方法〕这里,对各相的面积率以及YR中的C浓度(Cyk)的各测定方法进行说明。钢板中组织的面积率是在对钢板进行L印era腐蚀,利用透过型电子显微镜(TEM 倍率1500倍)观察鉴定出组织后,利用光学显微镜观察(倍率1000倍)测定出组织的面积率。而且,Y R的面积率及YR中的C浓度(Cyk)是在研削到钢板的1/4的厚度后,进行 化学研磨后利用C射线衍射法测定的(ISIJ Int. Vol. 33,(1933),No. 7,p. 776)。下面,对构成本发明钢板的成分组成进行说明。以下,化学成分的单位全都是质量%。〔本发明钢板的成分组成〕C :0.05 O. 4%C是为了在确保高强度的同时获得所需的主要组织(马氏体和/或贝氏体铁素体+ YR)而必需的元素,为了有效地发挥此种作用,需要添加O. 05%以上(优选为O. 10%以上、更优选为O. 15%以上)。但是,如果超过O. 4%则不适于焊接。Si+Al :0.5 3%Si和Al是对YR分解而生成碳化物加以有效地抑制的元素。特别是Si,作为固溶强化元素来说也十分有用。为了有效地发挥此种作用,以合计量计需要添加O. 5%以上Si和Al。优选为O. 7%以上,更优选为1%以上。但是,如果以合计量计超过3%地添加上述元素,则除了会阻碍马氏体和/或贝氏体铁素体组织的生成以外,还会使热变形阻力升高而易于引起焊接部的脆化,甚而对于钢板的表面性状也造成不良影响,因此将其上限设为3%。优选为2. 5%以下,更优选为2%以下。而且,推荐采用Si为2.0%以下、Al为I. 5%以下的各范围。另外,Si、Al都超过0%。Mn :0.5 3.0%Mn除了作为固溶强化元素有效地发挥作用以外,还会促进相变而发挥促进马氏体和/或贝氏体铁素体组织的生成的作用。此外还是为了将Y稳定化、获得所需的YR而必需的元素。为了有效地发挥此种作用,需要添加O. 5%以上。优选为O. 7%以上,更优选为1%以上。但是,如果超过3%地添加,则可以发现产生扁钢坯裂纹等不良影响。优选为
2.5%以下,更优选为2%以下。P :0· 15% 以下(不包括 0% )P是对于确保所需的YR来说有效的元素。为了有效地发挥此种作用,推荐添加
O.03%以上(更优选为O. 05%以上)。但是,如果超过O. 15%地添加,则二次加工性就会劣化。更优选为O. 1%以下。S :0.02% 以下(包括 0% )S是形成MnS等硫化物系夹杂物、成为破裂的起点而使加工性劣化元素。所以,设为O. 02%以下。优选为O. 015%以下。本发明的钢基本上含有上述成分,余部实质上为铁及不可避的杂质,此外,还可以在不损害本发明的作用的范围中,添加以下的容许成分。Mo :1% 以下(不包括 0% )、Ni 0. 5% 以下(不包括 0% )、Cu :0· 5% 以下(不包括 0% )、 Cr:l%以下(不包括0%)的I种或2种以上这些元素作为钢的强化元素来说十分有用,并且是对于Y R的稳定化、给定量的确保来说有效的元素。为了有效地发挥此种作用,推荐分别添加Mo :0. 05%以上(更优选为O. 1%以上)、附0. 05%以上(更优选为O. 1%以上)、&1:0· 05%以上(更优选为O. 1%以上)、Cr :0. 05%以上(更优选为O. 1%以上)。但是,如果Mo及Cr分别超过l%、Ni及Cu分别超过0.5%地添加,则上述效果就会饱和,在经济上造成浪费。更优选为Mo 0.8%以下、Ni :0. 4% 以下、Cu :0. 4% 以下、Cr :0. 8% 以下。Ti :0· 1% 以下(不包括 0% )、Nb :0· 1% 以下(不包括 0% )、V :0· 1% 以下(不包括 0% )、Zr :0.1%以下(不包括0%)的I种或2种以上这些元素具有析出强化及组织微细化效果,是对于高强度化来说有用的元素。为了有效地发挥此种作用,推荐分别添加Ti :0. 01 %以上(更优选为O. 02%以上)、Nb :
O.01%以上(更优选为0.02%以上)、丫 0.01%以上(更优选为0.02%&i)、Zr :0.01%以上(更优选为O. 02%以上)。但是,如果任何一种元素分别超过O. I %地添加,则上述效果就会饱和,在经济上造成浪费。更优选为Ti :0. 08%以下、Nb :0. 08%以下、V :0. 08%以下、Zr :0. 08% 以下。Ca 0. 003%以下(不包括0% )、和/或REM :0· 003% 以下(不包括 0% )Ca及REM(稀土类元素)是对于控制钢中硫化物的形态、提高加工性来说有效的元素。这里,作为本发明中所用的稀土类元素,可以举出Sc、Y、镧系元素等。为了有效地发挥上述作用,推荐分别添加O. 0003%以上(更优选为O. 0005%以上)。但是,即使超过O. 003%地添加,上述效果也会饱和,因此在经济上造成浪费。更优选为O. 0025 %以下。下面,对用于获得本发明钢板的优选的制造方法说明如下。〔本发明钢板的优选的制造方法〕首先,将满足上述成分组成的钢加热到奥氏体+铁素体(Y + α ) 2相域温度,进行均热[具体来说是在750°C以上(优选为780V以上)且小于850°C (优选为840°C以下)的温度加热100 1000秒(优选为300 600秒)]后,以30°C /s以上(优选为40°C /s以上、更优选为50°C/s以上、特别优选为70°C/s以上)的平均冷却速度,冷却(过冷)至IJ150°C以上(优选为200°C以上)且为350°C以下(优选为300°C以下)的温度域,在该过冷温度下保持60秒以下(优选为5 50秒)后,以2°C /s以上(优选为10°C /s以上)的平均加热速度,再加热到比上述过冷温度高、并且为300°C以上(优选为350°C以上、更优选为400°C以上)且为480°C以下(优选为450°C以下)的温度域,在该温度域保持60秒以上(优选为300秒以上)1000秒以下(优选为600秒以下)(奥氏体等温淬火处理)。这里,先行发明钢板是在Y单相域温度下利用均热一骤冷一奥氏体等温淬火处理的工序制造的。像这样,由于在Y单相域中加热,因此不会生成多边形铁素体,另外由于在骤冷后立即实施奥氏体等温淬火处理,因此随着奥氏体等温淬火温度的降低而强度升高,Cyk也升高。这是基于以下的理由。首先,随着奥氏体等温淬火温度的降低,生成的贝氏体铁素体的硬度升高,因此强度升高。另一方面,Cye是由伴随着基本上不固溶C的贝氏体铁素体的生成的、向奥氏体侧的C富集的程度决定的,越是低温则高C浓度的奥氏体就越稳定,因此随着奥氏体等温淬火温度的降低,Cyk升高。由此在先行发明钢板中,为了得到840MPa以上的高拉伸强度需要在450°C以下的低温下实施奥氏体等温淬火处理,Cyk必然为I质量%以上。相对于此,本发明钢板如上所述,是在U + α ) 2相域温度下利用均热一过冷一再加热一奥氏体等温淬火处理的工序制造的。像这样,通过在(Υ + α)2相域加热,生成所需 的量的多边形铁素体,并且在奥氏体等温淬火处理之前,暂时过冷到给定温度域,其后通过再加热到奥氏体等温淬火温度而保持给定时间,实施奥氏体等温淬火处理,就可以同时实现840MPa以上的高拉伸强度、赋予延展性的多边形铁素体的导入、和小于I. O质量%的低Cyro虽然机理的详情尚不清楚,然而其理由可以如下所示地推定。即,首先,在直到过冷的冷却过程以及再加热的过程中,以比奥氏体等温淬火处理时生成的贝氏体铁素体更高的位错密度具有高硬度,局部地生成过饱和地将碳固溶的组织。余部仍是在2相域加热时生成的多边形铁素体和奥氏体。高位错密度的部分在奥氏体等温淬火处理中一边向奥氏体侧喷出碳、一边被回火而使位错密度降低,成为与贝氏体铁素体相同的组织。但是,由于本来位错密度就很高,因此依然维持比奥氏体等温淬火处理中生成的贝氏体铁素体高的位错密度,即维持高硬度,因而即使在比没有过冷地进行均热一奥氏体等温淬火处理时更高的奥氏体等温淬火温度下也可以确保足够的强度。此外,由于奥氏体等温淬火温度越高,则Cyk就越是降低,因此通过利用此种工序进行处理,就可以兼顾高强度和低CYK。而且,由于过冷时生成的位错密度高的部分在奥氏体等温淬火处理时变为如下的组织,即,具有与贝氏体铁素体相同的组织,也就是板条状的下部组织,且在组织内不具有碳化物,因此用普通的显微镜(光学显微镜、SEM、TEM)无法区别。所以在本发明中将两者一并称作贝氏体铁素体。而且,如果上述过冷温度过低,则会进行马氏体相变,再加热后的奥氏体等温淬火处理时无法充分地进行向奥氏体侧的碳的喷出,因此无法确保必需量的残留奥氏体。另一方面,如果过高,则与奥氏体等温淬火处理温度的差变小,因此无法降低CYK。另外,如果上述过冷温度下的保持时间过长,则会进行马氏体相变,因此与上述相同无法确保必需量的残留奥氏体。另外,虽然该保持时间也可以很短,然而从实际操作中的温度控制的再现性的观点考虑,优选设定一定时间(5秒以上)的保持时间。而且,U+ α)2相域中的均热一过冷的冷却工序与先行发明钢板不同,尤其是对于获得所需的主要组织来说十分重要,通过如上所述地在(α + Υ ) 2相域中均热后进行骤冷,就可以在生成给定量的多边形铁素体的同时,生成所需的马氏体和/或贝氏体铁素体(主要组织)。特别是由于平均冷却速度对Y R的形态产生很大影响,因此极为重要,通过控制为上述范围,就可以在马氏体和/或贝氏体铁素体组织的板条间,生成给定形态的Y R0而且,平均冷却速度的上限没有特别限定,越大越好,然而推荐基于与实际操作水平的关系恰当地加以控制。另外,过冷一再加热后的奥氏体等温淬火处理如上所述,对于过冷时产生的高位错密度组织的回火、贝氏体铁素体的生成、向奥氏体相中的C浓缩、与这些相伴地生成的YR的向碳化物的分解抑制来说极为重要。通过将奥氏体等温淬火处理的保持时间限制为上述的范围,就可以有效地抑制YR—碳化物的分解。另外,如果奥氏体等温淬火处理温度过高,则YR很容易分解为碳化物,无法获得给定量的YR,另一方面,如果奥氏体等温淬火处理温度过低,或者奥氏体等温淬火处理的保持时间过短,则无法进行向YR的所需量的C浓缩。另外,此时虽然从Cyk低的部分中,在奥氏体等温淬火处理后的冷却过程中生成马氏体,然而只要是不损害本发明的作用的范围,就没有关系。而且,上述工序中,也可以在不损害本发明的作用的范围中,还生成贝氏体组织。另外,也可以不使所需的组织明显地分解地、在不损害本发明的作用的范围中,进行镀膜、甚至是合金化处理。通过对利用上述方法制造的本发明钢板进行温热加工,与以往的先行发明钢板相 t匕,可以得到虽然略微牺牲延伸凸缘性然而进一步提高了延展性的高强度钢板。这里所说的上述温热加工是指在100 250°C (优选为120 200°C、最优选为约150°C附近)进行温热成形,只要以使钢板整体处于该温度域的方式恰当地进行均热即可。如后述的实施例中确证所示,通过对本发明钢板进行温热加工,与对以往的先行发明钢板进行温热加工的情况相比,室温下的拉伸强度(TS)同等,温热下的伸长率(EL)提高约40%,因而起到使作为表示室温下的拉伸强度(TS)与温热下的伸长率(EL)的平衡的指标的、室温下的TSX温热下的EL升高约30 40%的明显的提高效果(比较后述表5的、钢No. I、钢No. 13或钢No. 15)。另外,由于在对本发明钢板进行温热加工的情况下,成形界限高,因此也可以将本发明钢板适用于具有复杂形状的部件,例如构成中柱的部件或构成前柱的部件那样的部件的加工。此外,对本发明钢板进行温热加工而得的温热成形部件由于作为其组织含有很多贝氏体铁素体,因此具有屈服应力高、变形时的最大负荷大的特征,由此,有望发挥出高耐负荷特性。所以,例如可以适用于构成侧门框的部件或构成上边梁的部件之类的部件中。另外,由于加工温度不是像热加工那样高,因此可以认为很难产生鳞屑,涂装性也比较良好,例如可以适用于构成底板横梁的部件或构成顶板的部件之类的部件中。此外,如果在对本发明钢板进行温热加工而得的温热成形部件中也适量地残存有残留奥氏体,则由于即使在加工后延展特性也很良好,并且还可以形成加工硬化系数大的状态,因此可以期待如下的特性,即,在作为部件使用时也很难断裂,另外吸收能大。可以认为例如也可以适用于构成前纵梁的部件或构成后纵梁的部件之类的部件中。实施例(实施例I)〔成分组成的研究〕本实施例中,对改变成分组成时的机械的特性的影响进行了调查。具体来说,真空熔炼由表I所示的成分组成构成的测试钢,制成实验用扁坯(热轧板的板厚为2. Omm)后,对该扁坯在表2所示的制造条件下实施热处理。
对如此得到的钢板,利用上述[用于实施发明的方式]一项中说明的测定方法,测定出各相的面积率以及Y R中的C浓度(Cyr)。此外,对于上述钢板,为了调查由加工温度造成的对机械特性产生的影响,使加工温度(拉伸温度)从20°C到350°C进行各种改变,利用下述要领,分别测定出拉伸强度(TS)、YS [下屈服点(屈服应力)]及伸长率[总伸长率的意思(EL)]。拉伸试验使用JIS5号试验片,测定出TS、YS以及EL。而且,将拉伸试验的应变速度设为lmm/s。将这些结果表示于表3中。[表I](单位质量%)
权利要求
1.一种温热加工性优异的高强度钢板,其特征在于, 以质量%计含有以下的成分组成和化学成分C 0. 05 O. 4% ;Si+Al 0. 5 3% ;Mn :0. 5 3% ; P :0. 15%以下但不包括0% ; S:0. 02%以下且包括0% ; 余部由铁及杂质构成, 所述温热加工性优异的高强度钢板具有如下的组织,即, 相对于全部组织以面积率计合计含有45 80 %的马氏体和/或贝氏体铁素体,相对于全部组织以面积率计含有5 40%的多边形铁素体,相对于全部组织以面积率计含有5 20%的残留奥氏体,该残留奥氏体中的C浓度(Cyk)为O. 6质量%以上且小于I. O质量%,也可以还含有贝氏体。
2.根据权利要求I所述的温热加工性优异的高强度钢板,其中, 成分组成还含有 Mo : I %以下但不包括O % ; Ni :0. 5%以下但不包括O % ; Cu :0. 5%以下但不包括O % ; Cr :1%以下但不包括0%的I种或2种以上。
3.根据权利要求I或2所述的温热加工性优异的高强度钢板,其中, 成分组成还含有 Ti :0. I %以下但不包括O % ; Nb :0. I %以下但不包括O % ; V :0. I %以下但不包括O % ; Zr :0. 1%以下但不包括0%的I种或2种以上。
4.根据权利要求I 3中任一项所述的温热加工性优异的高强度钢板,其中, 成分组成还含有 Ca :0. 003%以下但不包括O % ;和/或 REM :0. 003%以下但不包括0%。
全文摘要
本发明提供一种温热加工性优异的高强度钢板,其具有如下的成分组成,即,以质量%计,含有C0.05~0.4%、Si+Al0.5~3%、Mn0.5~3%、P0.15%以下(不包括0%)、S0.02%以下(包括0%),余部由铁及杂质构成,具有如下的组织,即,相对于全部组织以面积率计合计含有45~80%的马氏体和/或贝氏体铁素体,相对于全部组织以面积率计含有5~40%的多边形铁素体,相对于全部组织以面积率计含有5~20%的残留奥氏体,该残留奥氏体中的C浓度(CγR)为0.6质量%以上且小于1.0质量%,也可以还含有贝氏体。该高强度钢板在温热加工中可以最大限度地发挥TRIP效应,与以往钢板相比可以更加可靠地实现高延展性化。
文档编号C22C38/58GK102741442SQ201180007970
公开日2012年10月17日 申请日期2011年3月22日 优先权日2010年3月24日
发明者内海幸博, 村上俊夫, 畠英雄 申请人:株式会社神户制钢所