1500MPa级高强韧性贝氏体/马氏体钢轨及其制造方法

文档序号:3376061阅读:259来源:国知局
专利名称:1500MPa级高强韧性贝氏体/马氏体钢轨及其制造方法
1500MPa级高强韧性贝氏体/马氏体钢轨及其制造方法技术领域
本发明总体涉及钢轨领域,尤其涉及贝氏体/马氏体钢轨及其制造方法。
技术背景
近年来,随着列车速度、轴重以及运输密度的增加,钢轨伤损日益严重,尤其在小半径曲线或道岔尖轨或翼轨等部件上,钢轨磨耗、剥离及擦伤十分严重。特别地,在小半径曲线上,有些钢轨使用不到一年、通过总重不到亿吨,就因轨头侧面磨耗超限不得不更换; 在曲线线路中上股钢轨的轨距角以及下股钢轨的轨面剥离掉块也十分严重,有的钢轨上道时间不长,轨面剥离掉块就达到几个毫米,甚至还诱发疲劳重伤,造成钢轨横向断裂。此外, 在上坡起动地段以及下坡制动地段,钢轨擦伤也时有发生,严重时造成断轨,影响铁路运输的安全与效率。
为了减少钢轨的磨耗,现有技术中采用多种手段,通常是合金化或合金化与热处理相结合的方式,来提高钢轨的强度和硬度以提高耐磨性能。例如
1)在钢中增加C、Si成分含量,以及添加V、Cr等合金,轧制后不加其他处理的微合金钢轨,如U75V型钢轨等。
2)通过加速冷却轨头部位而制造的轨头硬化热处理钢轨,如U75V、U77MnCr、PG4 热处理钢轨等(例如参见名为含钒合金钢轨的热处理方法的中国专利ZL96117731. 4)。
3)增加钢中的含C量至过共析成分,采用增加渗碳体密度的方式来增加其耐磨性能,再通过全断面加速冷却(即在线热处理)既细化珠光体组织、提高硬度,又抑制游离渗碳体的析出,以保证有足够的韧塑性的所谓过共析热处理钢轨(例如参见新日本制铁株式会社的名为“耐磨损性和耐内部伤损性能优良的钢轨及其制造方法”的专利ZL96190344. 9 ; 以及名为“耐磨性和延性优良的珠光体钢轨及其制造方法”的专利申请03800576. X等)。
然而,上述钢轨的特征在于,其含C量均超过0. 70%以上,且组织结构均为珠光体。对于珠光体钢轨,采用合金化与热处理相结合的方式使强度达到1300MI^级已基本接近极限,若再提高强度,就难以避免会出现在这种高碳含量情形下不允许存在的高碳脆性 (片状或孪晶)马氏体组织。另外,钢中C含量越高,添加的合金越多,淬透性越强,钢轨使用中抵抗机车车轮擦伤的能力也越差。
发明人发现,在轮轨接触应力的反复作用下,通常在轮轨接触区域材料发生塑性变形以及变形累积、随后硬化、塑性耗竭而产生剥离裂纹,裂纹扩展导致掉块;由此提高材料的塑性指标显然对提高抗剥离掉块的能力有利。
对于钢轨轨面剥离掉块伤损,用大型打磨列车定期打磨钢轨是一种解决方法。但其不仅打磨费用昂贵,且在列车运行期间往往没有充分的打磨时间。
针对上述珠光体钢轨存在的问题以及其它问题,贝氏体类钢轨应运而生。
例如,鞍钢新轧钢股份有限公司在其名为“抗磨损、高强韧性准贝氏体钢轨及其制造方法”的发明专利ZL02158853. 8中公开了一种准贝氏体钢轨,其是通过提供合金化的钢并使热轧后的钢轨先空冷至400°C再以0. OrC /s-0. 002°C /s的低冷却速度缓慢冷却至200°C,然后再空冷获得准贝氏体钢轨,其钢轨组织基本为无碳化物贝氏体。
北京特冶工贸有限责任公司在其名为“曲线和重载钢轨用贝氏体钢和贝氏体钢轨及其生产方法”的专利申请20101027M70. 0中公开了一种贝氏体钢及用该钢制成的钢轨,该钢轨通过合金化和随后的整体热处理以及在10-20°C /s的冷却速度的加速冷却到 350-300°C并最后进行时效处理。
上述贝氏体钢轨,其抗拉强度等级大体为1200或1300MI^级,轨顶面硬度为370 或380HB级别,虽然其韧塑性优于珠光体型钢轨,但耐磨性能不及相同强度等级的珠光体型钢轨。而且,上述专利或专利申请要求对钢轨的全断面进行热处理(或冷却),并希望在钢轨的全断面中形成一致的硬度(例如见ZL02158853.8中发明内容最后一段)。而在钢轨中通常希望提供足够高的钢轨轨头表面硬度;以及在钢轨的其它部分提供合适的硬度以适合钢轨矫直和在铺设中的钻孔作业。由此,上述对比文件的钢轨很难实现这效果。发明内容
因此,本发明针对上述问题,提供一种具有1500MI^级的高强韧性贝氏体/马氏体钢轨及其制造方法。该贝氏体/马氏体钢轨在含C量显著低于上述珠光体钢轨的情形下, 精心控制其元素含量(即合金化)以及其处理工艺使得轨头的组织成分为C含量相对低的贝氏体以及板条状马氏体而具有优异的抗磨损、耐剥离、抗擦伤性能。
在本发明的一个方案中,提供了一种贝氏体/马氏体钢轨,该钢轨包括轨头、轨腰和轨底且由按% (重量)计含有 C :0. 10-0. 40%, Si 0. 80-2. 00%, Mn 1. 20-2. 40%, Cr 0. 50-1.20%, Mo :0. 20-0. 60 %,且根据需要可含有选自下组的一种或多种元素Ni 0. 10-2. 00%, Cu 0. 05-0. 50%、V :0. 03-0. 15%, RE :0. 01-0. 05%,以及余量为铁和不可避免的杂质的钢热轧形成。而且,该轨头在热轧后保留高温或被重新加热至高温的情况下,从奥氏体区域温度以大于l°c /s且小于等于5°C /s (优选大于1°C /s且小于等于3°C /s)的冷却速度加速冷却至小于300°C但大于200°C的加速冷却停止温度。
根据本发明的另一个方案,相应地提供了一种贝氏体/马氏体钢轨的制造方法, 其包括提供按 % (重量)计含有 C 0. 10-0. 40%, Si 0. 80-2. 00%, Mn 1. 20-2. 40%, Cr 0. 50-1.20%, Mo :0. 20-0. 60 %,且根据需要可含有选自下组的一种或多种元素Ni 0. 10-2. 00%, Cu 0. 05-0. 50%、V :0. 03-0. 15%, RE :0. 01-0. 05%,以及余量为铁和不可避免的杂质的钢;将该钢热轧形成具有轨头、轨腰和轨底的钢轨;将热轧后保留高温或被重新加热至高温的钢轨的轨头以大于l°c /s且小于等于5°C /s (优选大于1°C /s且小于等于 30C /s)的冷却速度,以使其从奥氏体区域温度加速冷却至小于300°C但大于200°C的加速冷却停止温度以完成组织转变,从而在该轨头中形成贝氏体及马氏体组织。进一步地,轨头在加速冷却后可以自然冷却或者喷雾冷却至常温。
而对于未经加速冷却的其它部位,例如轨腰和轨底,可以空冷(自然冷却)至常温 (或者说环境温度);或者也可以采用其它合适的冷却手段。
而根据本发明的优选实施例,还可以在轨头(以及其它部分)冷却后再进行进一步的热处理。比如,对于具有利用轧制余热并加速冷却的轨头以及其余部位空冷的钢轨,可以在钢轨冷却至常温之后,再重新加热(回火)至200°C-40(TC,保温4-10小时,然后自然冷却至常温附近(或环境温度)。4
根据本发明另外的优选实施例,还可以在轨头加速冷却之前进行所需要的热处理。比如,对于轨头被重新加热至高温且随后被加速冷却的钢轨,在轨头加速冷却之前(例如在重新加热轨头的时候),可以将该钢轨的轨腰和轨底以;TC /S-IO0C /S的加热速度加热至400-650°C且不保温,这实现了轨腰和轨底的高温短时回火的效果。
在根据本发明的钢轨由所述成分构成的钢热轧而成之前,还可以例如通过转炉冶炼、炉外精炼、真空脱气,经过大方坯连铸制成适用于热轧的钢坯,但是也可以用其它合适的手段,这在本领域中是已知的在此不作详述。
根据本发明的上述钢轨以及根据上述方法制得的钢轨的轨头部位(例如在由表及里的20mm范围内)不仅具有高的强度(例如抗拉强度彡1500MPa),合适的高硬度(例如轨顶面硬度为420-480HB),还具有优良的塑性(例如,伸长率A > 12%,断面收缩率 Z ^ 40%),以及高韧性(例如冲击功Ak彡40J)。此外,通过本发明的优选技术手段控制加热和冷却处理使轨腰、轨底等部位的强度等级既不小于980MPa,又不大于1400MPa级,便于钢轨矫直以及铺设使用中钻孔等作业。
下面本发明人将结合本发明的上述的技术方案描述本发明的技术效果和优点。但本领域技术人员将明白,下面的描述是解释性的,而非要求本发明的技术方案必须所描述的所有的技术特征和/或效果,而且本发明不排除实现下文描述之外的其它技术效果或进止少ο
针对本发明的钢轨元素及其含量的说明
C是钢中的基本元素。如C含量低于0. 10%,则难以保证钢轨的硬度;而当C含量超过0.40%时,可能会在组织中形成脆性较大的孪晶马氏体,对钢轨的韧性不利。因此,C 含量应控制在0. 15-040%。
Si既是固溶强化元素,在本发明中更是抑制贝氏体转变时碳化物析出的元素。在连续冷却转变中使贝氏体中的碳化物以富碳残奥的方式存在,提高空冷贝氏体钢的韧性。 当含Si量低于0. 80%,抑制碳化物析出的效果不够;高于2. 00%时,使钢的韧性变差,故 Si含量限定在0. 80 2. 00%之间。
Mn可明显推迟珠光体转变,同时可提高钢的强度和硬度。当含量小于1. 20%时, 效果不够;而超过2. 40%时,在偏析处容易形成孪晶马氏体组织,恶化钢的韧性。因此,限定Mn在1. 20 2. 40%范围内。
Cr的作用与Mn类似,具有明显推迟珠光体转变的作用,同时可使钢的强度和硬度提高。当Cr含量低于0. 50%时,则上述作用不够;大于1. 20%时,会使钢的强度和硬度过高,不利于钢轨的矫直以及后续加工,因此,限定Cr在0. 50-1. 20%范围内。
Mo可强烈推迟珠光体转变,使贝氏体转变提前,是贝氏体钢的重要元素,可使连续冷却后的钢轨形成空冷贝氏体组织。当Mo含量在0. 30-0. 50%范围内,上述作用就十分明显。Mo是贵重合金,为了既发挥作用又节约成本,故限定Mo在0.20-0. 60%、且优选在 0. 30-0. 50%范围内。
添加M可明显提高轨钢的韧性,并具有稳定贝氏体钢中残奥的作用。但当其含量不到0. 10%时,效果不明显;超过2. 00%时,也难以再增强其效果。故限定Ni在 0. 10-2. 00%范围内。
Cu是一种不损害钢的韧性,并能提高其强度同时增加耐蚀性能的元素。在0. 05-0. 50 %范围内效果最佳,而当含量超过0. 50 %,则易产生热脆性,故限定Cu在 0. 05-0. 50%范围内。
V由于V(C,N)的析出可强化贝氏体组织,尤其当采用850-950°C加热,对钢轨焊接接头进行焊后热处理时,可细化焊接接头组织提高其性能,但其含量在0. 03 %以下时效果不理想;含量在0. 15%以上时,会使V (C,N)粗大而脆化,故限定在0. 03 0. 15%范围内。
经过RE处理的钢,可使夹杂物变性,增加钢的韧性。RE加入量一般控制在0. 020% 左右,太少效果差,太多反而会形成稀土夹杂物恶化钢的韧性。
对轨头的加速冷却的说明
在本发明中很重要的一点是精心地控制轨头的加速冷却。例如,在上述规定的成分中,尤其是在相对低碳含量的情况下(例如碳在大约0. 10%-大约0. 40%的范围内),当以不到1°C /s的速度冷却时,在高温区域即开始贝氏体转变,形成的贝氏体组织较为粗大, 强韧性不足;当以5°C /s以上的冷速冷却时,钢轨的某些不希望的部位硬度过高,不利于矫直和后续加工。因此,希望将加速轨头冷却的冷却速度限定在大于1°C /s且小于等于5°C / s,且优选在大于1°C /s且小于等于3°C /s范围内。而同时,还希望在上述规定的冷却速度下将加速冷却的停止温度限制在小于300°C且大于200°C的范围内,这样可有意地获得细小贝氏体与板条状马氏体的组织,具有优良的强韧性。
此外,本发明的加速冷却可以使用压缩空气作为冷却介质,压缩空气例如由配置于钢轨轨头的顶侧及两侧喷嘴喷出。而对于上文所述的喷雾冷却,例如通过配置在轨头顶面的喷雾器喷出水汽混合物即雾进行冷却。
此外,在本发明所述的“热轧后保留高温或被重新加热至高温”中的“高温”指得是奥氏体区域温度或者说奥氏体化的温度范围,这是本领域技术人员已知的。而上文所指的组织转变至少包括轨头的至少一部分优选全部的奥氏体转变为贝氏体/马氏体组织,优选轨腰和轨底的奥氏体转变为贝氏体。
对优选方案中重新加热回火的说明
如上所述,在本发明中,对于具有轧制余热的轨头进行加速冷却的情形下,钢轨的其他部位(例如轨腰和轨底)通常可以连续地自然冷却到常温。在这种情况下,由于轨腰、 轨底部位未加速冷却,因此它们往往会在较高温度下(比本发明的加速冷却停止温度高) 发生贝氏体转变,故其中存在较多的不够稳定的残余奥氏体甚至片状或孪晶马氏体组织, 为改善和稳定性能,本发明对钢轨全断面重新加热至200 400°C,保温4 10小时地进行回火处理。
而对于轨头重新加热以奥氏体化且随后再加速冷却的钢轨,本发明教导了在加速冷却之前,最好是在轨头重新加热的同时,对除轨头外的其它部位,例如轨底、轨腰部位以 3-10°C /s的加热速度加热至400 600°C。这实现了高温短时回火的作用,这既可以如上述那样地改善和稳定性能,同时还可以简化了热处理工艺。例如,通过这样处理,在轨头加速冷却且钢轨整体空冷后不用再次回火。但当然也可以在空冷后对这样的钢轨,再全断面加热至200-400°C,保温4-10小时地进行回火处理,以进一步改善性能。
通过本发明提供的上述的具有1500MPa级高强韧性的贝氏体/马氏体钢轨及其制造方法,其轨头通过具有细小的贝氏体和板条状的马氏体适合于重载铁路尤其是小半径曲线所用钢轨或者是道岔用轨的要求;特别是针对发生在曲线上股钢轨或道岔用尖轨或翼轨轨头侧面磨耗,轨头顶面或轨距角部位剥离掉块以及轨顶面因机车打滑而造成的擦伤具有很强的抵抗力。


以下,结合附图来详细说明本发明的实施例,其中
图1显示了用于实施例的TB 60kg/m型式钢轨的横断面;
图2显示了图1所示钢轨的横断面的拉伸试样取样图3显示了图1所示钢轨的横断面的冲击试样取样图4是根据本发明的实施例1的轨头横断面硬度示意图5示出了根据本发明的实施例1的轨头部位的金相组织;
图6是根据本发明的实施例2的轨头横断面硬度示意图7示出了根据本发明的实施例2的轨头部位的金相组织;
图8是根据本发明的实施例3的轨头横断面硬度示意图9示出了根据本发明的实施例3的轨头部位的金相组织;
图10是根据本发明的实施例2的钢轨全横断面硬度示意图。
具体实施方式
图1显示了用于本发明的实施例的TB(铁路行业标准)60kg/m型式钢轨的横断面,该钢轨的型式尺寸是已知的,其具有限定出与车轮接触的轨顶面的轨头100、轨腰200、 和轨底300。且在附图2-3中为了显示钢轨横断面的拉伸和冲击的取样,在轨头、轨腰和轨底中分别表示出的多个尺寸参数,而对于其余未标注的参数将参照上述标准中的规定。此外,在此尽管以TB 60kg/m型式钢轨来对比本发明实施例的钢轨与比较钢轨之间,但是可想到本发明的钢轨及其制造方法适合多种其它型式的钢轨。
在本发明中描述了多种硬度等级,例如布氏硬度(HB)以及洛氏硬度(HRC),它们之间能按照已知的换算公式进行换算。而且,在钢轨领域中,轨顶面硬度一般以HB表示,横断面硬度一般以HRC表示,本发明总体上也遵循这样表示方法。
下文通过本发明多个实施例与现有的比较例钢轨之间的比较显示本发明的优点和改进。
实施例1
下文表1-1为本发明钢轨的实施例1与比较钢轨的化学成分和相应的工艺条件 (冷却和热处理条件),其中化学成分指的是其中钢的各元素成分及含量,余量为狗和不可避免的杂质。实施例1中的回火加热温度和回火加热时间是指加热冷却后轨头断面整体的回火温度和保温时间。
表1-1实施例1的钢轨与比较例的钢轨的化学成分和工艺条件
权利要求
1.一种贝氏体/马氏体钢轨,其特征是,该钢轨由按% (重量)计含有C :0. 10-0. 40%, Si 0. 80-2. 00%, Mn 1. 20-2. 40%, Cr 0. 50-1. 20%, Mo 0. 20-0. 60%,余量为铁和不可避免的杂质的钢热轧形成;该钢轨包括从奥氏体区域温度以大于1°C /s且小于等于5°C /s的冷却速度加速冷却至小于300°C但大于200°C的加速冷却停止温度的轨头,且该钢轨还包括轨腰和轨底。
2.根据权利要求1所述的钢轨,其特征是,所述钢按%(重量)计含有C :0. 10-0. 40%, Si 0. 80-2. 00%,Mn :1. 20-2. 40%, Cr :0. 50-1. 20%, Mo :0. 20-0. 60%,以及选自下组的一种或多种元素:Ni :0. 10-2. 00%,Cu :0. 05-0. 50%,V :0. 03-0. 15%,RE :0. 01-0. 05%,余量为铁和不可避免的杂质。
3.根据权利要求1或2所述的钢轨,其特征是,所述钢轨的轨头中形成马氏体及贝氏体组织和/或所述轨腰和轨底中形成贝氏体组织。
4.根据权利要求1或2所述的钢轨,其特征是,所述钢轨的轨头在由表及里的20mm范围内,具有大于等于1500MPa的抗拉强度、大于12%的伸长率、大于40%的断面收缩率和大于40J的冲击功,且钢轨的其他部位具有980MPa-1300MPa的抗拉强度,所述轨头具有硬度为420-480HB的轨顶面。
5.一种贝氏体/马氏体钢轨的制造方法,其特征是,包括提供按 % (重量)计含有 C 0. 10-0. 40%, Si 0. 80-2. 00%, Mn 1. 20-2. 40%, Cr 0. 50-1. 20%, Mo 0. 20-0. 60%,余量为铁和不可避免的杂质的钢;将该钢热轧形成具有轨头、轨腰和轨底的钢轨;将热轧后保留高温或被重新加热至高温的钢轨的轨头以大于l°c /S且小于等于5°C / s的冷却速度,以使其从奥氏体区域温度加速冷却至小于300°C但大于200°C的加速冷却停止温度以在该轨头中形成贝氏体及马氏体组织。
6.根据权利要求5所述的方法,其特征是,还包括如下步骤对于热轧后保留高温且轨头以大于1°C /s且小于等于5°C /s的冷却速度加速冷却的钢轨,再重新加热至200°C -400°C,保温4 10小时,然后自然冷却至常温。
7.根据权利要求5所述的方法,其特征是,还包括如下步骤对于轨头被重新加热至高温的钢轨,在轨头加速冷却之前,将该钢轨的轨腰和轨底以 30C /s-10oC /s的加热速度加热至400-650°C且不保温。
8.根据权利要求5至7中任一项所述的方法,其特征是,还包括在轨头加速冷却后,使轨头自然冷却或者喷雾冷却至常温的步骤。
9.根据权利要求5至7中任一项所述的方法,其特征是,所述冷却速度大于1°C/s且小于等于3°C /s。
10.根据权利要求5至7中任一项所述的方法,其特征是,所述钢按%(重量)计含有 C 0. 10-0. 40%, Si 0. 80-2. 00%,Mn :1. 20-2. 40%, Cr :0. 50-1. 20 %, Mo :0. 20-0. 60%, 以及选自下组的一种或多种元素:Ni :0. 10-2. 00%,Cu :0. 05-0. 50%,V :0. 03-0. 15%,RE 0. 01-0. 05%,余量为铁和不可避免的杂质。
全文摘要
本发明提供一种贝氏体/马氏体钢轨及其制造方法,该钢轨由按%(重量)计含有C0.10-0.40%,Si0.80-2.00%,Mn1.20-2.40%,Cr0.50-1.20%,Mo0.20-0.60%,余量为铁和不可避免的杂质的钢热轧形成;该钢轨包括从奥氏体区域温度以大于1℃/s且小于等于5℃/s的冷却速度加速冷却至小于300℃但大于200℃的加速冷却停止温度的轨头且还包括轨腰和轨底。
文档编号C22C38/46GK102534387SQ20111041105
公开日2012年7月4日 申请日期2011年12月12日 优先权日2011年12月12日
发明者俞喆, 刘丰收, 周清跃, 张银花, 李闯, 梁旭, 陈朝阳 申请人:中国铁道科学研究院金属及化学研究所
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1