专利名称:铜合金材料的利记博彩app
技术领域:
本发明涉及铜合金材料。
背景技术:
目前,通常作为电气电子设备用材料,除铁系材料外,还广泛使用电传导性及热传 导性优异的磷青铜、红铜、黄铜等铜系材料。近年来,对电气电子设备的小型化、轻量化、甚 至随之而来的高密度安装化的要求提高,对适用于这些要求的铜系材料也要求各种性能。 作为铜系材料主要寻求的性能,为实现制品性能,寻求机械性质、导电性及弯曲加工成形 性,另外,为得到制品使用时的可靠性,寻求抗应力松弛性能及疲劳性能。目前,疲劳性能等 要求可靠性的部件使用疲劳强度良好的钛铜、铍铜等高强度合金。钛铜、铍铜等高强度合金与磷青铜等铜合金相比,价格高昂,另外,由于铍铜中金 属铍对人体有害,所以从其制造过程及对环境的考虑,期望其代替材料。近年来,制造成本较廉价且强度和导电率的均衡性优异的Cu-Ni-Si系合金(科森 合金)备受关注,且被用作连接器用铜合金。Cu-Ni-Si系铜合金是形成由Ni和Si构成的 析出物并使其强化的析出型的合金,其强化的能力非常高。通常,伴随拉伸强度的提高,疲劳性能提高。但是,Cu-Ni-Si系合金中,拉伸强度 越高,越难以维持弯曲加工性。另外,为得到拉伸强度而对材料导入了高的加工率的情况 下,存在抗应力松弛性能劣化的问题。因此,正在寻求同时满足用于实现制品功能的强度 及弯曲加工性、和用于得到使用制品时的可靠性的良好的抗应力松弛性能及疲劳性能的 Cu-Ni-Si合金的开发。科森合金中,改善了强度和弯曲加工性及强度和疲劳性能的高强度铜合金在专利 文献1 2等中已被提出。但是,如上所述,正在寻求屈服强度、弯曲加工性、抗应力松弛性 能、疲劳性能均进一步提高的铜合金材料。专利文献1 (日本)特许第3520034号公报专利文献2 (日本)特开2005-48262号公报
发明内容
鉴于上述的问题点,本发明的课题在于,提供具有高强度且弯曲加工性及抗应力 松弛性能优异且疲劳性能也优异的适用于电气电子设备用的端子、连接器、开关、继电器等 的铜合金材料。本发明人等对适用于电气电子零件用途的铜合金材料进行了研究,发现在时效处 理时,在铜合金中的结晶晶界附近形成无析出带(precipitate free zone :PFZ),由于该无 析出带在粒内为较低强度,所以在对铜合金进行加工或施加重复应力的情况下优先引起变 形,使弯曲加工性及疲劳性能劣化,但如果使该无析出带的宽度变窄则可无害化。另外,通 过对晶界上存在的化合物的粒径及晶粒直径一并进行控制,直至完成具有高强度、弯曲加 工性及抗应力松弛性能优异且疲劳性能也优异的铜合金材料的发明。
S卩,本发明提供,<1> 一种铜合金材料,含有1.8 5.0质量%的附,0.3 1. 7质量%的Si,Ni和 Si的含量之比Ni/Si为3. 0 6. 0,S的含量不足0. 005质量%,剩余部分由Cu及不可避 免的杂质构成,其特征在于,满足下记(1) (4)式130 X C+300 ^ TS ^ 130 X C+650…(1)0. 001 彡 d 彡 0. 020... (2)W <150... (3)10 彡 L 彡 800... (4)式中,TS表示铜合金材料的轧制平行方向(LD)的拉伸强度(MPa),C表示铜合金 材料的Ni含量(质量% ),d表示铜合金材料的平均晶粒直径(mm),W表示无析出带(PFZ) 的宽度(nm),L表示结晶晶界上的化合物的平均粒径(nm)。<2>如<1>所述的铜合金材料,其特征在于,还含有0. 01 0. 20质量%的Mg。<3>如<1>或<2>所述的铜合金材料,其特征在于,还含有0. 05 1. 5质量%的Sn。<4>如<1> <3>中任一项所述的铜合金材料,其特征在于,还含有0. 2 1. 5质 量%的211。<5>如<1> <4>中任一项所述的铜合金材料,其特征在于,还含有合计0. 005 2.0质量%的以下(I) (IV)中的一种或两种以上(1)0. 005 0.3质量%的选自Sc、Y、Ti、Zr、Hf、V、Mo、及Ag构成的组中的一种或 两种以上;(11)0. 01 0. 5 质量 %的 Mn ;(111)0. 05 2. 0 质量 %的 Co ;(IV)O. 005 1. 0 质量%的 Cr。本发明的Cu-Ni-Si系铜合金材料与现有相比,是具有高强度,弯曲加工性、抗应 力松弛性能及疲劳性能均优异的铜合金材料。参照适宜添附的附图,从下述的记载对本发明的上述及其它特征及优点将更加了解。
图1是本发明的铜合金材料之一例的含有无析出带的结晶晶界附近的透射型电 子显微镜照片;图2是本发明中规定的无析出带的宽度W及晶界上的化合物的粒径L的求取方法 的说明图。符号说明1结晶晶界2结晶晶界上的化合物3 晶粒内Ni2Si析出物
具体实施例方式下面,对本发明的铜合金材料的组成及合金组织,详细说明其最佳的实施方式。另 外,本发明中,铜合金材料是指通过轧制工序加工成例如板材、条材、箔等特定形状的铜合^^ ο铜合金中的镍(Ni)和硅(Si)在实施时效处理时,主要形成Ni2Si相,提高强度及 导电率。Ni的含量为1. 8 5.0质量%,优选为2.0 4.8质量%。这样规定的理由是因 为产生以下问题添加量若低于1.8质量%,则作为连接器用途的铜合金不能得到充分的 强度,若大幅超过5. 0质量%,则铸造时或热加工时产生对强度提高没有帮助的化合物,不 仅得不到与添加量相应的强度,而且热加工性降低而造成不良影响。Si的含量为0.3 1.7质量%,优选为0.35 1.6质量%。这样规定的理由是, Si量低于0. 3质量%的情况下,时效处理得到的强度提高不充分,得不到足够的强度,另 外,Si含量大幅超过1. 7质量%的情况下,不仅产生与Ni量多的情况相同的问题,而且还 带来导电率的降低。Ni和Si主要形成Ni2Si相,因此,为提高强度而存在最佳的Ni和Si之比。Si量 形成了 Ni2Si相时的Ni (质量% )和Si (质量% )之比、Ni/Si为4. 2,以该值为中心,优选 将Ni/Si设定在3. 0 6. 0的范围内,进一步优选设定在3. 8 4. 6的范围内。硫(S)是在铜合金中微量含有的元素,在0.005质量%以上时,使热加工性恶化, 因此,其含量规定为不足0. 005质量%。特别优选为不足0. 002质量%。另外,优选在铜合金中含有镁(Mg)。其量为0. 01 0. 20质量%。Mg虽然大幅改善 应力松弛性能,但对弯曲加工性带来不良影响。为改善应力松弛性能,Mg量为0. 01质量% 以上,且越多越好,但超过0. 20质量%时,弯曲加工性不能满足要求性能。优选为0. 05 0. 15质量%。另外,优选在铜合金中含有锡(Sn)。其量为0.05 1.5质量%。Sn和Mg相互关 联,使应力松弛性能更进一步提高,但其效果不如Mg大。Sn不足0. 05质量%时,其效果不 能充分显现,超过1. 5质量%时,导电率大幅度降低。优选为0. 1 0. 7质量%。另外,优选在铜合金中含有锌(Zn)。其量为0. 2 1. 5质量%。Zn对弯曲加工性 有一定改善。通过含有0. 2 1. 5质量%的Zn量,即使将Mg添加至最大0. 20质量%,也 能够得到实用上没有问题的水平的弯曲加工性。另外,Zn改善镀Sn及镀锡的粘附性及迁移 性能。Zn量不足0.2质量%时,不能充分得到其效果,超过1.5质量%时,导电性降低。优 选为0. 3 1.0质量%。另外,在铜合金中可以添加合计0.005 0.3质量%的钪(Sc)、钇(Y)、钛(Ti)、 锆(&)、铪(Hf)、钒(V)、钼(Mo)、银(Ag)中的任一种或两种以上。Sc、Y、Ti、Zr、Hf、V、Mo 与M或Si形成化合物,具有抑制晶粒直径的粗大化的效果。其添加量可以在不使强度及 导电性等性能降低的上述范围添加。Ag在使耐热性及强度提高的同时,阻止晶粒的粗大化,改善弯曲加工性。Ag量不 足0. 005质量%时,不能充分得到其效果,即使超过0. 3质量%添加,虽然性能上没有不良 影响,但成本升高。从这些观点出发,Ag的含量优选在上述的范围。锰(Mn)具有改善热加工性的效果,以不使导电性劣化的程度添加0. 01 0. 5质 量%是有效的。钴(Co)与Ni相同,具有与Si形成化合物而使强度提高的作用,因此,优选含有 0. 05 2. 0质量%的Co。含量不足0. 05质量%时,不能充分得到其效果,超过2. 0质量% 时,固溶化处理后也存在对强度没有帮助的结晶·析出物,弯曲加工性劣化。
铬(Cr)在铜中微细析出,有助于强度提高,并且与Si或Ni和Si形成化合物,与 上述的Sc、Y、Ti、&、Hf、V、Mo组相同,具有抑制晶粒直径粗大化的效果。在添加的情况下, 不足0. 05质量%时,不能充分得到其效果,超过1. 0质量%时,弯曲加工性劣化。在添加两种以上的上述Sc、Y、Ti、&、Hf、V、Mo、Ag、Mn、Co、Cr的情况下,根据要求 性能在合计为0. 005 2. 0质量%的范围内决定。本发明中,规定上述组成的铜合金材料的轧制平行方向(LD)的拉伸强度TS。另 外,热轧及冷轧在本铜合金材料的制造工序中均在相同的方向进行,因此,该轧制方向相 同。在端子、连接器、继电器等用途中,为确保弹性,铜合金材料需要强度,但在通过加 工等使强度显著提高的情况下弯曲加工性劣化。另外,Cu-Ni-Si系合金中使Ni及Si含量 增加时,强度增加,但即使是上述记载的M及Si的含量,在无益地增加的情况下成本也会 提高。从该观点表明,即使在上述记载的M及Si的含量的范围中也有适合各强度域的M 及Si含量存在,直至导出⑴式。此时,Si含量具有如上所述最适合Ni和Si的含量之比 的区域,作为代表,可通过Ni含量C来规定。拉伸强度TS过小的情况下,意味着相对于强 度,Ni、Si的含量多,成本升高。拉伸强度TS过大的情况下,意味着通过加工等使强度显著 提高,弯曲加工性劣化。130 X C+300 ^ TS ^ 130 X C+650…(1)本发明中,TS是以JIS Z 2241为基准求出的。TS优选为 (130XC+350) ^ TS ^ (130XC+600)。本发明中,铜合金材料的母材的晶粒的平均晶粒直径d(mm)为 0. 001彡d彡0. 020。将平均晶粒直径d规定为0. OOlmm以上0. 02mm以下的理由是因为,平 均晶粒直径d不足0. OOlmm时,再结晶组织容易成为混合晶粒(大小不同的晶粒混合的组 织),弯曲加工性以及应力松弛性能降低,另外,平均晶粒直径d超过0. 020mm时,弯曲加工 时促进应力向晶界附近的集中,与后述的无析出带(PFZ)及晶界上的化合物相互作用,使 弯曲加工性劣化。另外,上述晶粒直径d设为基于JIS H 0501 (切断法)测定的值。用于求取 上述晶粒直径d的测定数为1000个以上。平均晶粒直径d (mm)优选为0. 001 ^ d^ 0. 015。无析出带(PFZ)是在时效处理的过程中在结晶晶界附近形成且不存在析出物的 区域。图1是本发明的铜合金材料之一例的包含无析出带的结晶晶界附近的透射型电子 显微镜照片。对于无析出带(PFZ),由于有析出物不存在的区域,所以与晶粒内相比相对较 软。因此,在铜合金材料变形或负载了重复应力的情况下,变形优先进行,成为破裂的起点, 另外由于位错的蓄积而成为疲劳破损的起点。因此,PFZ宽度W窄的情况能够缓和铜合金 组织的脆弱性。对于无析出带的宽度W(nm),如果150(150nm以下),根据详细的探讨 的结果可知,对弯曲加工性及疲劳性能的劣化不会带来大的影响。本发明中,对于PFZ宽度W而言,使射束的入射方向与(100)面一致,对铜合金板 的晶界附近以5万倍2视场拍摄透射电子显微镜照片,测定每一视场5处的PFZ宽度,得到 合计10处的平均值。W优选为0 lOOnm。结晶晶界上的化合物主要是金属间化合物,与晶粒内及无析出带相比较硬。在铜 合金材料变形或负载了重复应力的情况下,在硬的化合物和其周围的组织中产生强度差, 容易在化合物附近的铜合金组织上蓄积位错,而成为破裂的起点及疲劳破坏的起点。因此,
6晶界上的化合物小的情况能够缓和铜合金组织的脆弱性。本发明中,晶界上的化合物的平 均粒径L(nrn)为10彡L彡800。若化合物的平均粒径L为800nm以下,则对弯曲加工性及 疲劳性能的劣化不会带来大的影响。化合物的平均粒径L优选为500nm以下。但是,在结 晶晶界存在的化合物具有抑制晶粒的移动且微细地保持晶粒直径的效果。因此,粒径L为 IOnm以上,优选为30nm以上。本发明中,晶界上的化合物的平均粒径L为使射束的入射方向与(100)面一致, 对铜合金板的晶界以5万倍5视场拍摄透射电子显微镜照片,对一个化合物测定长径和短 径,将平均值作为该化合物的粒径,进而将20个化合物的粒径进行平均后的值。图2是概略性表示本发明的无析出带的宽度W及晶界上的化合物的粒径L的求取 方法的说明图。图中,1表示结晶晶界,2表示结晶晶界上的化合物,3表示晶粒内M2Si析 出物。如图所示,无析出带的宽度W通过测定从结晶晶界1到由一方的晶粒形成的范围的 边界的距离来求得。晶界上的化合物的平均粒径L如下求得,测定结晶晶界上的化合物2 的长径和短径,将平均作为其化合物的粒径,进而将20个化合物的粒径进行平均。晶粒、无析出带、晶界化合物在铜合金变形或负载了重复应力的情况下相互作用。 因此,平均晶粒直径d、无析出带的宽度W、晶界化合物的平均粒径L仅分别满足上述的规定 是不充分的,通过满足其全部而可缓和铜合金组织的脆弱性。其次,对本发明的铜合金材料的优选的制造方法进行说明。通过通常的半连续铸造法即所谓的DV(direct chill)铸造法等进行铸造。其次, 对铸块以例如850 1000°C的温度实施0. 5 6小时的均质化处理之后,以600 1000°C 的温度进行热轧。热轧后适时进行冷轧。热轧后的冷却中形成的析出物容易变得粗大,有 时在最终制品的晶界上残存IOOOnm以上的粗大的化合物,使弯曲加工性及疲劳性能劣化。 为防止冷却中的析出,理想的是在热轧后进行水冷。优选在冷却之后,在对氧化膜进行端面 切削后进行坯料轧制。坯料轧制优选在下一工序之后的冷轧加工中以得到规定的加工率的 板厚进行轧制。接着,固溶化处理根据Ni的含量C决定温度来进行。材料的实体温度Tst (°C )优 选在满足(5)式的范围进行。54 X C+625 彡 Tst 彡 54 X C+725…(5)固溶化处理的温度越高,晶界上的析出物的平均粒径L越小,无析出带的宽度W越 窄,另外,得到良好的固溶状态,在下一工序之后的时效处理时可得到高强度。但是,在Tst 超出上限式的范围时,有时晶粒粗大化,平均晶粒直径d不能满足上述的范围,使弯曲加工 性劣化。在Tst低于下限式的情况下,有时粗轧的冷轧加工引起的位错组织残存,使弯曲加 工性劣化。接着,时效处理中,使Ni2Si化合物均勻分散析出于铜合金中,使强度、导电率提 高。优选使用间歇炉以实体温度350 600°C保持0. 5 12小时。时效处理时的温度低于 350°C时,为得到充分的M2Si析出量而需要长时间,成本升高,或者拉伸强度及导电率不充 分。时效处理时的温度高于600°C时,在晶粒内形成粗大化的Ni2Si,使强度降低,在晶界附 近无析出带的宽度W扩展,因此,有时使弯曲加工性及疲劳性能劣化。时间不足0.5小时时 有时得不到足够的性能,成为超过12小时的长时间时,不仅成本升高,而且无析出带的宽 度W扩展,因此,有时使加工性及疲劳性能劣化。
为进一步提高拉伸强度,也可以在从固溶化后到进行时效处理之间增加冷轧。由 该冷轧导入的位错以促进m2Si化合物的析出的方式作用,也具有使无析出带W的宽度减 少的作用。该冷加工率过高时使弯曲加工性劣化,因此优选在50%以下进行。另外,为了也具有使无析出带的宽度W减少的作用,也可以实施进行两次时效处 理。要通过两次时效处理使无析出带的宽度W减少,优选将上述时效处理温度分为温度域 1 :350 450°C和温度域2 450 600°C,各进行一次在温度域1和温度域2的处理。此时, 在温度域1和温度域2进行处理的顺序可以不分先后。理想的是在温度域1以4 12小 时的较长时间进行处理,在温度域2以0. 5 6小时的较短时间进行处理。在两次的时效 处理期间,为促进Ni2Si化合物的析出,也可以实施50%以下的冷轧。接着时效处理,为提高拉伸强度而进行精冷轧。在时效处理后的拉伸强度足够的 情况下,也可以不导入精冷轧。在精冷轧的轧制率过高的情况下,弯曲加工性劣化,另外使 抗应力松弛性能劣化。因此,理想的精轧的轧制率为50%以下。接着精轧进行的低温退火是为了在将强度维持某种程度的状态下使拉伸、弯曲加 工性及弹性界限值回复而进行的。在未进行精轧的情况下,也可以省略低温退火的工序。理 想的是在实体温度300 600°C下进行5 60秒的短时间的退火。退火时的温度低于300°C 时,有时拉伸、弯曲加工性及退火界限值的回复不充分,当退火时的温度高于600°C时,有时 导致强度降低。实施例下面,对于基于本发明的实施例,与比较例进行对比进行更详细说明,但本发明不 限定于这些实施例。本发明的实施例及比较例的铜合金材料通过表1所示的化学组成(剩余部分为 Cu)的铜合金(合金No. 1 25)形成。将这些铜合金用高频熔解炉熔解,铸造成厚度30mm、 宽度120mm、长度150mm的铸块,接着将这些铸块加热到980°C,在该温度保持1小时后,热 轧至厚度12mm,迅速进行冷却。此时,关于合金No. 19,Ni量过多,关于合金No. 20,S量过多,关于合金No. 21,Si 量过多,关于合金No. 23,Cr量过多,关于合金No. 24及25,Zr、Ti、Hf的合计量及V、Mo、Y 的合计量过多,因此,在热轧中发生破裂,中止下一工序以后的工序。表 1
其次,在将两面各切削1. 5mm而除去氧化膜后,通过冷轧加工至厚度0. 16 0. 50mm。此时,合金No. 22由于Sn过多,所以在冷轧中发生边部破裂,将下一工序之后的工 序中止。之后,以800 950°C进行30秒热处理,并马上以15°C /秒以上的冷却速度进行冷却。在时效处理之前,以0 50%的各种轧制率实施冷轧后(轧制率为0%的情况下 不进行冷轧),且在惰性气体氛围中以500°C实施了 2小时的时效处理。另外,乳制率0%是 指不实施轧制。另外,作为热处理,代替上述时效处理,实施下述热处理实施两次的时效处 理的热处理;在惰性气体氛围中进行了 4小时的400°C的热处理后再进行2小时的500°C的
权利要求
一种铜合金材料,含有1.8~5.0质量%的Ni,0.3~1.7质量%的Si,Ni和Si的含量之比Ni/Si为3.0~6.0,S的含量不足0.005质量%,剩余部分由Cu及不可避免的杂质构成,其特征在于,满足下记(1)~(4)式130×C+300≤TS≤130×C+650…(1)0.001≤d≤0.020…(2)W≤150…(3)10≤L≤800…(4)式中,TS表示铜合金材料的轧制平行方向(LD)的拉伸强度(MPa),C表示铜合金材料的Ni含量(质量%),d表示铜合金材料的平均晶粒直径(mm),W表示无析出带的宽度(nm),L表示结晶晶界上的化合物的平均粒径(nm)。
2.如权利要求1所述的铜合金材料,其特征在于,还含有0.01 0. 20质量%的Mg。
3.如权利要求1或2所述的铜合金材料,其特征在于,还含有0.05 1. 5质量%的Sn。
4.如权利要求1 3中任一项所述的铜合金材料,其特征在于,还含有0.2 1. 5质 量%的211。
5.如权利要求1 4中任一项所述的铜合金材料,其特征在于,还含有合计0.005 2.0质量%的以下(I) (IV)中的一种或两种以上(I)0.005 0. 3质量%的选自Sc、Y、Ti、Zr、Hf、V、Mo、及Ag构成的组中的一种或两种 以上;(II)0.01 0. 5 质量%的 Mn ;(III)0.05 2. 0 质量%的 Co ;(IV)O.005 1. 0 质量%的 Cr。
全文摘要
本发明提供一种铜合金材料,含有1.8~5.0质量%的Ni,0.3~1.7质量%的Si,Ni和Si的含量之比Ni/Si为3.0~6.0,S的含量不足0.005质量%,剩余部分由Cu及不可避免的杂质构成,其中,满足下记(1)~(4)式。130×C+300≤TS≤130×C+650…(1),0.001≤d≤0.020…(2),W≤150…(3),10≤L≤800…(4)。式中,TS表示铜合金材料的轧制平行方向(LD)的拉伸强度(MPa),C表示铜合金材料的Ni含量(质量%),d表示铜合金材料的平均晶粒直径(mm),W表示无析出带的宽度(nm),L表示结晶晶界上的化合物的平均粒径(nm)。
文档编号C22F1/08GK101946014SQ20098010539
公开日2011年1月12日 申请日期2009年2月17日 优先权日2008年2月18日
发明者广濑清慈, 江口立彦 申请人:古河电气工业株式会社