专利名称:一种配置气体离子源的真空离子镀膜机的利记博彩app
技术领域:
本发明属于真空离子镀膜技术领域,特别涉及配置气体离子源的真空离子镀膜机的改进。
背景技术:
在真空离子镀膜技术的应用发展中,气体离子源受到越来越多的关注和重视。由于气体离子源具有方向性,在其作用区域内产生高密度的气体离子(等离子体),可以应用到如下几个方面(a)当气体离子源通入惰性气体(如氩气)时,可以对工件表面进行高强度的气体离子轰击清洗。该清洗过程集中在一个局部的作用区域内,比普通氩离子辉光轰击的能量密度大很多;与阴极电弧金属离子轰击相比,又不存在金属粒子沾覆工件表面造成污染的副作用。(b)当气体离子源通入含碳有机气体时,可以单独进行气体离子镀制类金刚石(DLC)膜层,或者结合其他金属蒸发源如磁控溅射源镀制掺金属DLC膜层。(c)当气体离子源通入反应气体(如氧气或氮气)时,可以进行工件表面的气体离子轰击反应处理(如氧化或氮化过程)。(d)当气体离子源通入反应气体(如氧气或氮气),与其它金属蒸发源如磁控溅射源一同工作时,就可以进行气体离子源增强(辅助)反应离子镀膜。
目前常规配置气体离子源的真空离子镀膜机主要包括真空室1及设置在其中的导电工件(转)架2、气体离子源3,以及驱动气体离子源3的直流电源4和为导电工件(转)架2建立负偏压的直流电源7。常规配置气体离子源的真空离子镀膜机电连接方法如图1所示。图中,导电工件(转)架2接在偏压直流电源7的负极,真空室1壁接电源7的正极;气体离子源3的阴极和阳极对应接在电源4的负极和正极上,离子源3的阴极短接在真空室1壁上。
直流电源4驱动气体离子源3放电工作时,直流电源7同时在导电工件(转)架2上建立负偏压,两台电源相互独立地工作。当工件表面出现电弧打火,工件偏压电源7会立即启动灭弧动作(瞬间短时切断电源);而气体离子源电源则很难监测到打火现象,往往不能同步动作,继续输出气体离子,致使工件上电弧打火得以维持,烧坏工件表面。所以同时使用二台独立电源的常规方法存在着被镀工件容易电弧打火的技术问题。
发明内容
本发明的目的是对已有的配置气体离子源的真空离子镀膜机进行改造,克服已有技术的不足之处,充分发挥气体离子源和电源的功能,减少设备配置成本。
本发明提出的一种配置气体离子源的真空离子镀膜机,至少包括一个真空室和设置在其中的一套导电工件(转)架和一台气体离子源,以及一台直流电源或者一台脉冲直流电源;其特征在于,所述的一台电源通过三组开关分别为所述的一套导电工件(转)架建立负偏压及驱动所述的一台气体离子源;该三组开关中的第一、第二组均由两个同时开闭的开关组成,且第一、二组的开关不得同时开闭,第三组开关为一个开关;该真空离子镀膜机的电连接关系为所述电源的正极通过第一组的第一个开关与所述气体离子源的阳极相连,该电源的正极同时通过第二组的第二个开关与真空室壁相连;该电源的负极同时通过第一组的第二个开关和第二组的第一个开关与导电工件(转)架相连;该导电工件(转)架和真空室壁分别接在第三组开关的两端上。
该导电工件(转)架与真空室可以相互电绝缘。
上述结构中至少有一个由真空室外通入气体离子源内部的进气口;在气体离子源上至少有一个向真空室内布气的出气口;离子源放电工作时需向离子源内通入至少一种气体;至少有一个可接电阴极,该电极与真空室可以电绝缘;至少有一个可接电阳极通到真空室外,该阳极与真空室电绝缘。
上述的直流电源至少有一个输出正极;至少有一个输出负极;可以进行开启和关闭;可以在其输出正负极之间输出电压、电流或功率。
上述的脉冲直流电源是在所述的直流电源输出的基础上,叠加反向的单极脉冲串,反向脉冲的频率在5-150kHz范围内或者在所述频率范围内可以调整;反向脉冲的峰值电压选定在正向直流电压的105%-150%之间或者在所述电压范围内可以调整,反向脉冲的脉宽最大达脉冲周期时间的90%或者在0%-90%脉宽范围内可以调整。
本发明的特点及效果(a)采用本发明的电连接方法的气体离子源,直流电源或脉冲直流电源输出功率直接施加在气体离子源阳极和导电工件(转)架上的被镀工件之间。该电源能够及时有效地启动灭弧动作,既可避免工件上电弧打火损坏,也可避免气体离子源靶体金属溅射,污染镀膜过程。彻底解决了气体离子源常规用法中容易出现的灭弧失效问题。
(b)由气体离子源飞出的气体离子受到导电工件(转)架被镀工件上的负电压的吸引,直接从被镀工件电场上获取动能,类似于工件加偏压下的辉光氩离子轰击过程。优点是气体离子源的作用区域是局部的,放电功率一般也比氩离子辉光轰击大很多。因此,气体离子源的气体离子轰击清洗作用更强、更为有效。
(c)本发明的气体离子源的阴极与真空室壁电绝缘,气体离子源放电工作时其阴极处于悬浮电位,随着放电工作状态和真空室环境相应变化,但是其阴极和阳极间的电位差肯定小于电源4施加的工作电压。气体离子源阴阳极间较小的电位差,使得阴阳极间电弧放电的可能性降低,打火的能量减小,进而减少或避免气体离子源金属靶体的溅射的可能。
(d)本发明的直流电源用于气体离子源工作时,不应在导电工件(转)架上施加负偏压;当气体离子源不工作时,该电源又可用于在导电工件(转)架的被镀工件上建立负偏压。因此,一台电源完全满足了两方面工作,不会带来任何不便或限制。因此,一台配置气体离子源真空离子镀膜机就可以节省一台直流电源或者一台脉冲直流电源,降低设备成本。
图1为已有配置气体离子源的真空离子镀膜机的结构及电连接示意图。
图2为本发明配置气体离子源的真空离子镀膜机的结构及电连接示意图。
图3为本发明的实施例1结构及电连接示意图。
图4为本发明实施例1的控制电路图。
图5为本发明的实施例2和实施例3结构及电连接示意图。
图6为本发明的实施例4结构及电连接示意图。
图7为本发明的实施例5结构及电连接示意图。
具体实施例方式
本发明提出的配置气体离子源的真空离子镀膜机,结合附图及实施例进一步说明如下本发明提出的配置气体离子源的真空离子镀膜机如图2所示。图2中1、2、3、4所示部件与图1中的相同,所不同点为(a)只保留一台直流电源或者一台脉冲直流电源4,图1中的电源7不再需要;(b)增加了三组开关71、72,81、82和9。71和72为一个双刀单掷开关,两个刀同时开闭;也可以是一个接触器的两组独立触点。81和82与71和72相同。9为一个单刀单掷开关,或是一个接触器的一组触点。开关71和72和开关81和82不可以同时启动闭合,应另外建立硬件逻辑对它们进行相互锁定,以保证安全。其电连接关系为电源4的正极通过开关71与气体离子源3的阳极相连,电源4的正极同时还通过开关82与真空室壁相连;该电源的负极同时通过开关72和开关81与导电工件(转)架2相连;开关9的两端则分别接在导电工件(转)架2和真空室1壁上。
本发明的电源工作过程为当71和72闭合、81和82断开时,电源4的正极接在气体离子源3的阳极上,电源4的负极接在导电工件(转)架2上。这时直流电源4驱动气体离子源3产生出气体离子,这些气体离子又受到直流电源4在导电工件(转)架2上建立电场的吸引,加速轰击到被镀工件上。用作气体离子源电源;当81和82闭合,71和72断开时,直流电源4的正极接在真空室1壁上,直流电源4的负极接在工件(转)架2上。这时直流电源4用于在导电工件(转)架2上建立负偏压。用作工件偏压电源;开关9专门用于短路或断开真空室1壁和工件(转)架2。只有当直流电源4驱动气体离子源3工作时,开关9才可以闭合短路,也可以不闭合断路。其他任何情况下,开关9都必须处于不闭合断路状态。也应建立逻辑电路对开关9和开关7和8进行相互锁定,以保证使用安全;气体离子源的阴极与真空室1壁电绝缘。当气体离子源放电工作时,其阴极处于悬浮电位。
本发明中所述的直流电源也可以由一台脉冲直流电源替换。电接线、控制和使用方法与直流电源的完全相同。
本发明结合五个实施例对具体组成结构及工作过程再进一步说明如下实施例1本实施例的配置气体离子源的真空离子镀膜机结构如图3所示。真空室1和导电工件(转)架2如图2中所述相同。真空室1壁良好接地(PE)。气体离子源3选用北京丹普表面技术有限公司生产的LISE574/102型阳极层流型矩形气体离子源。直流电源4选用美国AE公司pinnacle 10kW直流逆变电源。图2中的3个开关71、72,81、82和9选为3个相同的日本FUJI公司的SC-N2(35)型交流接触器,对应于KM1,KM2和KM3,所有电接线方法和图2所示相同。
本实施例的镀膜机电接线的控制电路如图4所示。其中KM1,KM2和KM3表示交流接触器的吸合电磁线包。KM14,KM24和KM34则为交流接触器上的一对常闭辅助控制触点,用于对KM1,KM3与KM2相互锁定,以保证使用安全。ZJ1则为一个日本Omron公司的MY4NJ型中间继电器,图4中显示它的一组常开和常闭触点。该控制线路需要220vAC单相交流电(L1为一相线,N为一零线)用于驱动交流接触器KM1,KM2和KM3的吸合或断开。中间继电器ZJ1可以通过在控制面板上的一个带锁按钮利用24vDC直流电驱动中间继电器的线包来控制两种工作状态(1)当ZJ1处于关闭(释放)状态时,直流电源4接在导电工件(转)架2和真空室1壁上,为导电工件(转)架2上的被镀工件建立负偏压;(2)当ZJ1处于启动(吸合)状态时,直流电源4接在气体离子源3和工件(转)架2上,驱动气体离子源3放电工作。
气体离子源3通过导磁金属靶体(即阴极)15将永磁体13产生的磁场聚集在出气口6缝隙处,构成横向磁场12;直流电源4输出电压会在气体离子源3的出气口6缝隙附近建立近似垂直离子源靶面的电场11;气体离子源3放电工作还需要持续向进气口5通入工作气体,工作气体由3路质量流量控制器分别控制3种不同气体混合后通入。
当气体离子源3正常放电工作中,在出气口6缝隙处磁场和电场的作用下,电子会被束缚在阳极表面附近,大量电子在阳极面的跑道上快速平行运动(阳极层流),电离中性气体粒子,形成高密度的等离子体区。等离子体中的气体离子在垂直电场11作用下,经过靶面出气口6向外加速飞出,增加动能,形成气体离子束流。气体粒子的平均动能决定于(a)气体离子源工作电压;(b)真空室真空度;(c)气体进气量;(d)气体离子的空间位置。
有时真空室1中导电工件(转)架2上的被镀工件数量少,在工件转动或移动中,气体离子源作用区域内的工件时多时少,不利于气体离子源3放电稳定。为此,将导电工件(转)架2通过KM3闭合短接在真空室1上。当气体离子源作用区域内有被镀工件时,来自离子源3的离化气体将主要轰击这些工件上;当作用区域内没有被镀工件时,气体离子源3则通过真空室1壁构成放电回路,保证气体离子源3放电稳定。由于采用单台直流电源4,无论在气体离子源3上或被镀工件上产生电弧打火,电源都能够及时有效地启动灭弧动作,即可避免工件损坏,也可避免气体离子源靶体金属溅射。
由于气体离子源3阴极15电悬浮,气体离子源阴极与阳极间的电位差会随着离子源工作状态和真空室环境相应变化,但是肯定小于气体离子源3的工件电压。一般在80到200v之间。相对较小的电位差,使得气体离子源3阴阳极之间电弧放电的可能性降低,打火的能量减小,进而减少或者避免气体离子源金属靶体的溅射。
气体离子源3单独工作时,工作电压主要受离子源进气量和环境真空度的影响。进气量越大,真空度越低,越有利于气体离子源3放电工作稳定,通常电压趋向降低,电流增加。其他条件不变时,气体离子源3放电电流增加,电压相应提高。放电电压太高,会导致电弧打火增多,工作稳定性下降。由于气体离子源3采用了悬浮阴极的电接线方法,工作电压和电流上限比常规方法明显提高。
实施例2本实施例配置气体离子源的真空离子镀膜机的结构及工作过程如图5所示。与图3所示的配置气体离子源真空离子镀膜机相比,只是增加了一对北京丹普表面技术有限公司生产的LMI443/69型矩形磁控溅射源18和19和驱动它们的美国AE公司PEII 10kW中频电源17。中频电源17的两个输出电极分别接在磁控溅射源18和19的阴极电极上,用于驱动一对(两个)磁控溅射源18和19。
气体离子源3单独工作时阳极上施加几百伏的正电压(550-750v),气体离子源3产生的等离子体具有高的正电位;磁控溅射源18和19独立工作时产生的等离子体则呈现低的正电位。当气体离子源3和磁控溅射源18和19同时工作时,两个来源的等离子体混合(耦合),两个等离子体电位相互拉近,进而相应地降低气体离子源3的工作正电压和磁控溅射源18和19的交变平均工作电压。各自电压减小的程度决定于两种源工作功率(电流)的相对大小。离子源放电功率相对大些,离子源工作正电压下降少些,磁控源电压减少多些,反之亦然。
利用该真空镀膜机进行反应离子镀膜,当气体离子源3的作用区域和磁控溅射源18和19的镀膜区域汇聚时,被称为汇聚气体离子源增强磁控溅射反应离子镀膜,简称汇聚气离溅射反应离子镀膜技术;当气体离子源3的作用区域和磁控溅射源18和19的镀膜区域在空间上分开时,被称为空间分离气体离子源增强磁控溅射反应离子镀膜,简称空分气离溅射反应离子镀膜技术。该技术在镀制高质量氮化钛(TiN)膜层的应用中取得了很好的效果。气体离子源工作功率和磁控溅射对靶的工作功率比大约为1∶9。由于离子源上的正电压直接施加到被镀工件上,电压高低直接影响到反应离子镀膜的最终质量。
本实施例配置的LMI443/69型矩形磁控溅射源增加为2套或多套后,PEII 10kW中频电源也需要相应增加1台或多台。如此可以提高真空离子镀膜机的镀膜速度,也可以实现多层(纳米)镀膜的应用需要。
实施例3本实施例配置气体离子源的真空离子镀膜机与实施例2的唯一差别是采用美国AE公司的pinnacle plus+10kW脉冲直流逆变电源替代原来的直流电源4。对于应用在气体离子源3上的脉冲直流电源,其脉冲频率设定为100kHz,脉冲宽度设定为2微秒,即直流输出占空比为80%,可以足够快地完全抑制电弧打火的产生,为整个真空离子镀膜机带来以下更多的好处1)由于周期脉冲带来的等离子体震荡,气体离子源启动阈值电压降低,工作电压也相应降低(50到100v)。有利于提高放电稳定性,提高工作电流和气体离化效率。
2)由于周期性地“关断”工作电压,气体离子源3和导电工件(转)架2上被镀工件上的电弧放电都被更加有效地抑制,既解决了气体离子源3上金属溅射(污染)的问题,也避免了被镀工件表面打火损坏。同时,由于电源几乎启动灭弧动作,排除了真空工作状况瞬间改变的可能,因此真空离子镀膜过程更加稳定。
3)周期脉冲产生的等离子体震荡,也使得工件表面上的等离子体壳层减薄,带电离子更容易进入到工件结构的深处,从而明显地改善了工件表面所镀膜层的均匀一致性。
4)由于脉冲直流电源会产生脉冲正电压,被镀工件会周期性地吸引负电子,使其表面中性化,从而避免工件表面正电荷过度聚集造成膜层击穿放电打火的问题,也避免了正电荷聚集的工件表面对正离子的排斥作用。对于镀制导电性不好的介质膜,或者绝缘性的氧化膜,以及在绝缘工件上进行离子镀膜,上述脉冲直流电源特性已经证明发挥了关键性的作用。
实施例4本实施例配置气体离子源的真空离子镀膜机的结构及电接线如图6所示。与实施例1相比,本实施例只是气体离子源3改为带有辅助灯丝21的霍尔气体离子源22,一台直流电源4用作该气体离子源的主电源,电连接方法与实施例1相同。该气体离子源的一个灯丝电极接在气体离子源22的阴极上,一同绝缘通出真空室1外。另外配置的一台灯丝电源23的输出接在气体离子源22的阴极(灯丝一端电极)和灯丝的另一端电极上。灯丝电位将随着气体离子源22放电工作时的阴极电位一起悬浮。
气体离子源22还可以带有辅助栅极,该气体离子源的栅极电极绝缘通出真空室外。另外配置的一台栅极直流电源的输出正极接在气体离子源的阴极上,其负极接在栅极电极上。用于将气体离子源产生的气体离子拉出。这时辅助栅极电位将随着气体离子源22放电工作时的阴极电位一起悬浮。
实施例5本实施例配置气体离子源的真空离子镀膜机的结构及电接线如图7所示。与实施例2相比,本实施例只是将实施例2中配置的LMI443/69型矩形磁控溅射源换成1套北京丹普表面技术有限公司生产的RCAE1047型阴极电弧离化源25和北京威顿公司生产的CAE-150型逆变直流电源26。该电源的负极接在阴极电弧离化源的阴极上,其正极接在真空室1壁上。在一台配制气体离子源的真空离子镀膜机上,通常配置多于一台阴极电弧源和驱动电源,还可以同时配制上述磁控溅射源和电源。也可以换成空心阴极枪坩埚蒸发源、电子枪坩埚蒸发源或热弧坩埚蒸发源等各种离子蒸发源,以及相应的驱动电源。目的是充分发挥每一种金属蒸发源的优点,进行优势互补,发挥最佳的真空离子镀膜效果。
权利要求
1.一种配置气体离子源的真空离子镀膜机,至少包括一个真空室和设置在其中的一套导电工件(转)架和一台气体离子源,以及一台直流电源或者一台脉冲直流电源;其特征在于,所述的一台电源通过三组开关分别为所述的一套导电工件(转)架建立负偏压及驱动所述的一台气体离子源;该三组开关中的第一、第二组均由两个同时开闭的开关组成,且第一、二组的开关不得同时开闭,第三组开关为一个开关;该真空离子镀膜机的电连接关系为所述电源的正极通过第一组的第一个开关与所述气体离子源的阳极相连,该电源的正极同时通过第二组的第二个开关与真空室壁相连;该电源的负极同时通过第一组的第二个开关和第二组的第一个开关与导电工件(转)架相连;该导电工件(转)架和真空室壁分别接在第三组开关的两端上。
2.如权利要求1所述的真空离子镀膜机,其特征在于,所述的导电工件(转)架与真空室相互电绝缘。
3.如权利要求1所述的真空离子镀膜机,其特征在于,至少有一个由真空室外通入气体离子源内部的进气口;在气体离子源上至少有一个向真空室内布气的出气口;离子源放电工作时需向离子源内通入至少一种气体;至少有一个可接电阴极,该电极与真空室电绝缘;至少有一个可接电阳极通到真空室外,该阳极与真空室电绝缘。
4.如权利要求1所述的真空离子镀膜机,其特征在于,所述的直流电源至少有一个输出正极;至少有一个输出负极;在该输出正负极之间输出电压、电流或功率。
5.如权利要求1所述的真空离子镀膜机,其特征在于,所述的脉冲直流电源是在所述的直流电源输出的基础上,叠加反向的单极脉冲串,该反向脉冲的频率在5-150kHz范围内或者在该频率范围内调整;反向脉冲的峰值电压选定在正向直流电压的105%-150%之间或者在该电压范围内调整,反向脉冲的脉宽最大达脉冲周期时间的90%或者在0%-90%的脉宽范围内调整。
全文摘要
本发明涉及一种配置气体离子源的真空离子镀膜机,属于真空离子镀膜技术领域。本镀膜机至少包括一个真空室和其中的一套导电工件(转)架和一台气体离子源,以及一台直流或者一台脉冲直流电源;电源通过三组开关分别为导电工件(转)架建立负偏压及驱动该气体离子源;第一、第二组均由两个同时开闭的开关组成,且不得同时开闭;该电源的正极通过第一组的一个开关与气体离子源的阳极相连,该电源的正极同时通过第二组的一个开关与真空室壁相连;该电源的负极同时通过第一组的另个开关和第二组的另个开关与导电工件(转)架相连;导电工件(转)架和真空室壁分别接在第三组开关的两端上。本发明可充分发挥气体离子源和电源的功能,减少设备配置成本。
文档编号C23C14/46GK1614080SQ20041009712
公开日2005年5月11日 申请日期2004年12月10日 优先权日2004年12月10日
发明者董骐, 杜建, 钟钢, 张首忠, 罗蓉平 申请人:北京丹鹏表面技术研究中心