专利名称:波长转换装置和发光装置的利记博彩app
技术领域:
本发明涉及光源领域,特别是涉及一种波长转换装置和基于波长转换装置的发光
>J-U ρ α装直。
背景技术:
目前基于波长转换材料的半导体光源已经越来越得到人们的重视。这主要是由波长转换材料的高效率弓丨起的。例如,美国专利US7547114提出一种光源结构,它利用激发光源发射的激发光激发一个波长转换材料转盘,并利用转盘的转动使得不同颜色的波长转换 材料轮流被激发光激发以产生不同颜色的光序列。专利US7547114中还提到,在波长转换材料背向激发光的一侧放置一个角度选择滤光片,可以起到限制光学扩展量和增强亮度的作用,如图Ia所示。其中,激发光111透射分光滤光片102入射于波长转换材料101,波长转换材料发射出的受激光会被分光滤光片102反射而最终从其背向分光滤光片的一侧出射。其中小角度出射的光线121可以直接穿透角度选择滤光片103,而大角度出射的光线如122和123会被角度选择滤光片反射回波长转换材料101,其中光线122被波长转换材料再次散射和反射而转换成小角度光得以出射,而光线123则从光源的侧面形成泄漏光损失。在实际应用中,为了限制波长转换材料的发射角度从而达到提高亮度的作用,还可以使用3Μ公司生产的亮度增强膜(BEF, brightness enhancement film)来取代角度选择滤光片103。该亮度增强膜可以将入射于其表面的大角度光转换成小角度光得以出射,同时将入射于其表面的小角度光反射回波长转换材料,因此总的来说起到了限制出光角度为小角度光的作用。由光学扩展量的定义可知,限制光源的光学扩展量还可以采用减小光斑面积的方法。美国专利US20070019408提出使用一个出口尺寸小于入口尺寸的反射装置来减小光源发光尺寸,如图Ib所示。其中,与图Ia所示的装置不同之处在于,在波长转换材料101上方放置反射装置105,该反射装置105具有光入口 105b和光出口 105a,后者的面积小于前者。该反射装置105的侧壁为反射面,可以将不能直接出射的光线反射出出光口 105a,或反射回波长转换材料被再次反射和散射。这样,利用反射装置105的侧壁和波长转换材料的共同的反射和散射作用下,光线得以从出光口 105a出射,实现减小发光面积的作用。上述的方法是现有的限制光源光学扩展量的主要方法,而这些方法都存在各自的问题,使得其应用效果大打折扣。如利用角度选择滤光片限制发光角度的方法中,角度选择滤光片利用滤光片对不同的入射角度的光具有不同的透射谱线的特点实现角度选择,然而其对于不同入射角度的光线的透射谱线差异不能很大,因此对于宽谱光来说就不能很好的工作,而波长转换材料受激发射的受激光往往是宽谱光。对于BEF来说,它的工作原理虽然与波长无关,但是其限制的角度是确定的,大约在20-30度,不能实现其它的角度限制,因此其应用范围较窄。而对于使用反射装置减小发光面积的方法,其效率直接取决于反射装置的侧面的反射率,而这些侧面往往很陡峭,这给镀膜造成了很大的困难。因此,需要一种波长转换装置,能够提供较小的光学扩展量和较高的亮度。
发明内容
本发明解决的主要技术问题是提出一种具有减小的光学扩展量的波长转换装置,解决了上述的现有方案中各种问题。本发明提出一种波长转换装置,包括用于吸收激发光并发射受激光的波长转换层,该波长转换层包括相对的第一面和第二面;还包括位于波长转换层第一面的一侧的分光滤光装置,该分光滤光装置用于透射激发光并反射所述受激光;还包括位于波长转换层第二面的一侧的反射装置,用于反射受激光;还包括位于分光滤光装置与反射装置之间的光提取层,受激光或受激光与未被波长转 换层吸收的剩余激发光的混合光从该光提取层的至少一部分侧面出射。其中光提取层的厚度小于等于激发光在波长转换层上形成的光斑的外接圆半径的45%。本发明还提出一种发光装置,包括上述的波长转换装置;还包括激发光源,用于发射激发光,该激发光从波长转换装置的分光滤光装置的一侧入射于波长转换层。本发明还提出另一种发光装置,包括上述的波长转换装置;还包括第一激发光源,用于发射第一激发光,该第一激发光从波长转换装置的分光滤光装置的一侧入射于波长转换层;还包括第二激发光源,用于发射第二激发光,该第二激发光从波长转换装置的反射装置的一侧入射于波长转换层。在本发明的波长转换装置和发光装置中,利用对光提取层厚度的限制,和受激光在反射装置和分光滤光装置之间的反射,使得从光提取层侧面出射的光的光通量的降低速度低于光学扩展量的降低速度,进而具有很高的亮度。
图Ia和Ib是现有技术的两种结构;图2是本发明第一实施例的示意图;图3是本发明的模拟数据示意图;图4是本发明第二实施例的示意图;图5a和5b是本发明第二实施例的正视图和俯视图;图6是本发明第四实施例的示意图。
具体实施例方式本发明的第一实施例的波长转换装置如图2所示,它包括用于吸收激发光并发射受激光的波长转换层201,该波长转换层201包括相对的第一面201a和第二面201b ;还包括位于波长转换层第一面201a的一侧的分光滤光装置202,该分光滤光装置202可以透射激发光211并反射受激光;还包括位于波长转换层第二面201b的一侧的反射装置203,用于反射受激光;还包括位于分光滤光装置202与反射装置203之间的光提取层204,受激光或受激光与未被波长转换层吸收的剩余激发光的混合光从该光提取层204的至少一部分侧面出射。其中光提取层204的厚度小于等于激发光211在波长转换层上形成的光斑的外接圆半径的45%。具体来说,在本实施例中,反射装置203是反射镜,该反射镜203在反射受激光的同时也能够反射激发光。激发光211在透射分光滤光装置202后入射于波长转换层201表面并激发波长转换层201使其发射受激光。受激光分为两部分,一部分面向分光滤光装置202发射并被其反射,另一部分面向反射装置203发射并被其反射。没有被波长转换层201吸收的激发光可能透射波长转换层201而入射于反射装置203表面并被其反射回波长转换层形成二次吸收。在本实施例中,光提取层204是位于波长转换层201与反射装置203之间的空气层。容易理解,由于受激光无法从反射装置203和分光滤光装置202出射,而只能在这两者之间不断的被反射并沿着光提取层横向的传播,最终从光提取层204的侧面出射,如光线221和222所示。可以理解,还可能有剩余的没有被波长转换层吸收的激发光也从光提取层204的侧面出射出来。一般来说,分光滤光装置202和反射镜203都是在衬底上镀膜形成的,该衬底一般是透明玻璃衬底,反射镜的衬底还可以是金属衬底。优选的,分光滤光装置202和反射镜203的镀膜面都面向波长转换层201,这对于提高光源效率有帮助。当然,镀膜面背向波长 转换层201也属于本发明的保护范围。在本实施例中,优选的,波长转换层201与分光滤光装置202之间存在空气隙,这是为了降低分光滤光装置的镀膜设计和制造难度。在本实施例中,波长转换装置的受激发光面是光提取层204的侧面,根据简单的几何知识可知该发光面面积与光提取层204的厚度成正比。因此,随着厚度的减小该光源的发光面积会等比例减小;同时,厚度的减小会增加受激光在反射装置203和分光滤光装置202之间的反射次数进而提高反射损耗和降低发光光通量,但是由于反射装置203和分光滤光装置202的反射率可以做的很高,同时波长转换层对于受激光吸收率很低,因此这种光通量的降低速度远远低于发光面积的减小速度,进而使得发光亮度得以提升。本发明利用减小发光面积的方法减小发光光源的光学扩展量;与背景技术中介绍的图Ib所示的结构相比,这种方法的反射装置的反射层是平面或近似平面的(近似平面可以是曲面或球面),因此镀膜工艺容易控制得多,反射率也高得多。而且,本发明中的波长转换装置的发光面的面积是可以通过调节光提取层的厚度而实时可控的,这在应用中具有使用灵活的优点。在本实施例中,受激光从光提取层的全部侧面出射,实际上,还可能在其中部分侧面放置反射镜,将光线反射回去使其从其它开放的侧面出射,以进一步减小发光面积提高亮度。从上面的描述可知,光提取层的厚度是决定本发明的性能的关键参数。下面通过Tracepro商用光学软件的模拟数据论证该厚度的取值范围。在该模拟中,反射装置203的反射率被设置成98%,这在现实中是可以低成本的实现的;分光滤光装置202和波长转换层一起对受激光的散射反射效率为97%,这也是可以实现的数值。定义D为光提取层的厚度与激发光211在波长转换层201上形成的光斑的外接圆半径的比值,在模拟中通过改变D的值可以得到不同的发光光通量,其模拟结果如图3所示。其中曲线342指的是总光通量百分比与D的关系曲线,其中总光通量百分比指的是从光提取层侧面出射的光通量与波长转换层201发射出来的总光通量的比值;曲线341指的是波长转换装置发光的亮度与波长转换层上的亮度的比值(称为亮度增强倍数)与D的关系。从光学扩展量的定义可知,波长转换装置的亮度与从光提取层侧面出射的光通量成正比,与光提取层的厚度成反比。从该模拟结果可以看出,随着D的减小,总光通量百分比的数值逐渐减小,尤其是当D < O. I后总光通量百分比的数值下降速度加快;同时,随着D的减小,亮度增强倍数快速增加,尤其是当D < O. I后亮度增强倍数增大速度加快。可见,D必须取合适的值才能兼顾波长转换装置的总光通量百分比和亮度,同时也要视实际应用领域的不同来确定D的取值。对于偏重亮度的应用领域应将D取值小一些,对于偏重总光通量百分比的领域需要将D取值大一些。而在实际应用中,可以设置位置微调装置来微调分光滤光装置202和/或反射装置203的位置使得光提取层204的厚度发生变化,并同时测量发光效果找到最符合实际应用的状态。更具体的,由图3可见,当D < O. 45时,亮度增强倍数开始大于1,即此时本发明开始出现亮度增强的有益效果;当D < O. 2时,此时总光通量百分比损失不大,同时亮度增强倍数达到2以上,对于偏重于总光通量百分比的应用领域是比较合适的选择;当D < O. I时,此时发光光通量损失不超过25%,同时亮度增强倍数接近4,对于偏重于亮度增强的应用领域是比较合适的选择;而当D < O. 03时,亮度增强倍数虽然接近于7,但此时总光通量百分比的损失接近60%,这在很多应用领域是不能接受的,因此往往选择D > O. 03。当然,·可以应用的,故也在本发明的保护范围。在本实施例中,光提取层204位于波长转换层201与反射装置203之间,实际上根据上述的描述可以理解,光提取层也可以位于波长转换层与分光滤光装置之间。在这种情况下,优选的,波长转换层与反射装置紧密连接,在实际中可以直接将波长转换层用沉积或印刷的方法直接加工于反射装置的表面上。优选的,该波长转换装置还包括一个散热装置,该散热装置与反射装置紧密接触,用于为反射装置和波长转换层散热,这有利于提高波长转换层的效率。可以理解,光提取层还可以分为两部分,其中一部分位于波长转换层与分光滤光装置之间,另一部分位于波长转换层与反射装置之间。实际上,只要波长转换层与光提取层都位于分光滤光装置与反射装置之间,就可以实现本发明的有益效果。在本实施例中,光提取层204是空气层,实际上它还可以是介质层。模拟数据显示,光提取层的折射率的提高对于光线从光提取层的侧面出射的效率具有负面影响,这是由于光提取层的折射率越高则光线越容易在其与外界空气的界面上发生全反射而无法出射。因此光提取层最好选取低折射率介质,例如折射率是I. 49的透明树脂。当然,折射率是I的空气层是光提取层的最优选择。但是其他折射率的光提取层也在本发明的保护范围以内。光提取层还可以对光具有散射特性,例如在透明树脂中掺入散光粉。甚至,波长转换层与光提取层还可以相互渗透并结合成为一个整体,这作为本发明的第二实施例,如图4所示。在本实施例中,激发光411透射分光滤光装置402入射于波长转换层与光提取层的混合体401,并激发该混合体401发射受激光,反射装置403放置于该混合体的上方并反射该受激光。受激光在该混合体内部横向传布并最终从该混合体的侧面出射;与第一实施例不同的是,受激光在该混合体内部不断的受到混合体内部的波长转换材料的散射,这种散射可以改变受激光的传播方向,某种程度上对于受激光从侧面出射是有利的;但是若这种散射太强,则会阻止受激光的横向传播,并降低光出射效率。本发明还提出一种发光装置,包括上述的波长转换装置;还包括激发光源,用于发射激发光,该激发光从波长转换装置的分光滤光装置的一侧入射于波长转换层。本发明的第三实施例的发光装置的结构如图5a和5b所示,其中激发光源没有画出。在该发光装置中,还包括位于波长转换装置560的光提取层的侧面的柱面镜571和572,该柱面镜用于收集从该光提取层的侧面发射的光线。这部分光线可以经过反射碗573再次反射并形成平行光。可以理解,柱面镜571和572的目的在光提取层的厚度方向上准直波长转换装置发射的光线,反射碗573则在垂直于光提取层的厚度方向上准直波长转换装置发射的光线,最终实现该光线的准直发射。本发明的第四实施例的发光装置的结构如图6所示。与第三实施例不同的是,在该发光装置中还包括第二激发光源(未画出),该第二激发光源用于发射第二激发光612,该第二激发光从波长转换装置的反射装置603的一侧入射于波长转换层;在该发光装置的 波长转换装置中,反射装置603是干涉滤光片,在反射受激光的同时可以透射第二激发光612。这样,波长转换装置中的波长转换层就可以同时受到入射于其第一面的第一激发光611和入射于其第二面的第二激发光612的激发,提高总发光光通量和发光亮度。以上所述仅为本发明的实施例,并非因此限制本发明的专利范围,凡是利用本发明说明书及附图内容所作的等效结构或等效流程变换,或直接或间接运用在其他相关的技术领域,均同理包括在本发明的专利保护范围内。
权利要求
1.一种波长转换装置,其特征在于,包括 用于吸收激发光并发射受激光的波长转换层,该波长转换层包括相对的第一面和第二面; 位于所述波长转换层第一面的一侧的分光滤光装置,用于透射所述激发光并反射所述受:激光; 位于所述波长转换层第二面的一侧的反射装置,用于反射所述受激光; 位于分光滤光装置与反射装置之间的光提取层,所述受激光或受激光与未被波长转换层吸收的剩余激发光的混合光从该光提取层的至少一部分侧面出射; 其中所述光提取层的厚度小于等于所述激发光在波长转换层上形成的光斑的外接圆半径的45%。
2.根据权利要求I所述的波长转换装置,其特征在于,所述反射装置为反射镜,反射所述激发光。
3.根据权利要求I所述的波长转换装置,其特征在于,所述反射装置为干涉滤光片,透射所述激发光。
4.根据权利要求I所述的波长转换装置,其特征在于,所述光提取层的厚度小于等于所述激发光在波长转换层上形成的光斑的外接圆半径的20%。
5.根据权利要求4所述的波长转换装置,其特征在于,所述光提取层的厚度小于等于所述激发光在波长转换层上形成的光斑的外接圆半径的10%。
6.根据权利要求I所述的波长转换装置,其特征在于,所述光提取层的厚度大于等于所述激发光在波长转换层上形成的光斑的外接圆半径的3%。
7.根据权利要求I所述的波长转换装置,其特征在于,所述光提取层位于波长转换层与分光滤光装置之间。
8.根据权利要求7所述的波长转换装置,其特征在于,所述波长转换层与反射装置紧密连接。
9.根据权利要求8所述的波长转换装置,其特征在于,还包括与反射装置紧密连接的散热装置。
10.根据权利要求I所述的波长转换装置,其特征在于,所述光提取层位于波长转换层与反射装置之间。
11.根据权利要求10所述的波长转换装置,其特征在于,所述波长转换层与分光滤光装置之间存在空气隙。
12.根据权利要求I所述的波长转换装置,其特征在于,所述光提取层分为两部分,其中一部分位于波长转换层与分光滤光装置之间,另一部分位于波长转换层与反射装置之间。
13.根据权利要求I至12中任意一项所述的波长转换装置,其特征在于,所述光提取层为空气层。
14.根据权利要求I所述的波长转换装置,其特征在于,所述波长转换层与光提取层相互渗透并结合成为一个整体。
15.—种发光装置,其特征在于,包括 根据权利要求I至14中任意一项所述的波长转换装置;激发光源,用于发射激发光,该激发光从波长转换装置的分光滤光装置的一侧入射于波长转换层。
16.根据权利要求15所述的发光装置,其特征在于,还包括位于波长转换装置的光提取层的侧面的柱面镜,该柱面镜用于收集从该光提取层的侧面发射的光线。
17.一种发光装置,其特征在于,包括 根据权利要求I或3所述的波长转换装置; 第一激发光源,用于发射第一激发光,该第一激发光从波长转换装置的分光滤光装置的一侧入射于波长转换层; 第二激发光源,用于发射第二激发光,该第二激发光从波长转换装置的反射装置的一侧入射于波长转换层。
全文摘要
本发明提出一种波长转换装置和应用该波长转换装置的发光装置,包括用于吸收激发光并发射受激光的波长转换层,还包括位于波长转换层第一面的一侧的分光滤光装置,和位于波长转换层第二面的一侧的用于反射受激光的反射装置;还包括位于分光滤光装置与反射装置之间的光提取层,其中光提取层的厚度小于等于激发光在波长转换层上形成的光斑的外接圆半径的45%。在本发明的波长转换装置和发光装置中,利用对光提取层厚度的限制,和受激光在反射装置和分光滤光装置之间的反射,使得从光提取层侧面出射的光的光通量的降低速度低于光学扩展量的降低速度,进而具有很高的亮度。
文档编号F21V9/10GK102721005SQ20121010063
公开日2012年10月10日 申请日期2012年4月9日 优先权日2012年2月11日
发明者李屹, 杨毅 申请人:深圳市光峰光电技术有限公司