蓝相液晶菲涅尔透镜及其制备方法
【专利摘要】蓝相液晶菲涅尔透镜及其制备方法,属于裸眼3D显示技术领域,本发明为解决随着液晶显示尺寸变大,TN盒厚度增加,液晶分子响应速度变慢,2D/3D切换时出现动态图像模糊,影响到观看效果的问题。本发明方案一:包括上基板、上基板透明平面电极层、下基板透明平面电极层、下基板菲涅尔弧面结构的聚合物层、置于上基板透明平面电极层和下基板菲涅尔弧面结构的聚合物层之间的蓝相液晶层、下基板。方案二:包括上基板、上基板菲涅尔凹弧面结构聚合物层、上基板菲涅尔凹弧面结构聚合物层形成电极层、下基板透明片状电极层、介电层、置于上基板菲涅尔凹弧面结构聚合物层形成电极层和下基板透明片状电极层及介质层三者之间的蓝相液晶层、下基板。
【专利说明】
蓝相液晶菲涅尔透镜及其制备方法
技术领域
[0001]本发明属于裸眼3D显示技术领域。
【背景技术】
[0002]早期的立体显示技术主要通过佩戴眼镜、立体头盔等附加装置观看立体画面,而目前主流的裸眼3D显示主要是利用在平板显示屏前面绑定一个狭缝光栅或柱透镜光栅等分光器件,该分光器件的主要作用是对通过的光进行空间光调制,也就是根据设计需要将不同视点图像的光进行不同的调制,使其到达相应的视区,经大脑融合后获得立体感知。这种光栅自由立体显示器具有工艺简单、摆脱了附加装置的桎梏及3D显示效果良好等优点,但同时又存在3D图像分辨率、亮度损失及3D显示画面串扰等问题。
[0003]近年来,随着裸眼3D显示技术的迅速发展,一种液晶透镜因具有重量轻、体积少且可实现自动调焦的优势,在光通讯、3D显示、图像信息处理等各种领域极具有潜在开发价值。这种可变焦液晶透镜主要利用向列相液晶分子在电场中改变取向,因此随着显示尺寸变大,TN盒厚度增加,液晶分子响应速度变慢,特别是在2D/3D切换时,容易出现动态图像模糊,影响到观看效果。目前,也有通过液晶菲涅尔透镜来降低液晶透镜的盒厚,从而提高响应速度。这种透镜能够大大降低盒厚,但是对制程工艺并没有减少,比如PI层的涂布、PI定向摩擦等工艺而且精度要求更高,不易于实现。
【发明内容】
[0004]本发明目的是为了解决随着液晶显示尺寸变大,TN盒厚度增加,液晶分子响应速度变慢,特别是在2D/3D切换时,容易出现动态图像模糊,影响到观看效果的问题,提供了一种蓝相液晶菲涅尔透镜及其制备方法。
[0005]本发明包括两种蓝相液晶菲涅尔透镜及其制备方法。
[0006]第一种蓝相液晶菲涅尔透镜包括上基板、下基板、上基板透明平面电极层、下基板透明平面电极层、下基板菲涅尔弧面结构的聚合物层和蓝相液晶层;
[0007]上基板和下基板相对平行设置,上基板的下表面设置有上基板透明平面电极层;下基板的上表面设置有下基板透明平面电极层,下基板透明平面电极层的上表面设置下基板菲涅尔弧面结构的聚合物层;
[0008]下基板菲涅尔弧面结构的聚合物层为N个结构相同的条形的透镜单元,N个透镜单元从左到右平行连续设置,所述透镜单元为菲涅尔透镜连续凸弧面结构;N>1;
[0009]下基板菲涅尔弧面结构的聚合物层的凸面与上基板透明平面电极层之间填充蓝相液晶层。
[0010]优先的,上基板透明平面电极层和下基板透明平面电极层为透明导电金属氧化物或透明导电有机高分子材料。
[0011]优先的,上基板、下基板和下基板菲涅尔弧面结构的聚合物层的折射率匹配。
[0012]第一种蓝相液晶菲涅尔透镜的制备方法,该方法包括以下步骤:
[0013]步骤Al、在上基板下表面形成上基板透明平面电极层;
[0014]步骤A2、在下基板上表面形成下基板透明平面电极层;
[0015]步骤A3、在下基板透明平面电极层上形成菲涅尔凸弧面结构的聚合物层;
[0016]步骤A4、蓝相液晶层经灌注、封装于上基板透明平面电极层与下基板菲涅尔凸弧面结构聚合物层之间并成盒,完成蓝相液晶菲涅尔透镜的制备。
[0017]第二种蓝相液晶菲涅尔透镜包括上基板、下基板、凹弧面电极层、下基板透明片状电极层、上基板菲涅尔凹弧面结构聚合物层、蓝相液晶层和介电层;
[0018]上基板和下基板相对平行设置,
[0019]上基板的下表面设置上基板菲涅尔凹弧面结构聚合物层;
[0020]所述上基板菲涅尔凹弧面结构聚合物层为N个结构相同的条形的透镜单元,N个透镜单元从左到右平行连续设置,所述透镜单元为菲涅尔透镜连续凹弧面结构;N>1;
[0021]上基板菲涅尔凹弧面结构聚合物层的凹弧面上设置凹弧面电极层;
[0022]下基板的上表面设置下基板透明片状电极层,所述下基板透明片状电极层由η个电极条平行均布构成,且电极条的延伸方向与条形的透镜单元的延伸方向一致;η> I;
[0023 ]凹弧面电极层和下基板透明片状电极层之间填充蓝相液晶层;
[0024]透镜单元的凹弧面的每个竖向侧壁设置一层介电层,该介电层与下基板透明片状电极层的电极条相接触。
[0025]优先的,从2D状态切换至3D显示状态时,下基板透明片状电极层的η个电极条施加电压按公式
[0026]Ui=mXDi
[0027]进行;
[0028]其中:i= l,2,...,n;
[0029]D1S上基板菲涅尔凹弧面结构聚合物层上与第i个电极条对应位置的厚度;
[0030]m为常数。
[0031]优先的,介电层的宽度L1<L,其中L为下基板透明片状电极层的电极条的宽度;介电层的高度H1<H,其中H为基板菲涅尔凹弧面结构聚合物层的最高厚度。
[0032]第二种蓝相液晶菲涅尔透镜的制备方法,该方法包括以下步骤:
[0033]步骤B1、在上基板形成上基板菲涅尔凹弧面结构聚合物层;
[0034]步骤B2、在上基板菲涅尔凹弧面结构聚合物层凹弧面上形成凹弧面电极层;
[0035]步骤B3、在下基板上形成由多个间隔均匀分布的电极条构成的下基板透明片状电极层;
[0036]步骤B4、在下基板透明片状电极层整面镀有高度为Hl的介电辅助层;
[0037]步骤B5、涂光刻胶并采用宽度为LI的灰阶掩膜板对介电辅助层曝光后进行显影;
[0038]步骤B6、蚀刻出长度L1、宽度Hl的多个条形的介电层;
[0039]步骤B7、蓝相液晶层经灌注、封装于上基板菲涅尔凹弧面结构聚合物层与下基板透明片状电极层及介电层之间并成盒,完成蓝相液晶菲涅尔透镜的制备。
[0040]本发明的优点:
[0041 ] 1、蓝相液晶的响应时间在亚毫秒级别,应用在显示技术中,可以减弱传统液晶显示中由于响应时间引起的动态图像模糊;[0042 ] 2、蓝相液晶不需要配向膜,直接减少了相关制造工艺,如PI涂布、PI摩擦工序,降低了成本;
[0043]3、暗场时呈各向同性,可视角度更广且对称;
[0044]4、只要蓝相液晶盒盒厚超过电场的穿透深度,液晶盒盒厚的变化对透射率的影响就可以忽略,这种特性尤其适合于制造大尺寸显示装置;
[0045]5、本发明采用液晶菲涅尔透镜结构,盒厚能减少一半以上,进一步降低蓝相液晶的驱动电压;
[0046]6、本发明采用的液晶菲涅尔透镜结构能够减少3D显示画面串扰问题,提高画面显示效果。
【附图说明】
[0047]图1为实施方式一所述蓝相液晶菲涅尔透镜结构的示意图;
[0048]图2为实施方式一所述蓝相液晶菲涅尔透镜不加电示意图;
[0049]图3为实施方式一所述蓝相液晶菲涅尔透镜加电后示意图;
[0050]图4为实施方式一所述的蓝相液晶菲涅尔透镜制备方法的工艺流程图;
[0051 ]图5为实施方式二所述蓝相液晶菲涅尔透镜结构的示意图;
[0052]图6为实施方式二所述蓝相液晶菲涅尔透镜不加电示意图;
[0053]图7为实施方式二所述蓝相液晶菲涅尔透镜加电后示意图;
[0054]图8为宽为L1、高为Hl的介电层分布示意图;
[0055]图9为实施方式二所述的蓝相液晶菲涅尔透镜制备方法的工艺流程图。
【具体实施方式】
[0056]【具体实施方式】一:下面结合图1至图9说明本实施方式,本实施方式所述蓝相液晶菲涅尔透镜参见图1所示,蓝相液晶的工作机理是基于克尔效应的,不加电状态下,蓝相液晶分子为各向同性,蓝相液晶分子呈球形状,在强电场作用下,蓝相液晶通过自身形变沿长轴伸展,蓝相液晶分子呈椭圆形状结构,变成各向异性。受电场强弱的影响,蓝相液晶分子自身产生由球形状到椭圆形状的变化,产生具有梯度折射率的变化。
[0057]参见图2,图2为实施方式一所述蓝相液晶菲涅尔透镜不加电时的原理示意图。当上基板电极层103和下基板电极层104之间没有电压时,蓝相液晶菲涅尔透镜单元中的蓝相液晶层106中心和边缘没有折射率差,2D显示模组107显示没有视差的2D图像,此时该装置用于显示2D模式。
[0058]参见图3,图3为实施方式一所述蓝相液晶菲涅尔透镜加电后示意图。当上基板电极层103和下基板电极层104之间施加电压并超过阈值时,由于下基板菲涅尔凸弧面结构的聚合物层105造成的电场的不均匀分布,菲涅尔凸弧面结构的聚合物层105中凸起的地方由于聚合物多于侧边,造成凸起的地方电场弱于侧边,即蓝相液晶菲涅尔透镜单元中的蓝相液晶层106的中心电场弱于侧边,蓝相液晶分子呈球形状结构,侧边呈椭圆形结构,产生折射率差,从而形成具有梯度变化的菲涅尔结构的相位分布,用于3D显示。
[0059]本实施方式所述蓝相液晶菲涅尔透镜的制备工艺过程如图4所示。
[0060]【具体实施方式】二:下面结合图5至图9说明本实施方式,本实施方式所述蓝相液晶菲涅尔透镜参见图5所示,根据蓝相液晶的克尔效应,其双折射率差△ n( ind) =λΚΕ2,其中λ为入射光波长,K为克尔系数,E为电场强度,E = U/D,若电场E欲保持线性分布要满足条件Ui= HiXD1, m为常数,U1为第i个电极条施加的电压,D1S上基板菲涅尔凹弧面结构聚合物层205上与第i个电极条对应位置的厚度,在给不同的电极条施加电压时,满足U1=HiXD1, U2 =
mXD2,......,Un = mXDn,则折射率差An(ind)保持不变,所产生的相位轮廓主要与Di有关。
由于盒厚为菲涅尔透镜弧面结构,所产生的相位轮廓即为菲涅尔透镜结构形状。
[0061]参见图6,图6为实施方式二所述蓝相液晶菲涅尔透镜不加电时的原理示意图,当弧面电极层203和下基板片状电极层204之间不施加电压时,蓝相液晶层206中心和边缘未产生电势差,由于折射率匹配,2D显示模组208显示没有视差的图像,该装置用于显示2D状
??τ O
[0062]参见图7,图7为实施方式二所述蓝相液晶菲涅尔透镜加电后示意图。当下基板片状电极层204的电极条施加不同的电压,由于满足Ui=m XDi,U2=m X D2,......,Un=mXDn,片状电极所施加的电压与盒厚成线性关系,各片状的电极条的双折射率差相等,所形成的相位分布与盒厚D1有关,盒厚为菲涅尔透镜结构,由于聚合物与蓝相液晶分子的折射率存在差异,在交界处发生折射,用于显示3D状态。
[0063]图8为蚀刻宽为L1、高为Hl的介电层,采用高介电常数的介电层用来平滑电场垂直方向造成液晶折射率差异产生的变化情况,从而避免各弧面交界处显示画面串扰现象。LI<L,H1<H,L为片状电极的宽度,H为基板菲涅尔凹弧面结构聚合物层205的最高厚度
[0064]本实施方式蓝相液晶菲涅尔透镜的制备工艺过程如图9所示。
【主权项】
1.蓝相液晶菲涅尔透镜,其特征在于,包括上基板(101)、下基板(102)、上基板透明平面电极层(103)、下基板透明平面电极层(104)、下基板菲涅尔弧面结构的聚合物层(105)和蓝相液晶层(106); 上基板(101)和下基板(102)相对平行设置,上基板(101)的下表面设置有上基板透明平面电极层(103);下基板(102)的上表面设置有下基板透明平面电极层(104),下基板透明平面电极层(104)的上表面设置下基板菲涅尔弧面结构的聚合物层(105); 下基板菲涅尔弧面结构的聚合物层(105)为N个结构相同的条形的透镜单元,N个透镜单元从左到右平行连续设置,所述透镜单元为菲涅尔透镜连续凸弧面结构;N>1; 下基板菲涅尔弧面结构的聚合物层(105)的凸面与上基板透明平面电极层(103)之间填充蓝相液晶层(106)。2.根据权利要求1所述蓝相液晶菲涅尔透镜,其特征在于,上基板透明平面电极层(103)和下基板透明平面电极层(104)为透明导电金属氧化物或透明导电有机高分子材料。3.根据权利要求1所述蓝相液晶菲涅尔透镜,其特征在于,上基板(101)、下基板(102)和下基板菲涅尔弧面结构的聚合物层(105)的折射率匹配。4.蓝相液晶菲涅尔透镜的制备方法,其特征在于,该方法包括以下步骤: 步骤Al、在上基板(101)下表面形成上基板透明平面电极层(103); 步骤A2、在下基板(102)上表面形成下基板透明平面电极层(104); 步骤A3、在下基板透明平面电极层(104)上形成菲涅尔凸弧面结构的聚合物层105; 步骤A4、蓝相液晶层(106)经灌注、封装于上基板透明平面电极层(103)与下基板菲涅尔凸弧面结构聚合物层105之间并成盒,完成蓝相液晶菲涅尔透镜的制备。5.蓝相液晶菲涅尔透镜,其特征在于,包括上基板(201)、下基板(202)、凹弧面电极层(203)、下基板透明片状电极层(204)、上基板菲涅尔凹弧面结构聚合物层(205)、蓝相液晶层(206)和介电层(207); 上基板(201)和下基板(202)相对平行设置, 上基板(201)的下表面设置上基板菲涅尔凹弧面结构聚合物层(205); 所述上基板菲涅尔凹弧面结构聚合物层(205)为N个结构相同的条形的透镜单元,N个透镜单元从左到右平行连续设置,所述透镜单元为菲涅尔透镜连续凹弧面结构;N>1;上基板菲涅尔凹弧面结构聚合物层(205)的凹弧面上设置凹弧面电极层(203); 下基板(202)的上表面设置下基板透明片状电极层(204),所述下基板透明片状电极层(204)由η个电极条平行均布构成,且电极条的延伸方向与条形的透镜单元的延伸方向一致;η>1; 凹弧面电极层(203)和下基板透明片状电极层(204)之间填充蓝相液晶层(206); 透镜单元的凹弧面的每个竖向侧壁设置一层介电层(207),该介电层(207)与下基板透明片状电极层(204)的电极条相接触。6.根据权利要求5所述蓝相液晶菲涅尔透镜,其特征在于,从2D状态切换至3D显示状态时,下基板透明片状电极层(204)的η个电极条施加电压按公式 Ui=mXDi 进行;其中:i = l,2,...,η; D1S上基板菲涅尔凹弧面结构聚合物层(205)上与第i个电极条对应位置的厚度; m为常数。7.根据权利要求5所述蓝相液晶菲涅尔透镜,其特征在于,介电层(207)的宽度L1〈L,其中L为下基板透明片状电极层(204)的电极条的宽度;介电层(207)的高度H1〈H,其中H为上基板菲涅尔凹弧面结构聚合物层(205)的最高厚度。8.蓝相液晶菲涅尔透镜的制备方法,其特征在于,该方法包括以下步骤: 步骤B1、在上基板(201)形成上基板菲涅尔凹弧面结构聚合物层(205); 步骤B2、在上基板菲涅尔凹弧面结构聚合物层(205)凹弧面上形成凹弧面电极层(203); 步骤B3、在下基板(202)上形成由多个间隔均匀分布的电极条构成的下基板透明片状电极层(204); 步骤B4、在下基板透明片状电极层(204)整面镀有高度为Hl的介电辅助层(2071); 步骤B5、涂光刻胶并采用宽度为LI的灰阶掩膜板对介电辅助层(2071)曝光后进行显影; 步骤B6、蚀刻出长度L1、宽度Hl的多个条形的介电层(207); 步骤B7、蓝相液晶层(206)经灌注、封装于上基板菲涅尔凹弧面结构聚合物层(205)与下基板透明片状电极层(204)及介电层(207)之间并成盒,完成蓝相液晶菲涅尔透镜的制备。
【文档编号】G02F1/1333GK105929619SQ201610551342
【公开日】2016年9月7日
【申请日】2016年7月11日
【发明人】王华波, 顾开宇, 李应樵, 张春光
【申请人】宁波万维显示科技有限公司