专利名称::基于任务的成像系统的利记博彩app基于任务的成像系统相关申请的交叉引用本申请要求2005年9月19日提交的题为"大的间隔距离下的虹膜识另'J(IrisRecognitionataLargeStandoffDistance),,的第60〃18,522号美国临时专利申请以及2006年3月6日提交的题为"具有波前编码的变焦透镜系统(ZoomLensSystemswithWavefrontCoding)"的第60/779,712号美国临时专利申请的优先权。本申请还是2005年9月13日提交的且共同未决的题为"虹膜图像捕获装置和相关系统(IrisImageCaptureDevicesandAssociatedSystems),,的第11/225,753号美国专利申请的部分延续申请。第11/225,753号美国专利申请要求2004年9月13日提交的题为"用于照相电话、数字照相机和个人数字助理的虹膜"i只另'J安全小生(IrisRecognitionSecurityforCameraPhones,DigitalCamerasandPersonalDigitalAssistants),,的第60/609,445号美国临时专利申请的优先权。本申请还是2004年12月1日提交的题为"用于优化光学和数字系统设计的系统和方法(SystemandMethodforOptimizingOpticalandDigitalSystemDesigns),,的第11/000,819号美国专利申请的部分延续申请。第11/000,819号美国专利申请要求2003年12月1日提交的题为"用波前编码元件设计光学成像系统(DesigningOpticalImagingSystemswithWavefrontCodingElements)"的第60/526,216号美国临时专利申请的优先权。以上所述的每个专利申请的全文都通过引用并入本文。2004年3月25日提交的题为"用于在光学系统中修改场深度、色差容限和图像保真的机械可调的光学相位滤波器(Mechanically-AdjustableOpticalPhaseFiltersforModifyingDepthofField,Aberration-Tolerance,Anti-AliasinginOpticalSystems),,的第10/810,446号美国专利申请和2006年3月20日提交的题为"具有像素化空间光调制器的成l象系统(ImagingSystemswithPixelatedSpatialLightModulators)"的第PCT/US06/09958号PCT专利申请的全文也特意通过引用并入本文。下列美国专利的全文也特意通过引用并入本文Cathey等人的题为"扩展景深光学系统(ExtendedDepthofFieldOpticalSystems)"的第5,748,371号美国专利、Dowski,Jr.等人的题为"波前编码相衬成像系纟充(WavefrontCodingPhaseContrastImagingSystems),,的第6,525,302号美国专利、Dowski,Jr.等人的题为"组合波前编码和振幅对比成4象系统(CombinedWavefrontCodingandAmplitudeContrastImagingSystems),,的第6,873,733号美国专利、Dowski,Jr.等人的题为"波前编码光学器件(WavefrontCodingOptics)"的第6,842,297号美国专利、Dowski,Jr.等人的题为"波前编码变焦透镜成4象系统(WavefrontCodingZoomLensImagingSystems),,的第6,911,638号美国专利、以及Dowski,Jr.等人的题为"波前编码成像系统(WavefrontCodedImagingSystems),,的第6,940,649号美国专利。美国政府权力根据美国陆军研究办公室授权给WakeForestUniversity(维克森林大学)的授权号为DAAD19-00-1-0540的转包合同,本文公开的实施方式中的一部分受到了政府的支持。美国政府具有本文的某些权利。
背景技术:
:基于任务的成像系统的一个目的在于提供用于一个或多个信号处理任务的特定任务信息或图像数据。这种任务可包括生物虹膜识别、生物面部识别、用于访问控制的生物识别、用于威胁鉴别的生物识别、条形码阅读、用于装配线中的质量控制的成像、光学字符识别、生物成像、用于对象检测的汽车成像和自动装配中用于对象登记的基准符号识别。为了安全或访问的目的,上述生物识别技术例如可由基于任务的成像系统执行。作为一个实施例,当这种基于任务的成像系统的光学和数字部分提供足够详细并具有足够高的SNR(信噪比)的图像数据时,生物虹膜识别可提供非常精确的个人识别。已经知道,基于任务的成像系统的性能与成功完成任务所需的图像数据的SNR直接相关。而SNR又与成像系统的特性相关。影响系统性能的特性包括球面像差和其它像差、散焦、放大率的变化、景深、色差、对准容限、动态振动和温度变化。这些特性可使系统具有小于衍射受限系统的SNR的、特定任务的SNR。现有技术中描述的某些系统使用小孔径实现短距离的虹膜识别;例如,见R.Plemmons等人在2004年8月的Proc.SPIE上发表的"用于虹膜识另'J的计算成1象系统(Computationalimagingsystemsforirisrecognition)"—文。然而,尽管这些系统对于短间隔距离是有效的,但是其使用小的透镜孔径,而小的透镜孔径会产生低的信号水平(即,低信噪比)和相对低的分辨率;因此这样的系统并不适合用于较长的间隔另巨离。
发明内容在一个实施方式中,用于获得与任务中使用的场景相关的数据的、基于任务的成像系统包括图像数据捕获装置,其用于(a)将来自所述场景的电磁能量的波前在空间频率范围上成像为中间图像,(b)修改所述波前的相位,(c)检测所述中间图像,以及(d)在所述空间频率范围上生成图像数据。所述基于任务的成像系统还包括图像数据处理装置,其用于处理所述图像数据并执行所述任务。所述图像捕获装置与所述图像数据处理装置协同工作,以使得在所述空间频率范围上,所述基于任务的成像系统的信噪比大于对所述波前不进行相位修改的基于任务的成像系统的信噪比。在另一个实施方式中,用于获得与任务中使用的场景相关的数据的、基于任务的成像系统包括至少一个光学元件,其用于(a)将来自所述场景的电磁能量波前成像为中间图像,以及(b)修改所述波前的相位;以及用于在空间频率范围上检测所述中间图像的检测器。所述至少一个光学元件配置用于与所述第一检测器协同工作,以使得在所述空间频率范围上,所述基于任务的成像系统的信噪比大于对所述波前不进行相位修改的基于任务的成像系统的信噪比。在一个实施方式中,所述任务选自以下各项中的至少之一生物虹膜识别、生物面部识别、用于访问控制的生物识别、用于威胁鉴别的生物识别、条形码阅读、装配线中用于质量控制的成像、光学字符识别、生物成像和用于对象检测的汽车成像。在另一个实施方式中,公开了一种用于生成由基于任务的成像系统的检测器捕获的场景的输出图像的方法。所述检测器包括多个像素,所述场景包括位于对象距离范围内的给定对象距离处的至少一个对象,所述对象距离由所述对象和所述基于任务的成像系统之间的距离限定。所述方法包括在空间频率范围内捕获所述场景的高分辨率图像;将所述高分辨率图像转化为所述场景的图像谱;确定所述基于任务的成像系统在所述对象距离范围内的散焦的光学传递函数;以及确定在所述检测器的所述多个像素上的像素调制传递函数。所述方法还包括将所述图像镨与所述光学传递函数和所述调制传递函数相乘,以生成所述场景的修改的图像谱;将所述修改的图像谱转化为所述场景的修改的图像;以及根据所述修改的图像生成所述输出图像。在另一个实施方式中,用于与基于任务的成像系统一起使用的方法包括将来自场景的电磁能量波前在空间频率范围上成像为所述基于任务的成像系统的中间图像;修改所述电磁能量的波前的相位;检测所述中间图像;以及基于所述中间图像,生成所述空间频率范围上的图像数据,以使得在所述空间频率范围上,所述基于任务的成像系统的信噪比大于不修改相位的基于任务的成像系统的信噪比。在另一个实施方式中,公开了一种用于优化基于任务的成像系统的方法,所述基于任务的成像系统用于获得对象距离范围内的、在任务中使用的场景的数据。所述场景包括位于对象距离范围内的给定对象距离处的至少一个对象,所述对象距离由所述对象和所述基于任务的成像系统之间的距离限定。所述方法包括l)确定所述基于任务的成像系统的目标信噪比;2)指定一组初始的光瞳函数参数和评价函数;3)基于所述评价函数生成一组新的光瞳函数参数;4)计算所述对象距离范围上的信噪比;5)将所述信噪比与所述目标信噪比进行比较;以及6)重复步骤2)到5),直到所述信噪比在数值上至少等于所述目标信噪比。在另一个实施方式中,公开了在用于获得与在任务中使用的场景相关的数据的基于任务的成像系统中的改进。所述基于任务的成像系统包括至少一个光学元件以及检测器,所述光学元件用于将来自所述场景的电磁能量波前成像为空间频率范围内的中间图像,所述检测器用于检测所述中间图像并用于在所述空间频率上生成图像数据。所述改进包括相位修改元件,其用于修改所述波前的相位,以使所述基于任务的成像系统的信噪比大于不使用所述相位修改元件的基于任务的成像系统的信噪比。参照下文中结合以下附图进行的详细描述,可更好地理解本发明。图1示出了根据本发明的一种安全场景,其中可使用基于任务的成像系统;图2示出了根据本发明的一种安全场景,其中示出了共同操作的多功能的基于任务的成像系统;图3示出了根据本发明的一种安全场景,其中示出了共同操作的、多功能的基于任务的成像系统的非永久性装备;图4示出了根据本发明的一种安全场景,其中示出了手持式多功能的基于任务的成像系统;图5是人眼中包括用于生物识别的感兴趣的特征的一部分的图示^图6是人脸中包括用于生物识别的感兴趣的特征的一部分的图图7是将具有和不具有波前编码的成像系统捕获的图像进行比较的一系列2D条形码;图8是将具有和不具有波前编码的成像系统捕获的图像进行比较的一系列灰度图像;图9是将具有和不具有波前编码的成像系统捕获的图像进行比较的一系列二进制图像;图10是不具有波前编码的成像系统捕获的、装配线上的对象的灰度图像;图11是具有波前编码的成像系统捕获的、装配线上的对象的灰度图像;图12示出了根据本发明的一种场景,其中可通过汽车成像使用基于任务的成像系统检测对象;图13是退色过的果蝇胚胎的图像,用于显示有丝分裂过程中的微管,其中示出了生物系统内感兴趣的空间频率可如何加强或维持用于成像和识别处理;图14示出了通过利用可滑动的光学元件配置和可变的波前编码而提供可变的光学功率的成像系统在第一和第二状态下的一对图解说明;图15是示出了根据本发明的基于任务的成像系统的框图16是根据本发明的适用于大间隔距离的虹膜识别的示例性波前编码元件的表面凹陷的等高线标绘图17是作为到用于虹膜识别的成像系统的间隔距离的函数的、对着虹膜的图像的像素数量的图形标绘图18是用于成像系统的、在间隔距离范围上散焦的波的数量的图形标绘图19是根据本发明的用于包括波前编码的成像系统的、模拟的经过焦点的标准化的PSF(点扩展函数)的一系列图形标绘图20是根据本发明的用于包括波前编码的成像系统的、模拟的经过焦点的MTF的一系列图形标绘图21是根据本发明的包括波前编码的示例性成像系统的极性MTF的等高线标绘图22是根据本发明的用于包括波前编码的成像系统的、在所有方向(-7T到+7T)上均衡的、作为间隔距离的函凄t的、感兴趣的空间频率上的平均对比度的图形标绘图23是根据本发明的用于包括波前编码的成像系统的、在所有方向(-7T到+7T)上均;衡的、作为间隔距离的函数的、感兴趣的空间频率上的平均SNR的图形标绘图24是根据本发明的、用于包括波前编码的成像系统的、用于处理由成像系统捕获的图像的滤波器的图形表示;图25示出了根据本发明的、用于生成模拟图像的过程的流程图,所述模拟图像与由包括波前编码的成像系统捕获的图像是可比拟的;图26示出了用于对包括波前编码的基于任务的成像系统进行优化的系统的框图27示出了用于对包括波前编码的基于任务的成像系统进行优化的系统的过程的流程图28示出了由给定的成像系统观察到的原始图像、PSF和下采样图像的相对位置的一系列示意图29详细示出了一对关于下采样的变化原点的混叠的效果;图30示出了根据本发明的一系列模拟虹膜图像,其中并入了波前编码及相关处理的效果;图31示出了对于不具有波前编码的模拟成像系统,作为间隔距离(2米到2.5米)的函数的汉明距离的图形标绘图32示出了根据本发明、用于并入了波前编码元件和相关处理的效果的模拟虹膜图像的、作为间隔距离(2米到2.5米)的函数的汉明距离的图形标绘图,其说明了与不具有波前编码的系统相比,波前编码的存在提供了更宽的识别范围;图33是用于获得虹膜图像的实验设置的示意图34是根据本发明的、用于包括波前编码的成像系统的、实验获得的标准化PSF的一系列图形标绘图35是对应于图34所述的标准化PSF的、实验获得的标准化MTF的一系列图形标绘图36是包括波前编码的示例性成像系统的、实验获得的极性MTF的等高线标绘图37是用于包括波前编码的成像系统的、在所有方向(-7T到+7T)上均衡的、作为间隔距离的函数的、感兴趣的空间频率上的实验获得的平均对比度的图形标绘图;图38是用于使用不具有波前编码的成像系统进行虹膜识别的、作为到虹膜的间隔距离的函数的汉明距离的图形标绘图;以及图39是根据本发明的用于使用包括波前编码的成像系统进行虹膜识别的、作为到虹膜的间隔距离的函数的汉明距离的图形标绘图。具体实施例方式WFC(波前编码)使得能够在大范围光学像差(包括散焦)上实现高质量的成像。例如,WCF可使成像系统能提供在大范围的间隔距离上聚焦的图像。在第60/609,445号美国临时专利申请和第11/225,753号美国专利申请中介绍了WFC和手持式装置与虹膜之间的短距离生物虹膜识别的一种组合。波前编码及相关方法(例如某些计算成像方法)可减少系统特性的某些效应,所述系统特性例如球面和高阶像差、散焦、放大、景深、色差、对准容限、动态振动和温度变化。在WFC中,以能够保持系统在这些特性大范围变化的情况下捕获图像数据的能力的方式,修改成像系统的光瞳函数。此外,WFC还能在提供将在特定的信号处理任务中使用的图像数据的同时,提供视觉上可接受的(例如对于观察人而言)图像。应该注意到,为了清楚地说明,附图中的某些元素不是按比例描绘的。图1示出了在其中可使用基于任务的成像系统的安全场景100。在本爿/^开的范围内,成像系统可理解为照相机、照相才几系统、一个或多个照相机及控制器、具有相关光学元件(透镜等)的照相机、和/或基于任务的成像应用所需的处理器(例如可选地配置有软件的处理器或计算机)的任意组合。在安全场景100中,对象160正从方向150(由箭头指示)向受控的入口点(例如门)110靠近。对象160必须通过在墙115内限定的三个不同的区域140、130和120到达入口点110。在区域120、130和140中的每个区域,都可布置有一个或多个成像系统,例如,区域120中的图像数据捕获装置125、区域130中的图像数据捕获装置135以及区域140中的图像数据捕获装置145。每个图像数据捕获装置可实现一个或多个功能。作为一种选择,全部的成像系统可实现相同的功能。每个图像数据捕获装置将来自该场景的电磁能量的波前成像为中间图像,修改该波前的相位、检测中间图像,并生成感兴趣的大范围空间频率上的图像数据。全部成像系统可实现的示例性功能是用生物测量的方法识别对象160。这种生物识别可包括虹膜识别和/或面部识别。同样,可选地,对象160可携带可由文本或条形码识别的鉴别的徽章或其它物品(未示出)。尽管在下文中根据对特定类型的电磁能量敏感的传感器(例如但不限于,IR(红外光)、LWIR(长波红外光)、RGB(红绿蓝可见光)等)对安全场景IOO和图像数据捕获装置125、135和145进行了讨论,但是,本领域技术人员可以理解,图像数据捕获装置使用的电磁波镨的实际波长可以改变。例如,通常指定为IR系统的图像数据捕获装置可响应于可见光、NIR(近红外光)、MWIR(中波红外光)或LWIR。成像系统还可设计为根据待执行的任务的需要,使用窄波带或宽波带。当对包括波长范围的电磁能量成像时,图像数据捕获装置125、135和145中的每一个都可包括适用于在波长范围的不同部分中成像和修改相位的成像和波前编码光学器件。当对象160远离成像系统时,认为对象160位于该成像系统的远场,例如当对象160在区域140中并由图像数据捕获装置125观察时。在远场中,对象160距离图像数据捕获装置的光瞳足够远,以使得由图像数据捕获装置125拍摄的对象160的图像几乎不存在波前像差误差。在这种情况下,可不必使用波前编码来扩展景深。然而,仍然可将波前编码并入到图像数据捕获装置中,以校正在高放大率下对图像数据捕获装置的操作可能引起的像差。例如,可将用于修改波前相位(即,波前编码)的调制元件集成到图像数据捕获装置中,以使得相对于不具有调制元件的基于任务的成像系统而言,具有调制元件的基于任务的成像系统中的一个或多个图像像差得以减小。如果不进行校正,这种像差可降〗氐感兴趣的空间频率的SNR,而该SNR是成功地完成任务所必需的。在某些情况下,需要高放大率(即,放大)以从安全场景100的较大成像区域中选择用于识别对象160的区域(例如,眼睛或面部)在近距离下,对象160的图像的景深变得对波前像差误差非常敏感,并可受益于WFC的使用以在感兴趣的空间频率上获得识别所需的良好的景深和SNR。这种情况的一个实施例是当对象160进入到图像数据捕获装置(例如安全场景100中的图像数据捕获装置135)的2到4米内时。在这种情况下,为了对对象160进行生物鉴定,可要求图像数据捕获装置135追踪移动目标、自动调整放大率和景深、并维持在感兴趣的空间频率上识别所需的SNR。在对象160和图像数据捕获装置(例如成像系统125、135和145中之一)之间的中间距离上,可具有与近距离时相比更大的景深和更低的所需放大率。这些中间距离可要求中间等级的波前编码,以维持在感兴趣的空间频率上识别所需的SNR。成像系统145、135和125可连续地或并4亍地协同工作,以追踪、隔离对象160的面部或眼睛,然后生物地鉴别对象160。入口点110则可自动地响应于一个或多个成^f象系统145、135和125作出的允许对象访问的正面生物识别结果,而允许对象160访问。作为一种选择,入口点IIO可基于将对象160识别为威胁的负面生物识别,而拒绝其访问。图2示出了安全场景200,其中示出了共同操作的基于任务的多功能成像系统。多通道、多光学器件的成像系统210和220可为对象260的预览和斜视图提供安全场景200。成像系统210和220例如可为彩色可视电磁能量成像装置,例如RGB(三原色)和CMY(减色系统)成像器。可通过有线的(或无线的)路径290将成像系统210和220提供的预览信息传送到集中式的数据库、通信和控制系统270。控制系统270可包括用于与其它系统(未示出)相连的无线通信设备280。作为成像系统(例如成4象系统220)的替代或补充,控制系统270可直接控制访问,并可4呆持访问的记录,例如对象的时间标记记录。这些控制系统和/或成像系统还可包括数据存储单元,其用于存储例如访问记录和人眼可视图像的信息,并同时提供识别数据或其它输出。可使用预览信息来准备用于访问控制事件的询问系统。预览信息可包括但不限于这样的低分辨率图像数据,其中对象260已物理地定位但未被生物识别。预览信息例如可从成像系统210或220传送到包括成像系统230、240和250的多光学器件成像系统装配245,用于例如进一步询问生物识别。成像系统230例如可为形成成像系统装配245的一部分的多通道成^f象系统,其可自我调节(例如,通过路径290内部通信)以实现特殊任务。作为任务的一部分,成像系统230、240和250可通过路径290将图像数据在其相互之间传送。成像系统230例如可包括用于两个分离的电磁能量波段(例如RGB和LWIR)的光学器件。成4象系统装配245还可包括以IR(对应于成^f象系统240)和灰度级(对应于成像系统250)操作的传感器。图3示出了安全场景300,其中示出了共同操作的、多功能的基于任务的成像系统310、320和330的非永久性装备。RGB成像系统310、CMY成像系统320和IR成像系统330可共同操作,以生物地鉴定对象360。在示例性的实施方式中,成像系统310和320提供预览信息,而成像系统330实现虹膜识别。有线的(或无线的)路径390提供成像系统310、320和330之间的互连。无线通信设备380将成像系统与其它系统相连。例如由成4象系统310、320和330、路径390和通信设备380形成的无线的、便携式的、多通道的、多光学器件的系统可用于例如临时安全的应用。图4示出了安全场景400的示意图,其中包括手持式基于任务的多功能成像系统410和420。成像系统410和420设置以观察对象460。成像系统410可为例如低价的手持式便携单通道部件(例如,足够低价以至于认为其可任意使用),并可用于不稳定的安全装备中。成像系统410还可允许通过无线通信配置480的无线通信。成《象系统420可以是和无线通信配置480—起使用的用于识别和记录的手持式便携单通道设置。成像系统410和420可设计为轻便的、抗震的、并能忍受使用和存储条件下的极值温度。下面结合图5-15讨论根据本发明的基于任务的成像的多种应用。结合图5及图16-39详细讨论关于虹膜识别的、示例性的基于任务的成像应用。下文中讨论的关于虹膜识别的方法、过程和装置可适用于其它基于任务的成像系统的设计、优化和使用,例如结合图5-15讨论的系统,即,生物面部识别、用于访问控制的生物识别、用于威胁鉴别的生物识别、条形码阅读、用于装配线中的质量控制的成像、光学字符识别、生物成像和用于对象检测的汽车成像。作为基于任务的生物成像的实施例,图5中示出了人眼500的一部分。人眼500包括瞳孔区510、虹膜区520、睫状肌区530以及脉络膜区540。众所周知,每个人的虹膜区520都是唯一的,并可用于高精度地识别每个人。虹膜区520包含这样的结构,其具有生物识别感兴趣的空间频率,使用波前编码可将这些频率选择性地增强。作为基于任务的生物成像的另一个实施例,图6中示出了人脸600的一部分。人的面部(即使是长相相同的双胞胎)都具有可用于生物识别的区别特征。这些特征例如头部的宽度610、眼睛的间隔620、眼睛的宽度630、鼻子的宽度640、嘴部的宽度650,这些特征可提供特定空间频率,这些频率可使用本公开的详细内容选择性地增强。W.Zhao等人在2003年12月的ACMComputingSurveysVol.35,No.4第399-458页发表的"面部识别文献调查(FaceRecognition:ALiteratureSurvey)"—文和Y.Zana等人2006年1月在ACMTransactionsonAppliedPerception,Vol.3,No.1上发表的"基于极性频率特征的面部识另'J(FaceRecognitionBasedonPolarFrequencyFeatures),,一文中提供了人脸识别主题的最新调查。除了生物成像之外,其它的基于任务的成像问题可受益于包括用于增强特定空间频率的波前编码的成像系统。这种基于任务的成像问题的实施例是条形码阅读。ID(—维)和2D(二维)的条形码都具有图案结构,该图案结构具有规定的周期性并因此具有特定的空间频率。图7示出了一系列2D条形码,将具有波前编码的成像系统捕获的图像和不具有波前编码的成像系统捕获的图像进行了比较。图像710-714是从不具有波前编码的成像系统收集的。图像720-724是从使用了波前编码的系统收集的。由包含波前编码的成像系统捕获的图像显示了少很多的模糊,并因此在到最佳焦距的大范围距离上保留了用于识别的感兴趣的空间频率。仍然参照图7,当讨论非人对象时,通常使用术语"到最佳焦距的距离(distancefrombestfocus)"替4戈例如"间隔距离(standoffdistance)"的术语。这两个术语之间的区别可理解为,"间隔距离"是绝对距离,而"到最佳焦距的距离"是相对距离。也就是说,可通过在最佳焦距上加上/减去超出/小于最佳焦距的距离,来确定用于非人对象的等价间隔距离。图像710和720是在最佳焦距收集的。图像711和721是在超出最佳焦距1cm处收集的。图像712和722是在超出最佳焦距2cm处收集的。图像713和723是在超出最佳焦距3cm处收集的。图像714和724是在超出最佳焦距4cm处收集的。与用不具有波前编码的成像系统拍摄的图像710-714相比,图像720-724显示了少得多的模糊,并因此在到最佳焦距的大范围距离上保留了用于识别的感兴趣的空间频率。图8和图9示出了同一系列图像的两个版本。图8中的一组图像800是灰度图像,图9中的一组图像900是二进制图像。比较这些图像可显示人的视觉和用于光学字符识别的成像之间的对比。人的视觉区分彩色和灰度。对于OCR(光学字符识别)而言,图像则被处理为二进制的黑白图像。与条形码类似,打印的文字也具有特定的空间频率,该频率与字体、字体大小和打字机字体相关。图像810-812和910-912是使用不具有波前编码的成像系统收集的。图像820-822和920-922是使用具有波前编码的成像系统收集的。每一列图像显示了在距最佳焦距不同距离处捕获的相关的相似图像。顶部一行图像810、820、910和920是在小于最佳焦距10cm处收集的。中间一行图像811、821、911和921是在最佳焦距时收集的。底部一行图像812、822、912和922是在大于最佳焦距20cm处收集的。容易看到,尤其是在一组二进制图像900中可见,与由不包括波前编码的系统捕获的图像相比,由包括波前编码的成像系统捕获的图像显示了增强的与文字相关的空间频率。维持文字字符的空间频率可提供更高可能性的光学字符识别。图10和11还比较了使用不具有波前编码的成像系统获得的图像(图10)与使用具有波前编码的成像系统获得的图像(图11)。图10和11包括装配线上的对象的灰度图像1000和1100。对于将识别相似尺寸和形状的对象的机器视觉系统来说,高空间频率信息有利地被成像系统维持或增强。在图10所示的由不具有波前编码的成像系统捕获的图像1000中,中心区域1020被很好地聚焦,而区域1010和1030认为是未聚焦的,说明这些外部区域中的空间频率信息已丟失。相反,在图11所述的由包括波前编码的成像系统捕获的图像1100中,图像1100的全部区域都是聚焦的,并且相对于不具有波前编码的成像系统而言,空间频率信息已得到增强。图12示出了另一类型的基于任务的成像系统,通过在成像系统中包含波长编码,其可受益于增强或维持用于识别的感兴趣的空间频率。图12示出了基于任务的成像系统的应用的场景1200,其尤其用于通过在汽车上成像进行对象检测。在此实施例中,成像系统1240集成在汽车1230中。这类成像系统可使用例如NIR、IR或LWIR电》兹能量波长来提供夜间成像能力。场景1200包括在人行道1220的边界内行走的行人1210。成像系统1240可设计用于识别人行道1220,这样,在识别了人4亍道1220之后,成像系统则可确定行人1210是否出现在人行道上。系统1240识别人行道1220的能力的增加减小了汽车1230与行人1210接触的机会。人行道通常由着色的条紋或砖块或石头的插入排列表示。因此,尽管人行道1220具有由其构造带来的特定空间频率,但是仍然可在成像系统1240中包含波前编码,以维持或增强这些频率,从而帮助成像系统1240进行识别。可受益于增强感兴趣的空间频率的另一类基于任务的成像应用是生物成像。作为生物成像的实施例,图13是果蝇胚胎的荧光图像1300,其同步分裂的细胞核已退色,以显示有丝分裂过程中的微管。该图像已进行反向以便于观看。微管在图像中是多个小黑特征。微管是细胞的微小子部件,并且是直径为24到25纳米的长管。其形成细胞结构中称为细胞骨架的一部分。在有丝分裂过程中,微管动态地形成为束,以创建染色体在其上移动的有丝分裂纺锤体。示例性的有丝分裂纺锤体结构在框1310中示出。线状的纺锤体微管可使用光学显微镜分辨,并通过其特征结构而识别。微管提供细胞分裂的物理结构并传递细胞分裂的动态过程。微管的不适当的机能可导致染色体分隔或分离的缺陷。正确识别微管和其中的任何误差可向研究者提供关于有丝分裂的细节的信息。在例如在有丝分裂过程中用于监控微管的成像系统中增加波前编码可增强或维持感兴趣的空间频率,并有助于不规则微管的识别。如参照图1-4进行的讨论,可要求成像系统适用于多个不同的任务或情况。例如,可首先要求成像系统提供用于面部识别的数据,这种识别可仅需要有限的景深。稍后,可使用同样的系统用于虹膜识别,该虹膜识别需要更大的景深。作为一种选择,可要求成像系统不使用波前编码而捕获传统的(人眼可视的)图像。通过改变焦距(缩放能力)和改变应用的波前编码是用于实现这种可适应的成像系统的两个示例性方法。特别地,图14示出了通过利用可滑动的光学元件配置和可变的波前编码而提供可变的光学功率的成像系统的一对图解说明1400,所述可变的波前编码通过^f吏用两个旋转相位滤波器而实现。在图解说明1402中,成4象系统处于第一状态,且通过孔径1420将从对象1410反射或散发的电磁能量在检测器1470上成像为中间图像1465。根据该中间图像,检测器1470生成该对象中存在的空间频率范围上的图像数据1475(由箭头表示)。可滑动元件1430可与元件1460共同工作,以4务改对象1410的》文大率。附加元件1440和1450可为例如旋转相孑立滤波器,用于改变图〗象的波前编码。可滑动元件1430、附加元件1440和1450和/或元件1460对来自对象的电石兹能量的波前进^f于相位调制(即,波前编码)。可通过DSP(数字信号处理)单元对来自检测器1470的图像数据进一步处理,然后由DSP输出期望的数据。作为一种选择,将来自1470的图像数据1475直接输出为数据1490。可由任一路径或者两个路径将数据1490输出。由DSP1480处理之后的数据1490可产生最后的人眼可视图像,而未由DSP1480处理过的数据1490可用于识别或其它任务。可由可滑动元件1430、附加元件1440和1450中的一个或多个提供电磁能量波前的相位调制,元件1460改变中间图像的特性以使成像系统1400的SNR大于不具有相位调制的成像系统的SNR。作为一种选择或补充,相位调制可配置以与DSP1480共同工作,从而,与其中不具有相位调制和数字信号处理器的相同的系统相比,可减小成^f象系统中的至少一个成係像差(例如,与温度有关的像差和与冲击有关的像差)。在图解说明1404中,成像系统处于放大和波前编码的第二状态。可滑动元件1430和旋转相位滤波器1450(由不同的阴影示出)相对于图解说明1402中相似的元件1430'和1450'来说位于不同的位置,从而生成不同的中间图像1465'、图像数据1475'和数据1490'。尽管结合旋转相位元件进行了讨论,但是可变的波前编码元件可根据反射的或投射的光学元件而设计以改变相位,所述光学元件例如液晶空间光调制器、可变形的反射器、液态透镜、液晶变化器、可滑动光学元件配置、滑动变化器装置、滑动孔径变化器、或者其它机电(即,DLP(数字光处理))或电光装置。根据具体应用,可需要电磁能量波前的相位变化范围为零到十个波或者更多个波。作为一种选择,可使用修改波前的振幅的光学元件来替代相位修改元件。此外,在基于任务的成像系统中可使用适应性系统,例如设计用于生物成像的系统。例如,如图13所示,利用显微镜对微管成像。在这种应用中,可需要在相同的成像系统内观察更大或更小的细胞结构(例如通过改变放大率)。此外,可使用波前编码以校正基于任务的成像系统中的成像像差。例如,可将用于修改波前相位(即,波前编码)的调制元件集成到图像数据捕获装置中,作为可滑动元件1430、附加元件1440和1450以及元件1460中的一个和多个中的至少一个,以4吏得与不使用调制元件的基于任务的成像系统相比,减少基于任务的成像系统中的一个或多个图像像差。图15是示出了基于任务的成像系统1510的框图1500。成像系统1510包括图像数据捕获装置1520和成像数据处理系统1530。示例性的成像系统例如为图2中的成像系统210和220以及与系统控制器270协同工作的成像系统装配245。图像数据捕获装置1520可包括但不限于用于从场景捕获图像数据的装置、系统和处理。可包含在系统1520中的组件例如照射源、光学元件(例如反射、折射和全息元件)、相位修改元件(例如结合图16描述的相位修改元件)、可变光学元件(例如结合图14所述的可变光学元件)、检测器(例如传感器和照相机)以及可需要用来支持图像数据捕获装置的其它附属硬件。图像数据处理装置1530可包括但不限于用于对图像数据捕获装置1520从场景捕获的图像数据进行处理的装置、系统和处理。可包含在系统1530中的组件为基于照相机的处理器、系统控制器(例如图2中的270)、外部计算机、软件代码、操作系统、图像处理软件、波前编码滤波器设计、基于任务的软件程序以及用于记录图像数据的数据存储单元。在大间隔距离的虹膜识别的上下文中,可更清楚地理解在基于任务的成像系统(如上所述)中通过使用波前编码增强或维持感兴趣的空间频率的细节。在待成像的虹膜处于大间隔距离(例如大于2米)的情况下,在生物虹膜识别的实现中出现了一些困难。当待成像的虹膜位于距成像系统大于大约l米时,成像系统应该具有大的孔径,以1)提供高的空间频率的信息,以对虹膜的细节进行成像;以及2)捕获充足的光,以产生高质量的信号。增大成像光学器件的孔径导致了景深的减小,这样,当对象处于大的间隔距离时,波前编码的使用甚至更加有益。此外,对于大间隔距离应用来说,在感兴趣的空间频率范围和感兴趣的散焦范围上的高度调制是期望的。对于这种应用,可使用波前编码来增加调制(与不使用波前编码的情况相比)。在某些虹膜识别系统中可通过例如使用多个照相机来实现增加的视场和景深,所述多个照相机将全部成像体积分为多个较小的成像体积。在这种情况下,感兴趣的视场可使用机械装置(例如反射精或棱镜)转向一个或多个照相机。然而,这种机械装置可需要额外的功率和更多的维护、减小图像捕获处理的速度、并在捕获的图像中引入噪声。增大景深、视场和成像系统的分辨率有助于大间隔距离下的虹膜识别。尽管当前可用的虹膜识别成像系统可能不能同时提供大的视场和高分辨率,但是在成像光学器件中包含波前编码可提高这两方面的性能。虹膜识别系统可使用近红外的照射源,用于提高虹膜图像对比度。这些照射源的照明度应该在整个成像体积上保持在在安全水平,以防止对眼睛造成潜在的伤害。可改进虹膜识别系统的多种波前包括余弦形式、散焦面立方形式、高阶可分离形式和高阶不可分离形式。对于大间隔距离应用来说,在感兴趣的空间频率范围和感兴趣的散焦范围上的高度调制是期望的。示例性的基于任务的成像系统1510是IHONS1.1系统,其用于获得在虹膜识别任务中使用的关于场景的数据。特别地,在IHONS1.1系统中,图像数据捕获装置1520包括光学器件,其用于将来自场景的电磁能量波前成像为中间图像、修改该波前的相位(即,波前编码)、检测该中间图像、以及生成大范围空间频率上的图像数据。例如,图像数据捕获装置1520可包括一个或多个成像光学器件以及波前编码元件。作为一种选择,成像光学器件和波前编码元件可集成到单一的光学元件中,或者波前编码效应可分布在一个或多个成像光学器件上。同样,中间图像的检测和图像数据的生成可由单一的检测器实现,其用于将入射到其上的电^f兹能量转化为电子数据。此外,IHONS1.1系统的图像数据处理装置1530与图像捕获系统1520协同工作以解决由波前编码元件对波前的修改,并进一步实现虹膜图像识别的任务。下面,结合图16-39和大间隔距离下的虹膜识别任务详细描述IHONS1.1系统的细节。用于大间隔距离下的虹膜识别的WFC设计是一种由高阶不可分离的多项式函数,被指定为"IHONS(虹膜高阶不可分离)"。这种设计提供了风险最小化和性能之间的折衷。IHONS设计与用于较短间隔距离下的虹膜识别的波前编码应用的"IHOS(虹膜高阶可分离)"设计具有相似性,所述IHOS设计例如R.Narayanswamy等人在Appl.Op.,vol.44,no.5,pp.701-712上发表的"扩展用于生物虹膜识别的成^f象体积(Extendingtheimagingvolumeforbiometricirisrecognition),,--^文中所介绍的设计。IHOS设计特别地涉及用于波前编码的相位改变表面的使用,其中相位改变表面在数学上表示为<formula>formulaseeoriginaldocumentpage27</formula>公式i其中,f(x)和f(y)是高阶多项式。尽管IHOS设计适用于小间隔距离下的虹膜识别,但是IHONS设计能够用少量的滤波器在操作间隔距离范围上实现WFC调制。表征IHONS设计的一种光瞳相位函数的数学描述是:N公式2其中,1)^是在每个标准空间坐标x和y(即,通过在每个维度x和y上将入射光瞳的半径(r)划分到0到l之间的范围,将整个间域标准化)处的相位函数;2)^是厄米的,也就是每个系数=;3)当i-0或j二0时,至少某些k1,/人而提供x和y上相对高的MTF(调制传递函数);以及4)当i-O且j#0时,的值可由^^式3确定<formula>formulaseeoriginaldocumentpage28</formula>公式在图17到图41的实施例中使用的示例性"IHONS1.1"设计在公式1定义的IHONS设计中使用具体的系数。a&项如下定义。前四项对应于可分离项c<0,3)=o<3,0)=23.394ce(0,5)=c<5,0)=60.108a(0,7)=o<7,0)=-126.421a(0,9)=《9,0)=82.128其余四项对应于不可分离项a(3,3)=5.021c<5,5)=-21.418a(7,7)=-310.749c<9,9)=-1100,336图16示出了示例性的IHONS1.1CaF2(氟化钩)WFC元件的表面标绘图1600,该元件适用于在图15的成像系统1510中的图像数据捕获装置1520中使用。例如,IHONS1.1WFC元件可集成到图14所示的成4象系统中,作为可滑动元件1430、附加元件1440和1450、和/或元件1460,用于调制波前的相位。标绘图1600的4黄坐标与纵坐标均以毫米为单位。标绘图右侧的灰度条单位为微米。每个等高线代表从为零值的中心区域1610开始的大约2微米的凹陷差。区域1620的凹陷值为大约12微米。区域1630的凹陷值大约为-12微米。对于入=840nm的19.3个波的总路径长度差异来说,波峰到波谷表面的总凹陷差为24.4微米。IHONS1.1WFC元件可通过例如快速伺服金刚石切割制造工艺制造。假定透镜元件之间具有小的间隙,可选择CaF2作为衬底材料。假定具有大的波形因素(例如,30mm直径的元件具有5mm的厚度),作为一种可选的材料,PMMA(聚曱基丙烯酸曱酯)可更低价,但其可能更容易变形。初看起来,标绘图1600可能与可分离的IHOS设计没有太大区别。然而,所示的IHONSl.l设计包括截项系数(crosstermcoefficient),其提供了值得注意的离轴调制,从而增大了极性SNR,下文将对此进行描述。已知人的虹膜的直径平均为12mm。为了帮助虹膜识别,应该在高的空间频率对虹膜的结构进行采样。因此,虹膜识别算法中虹膜直径上通常具有的推荐的最少数量的像素。图17是对着虹膜的图像的、图像传感器阵列的像素数量的图形标绘图1700,该像素数量为间隔距离的函数。图形标绘图1700中,以米为单位的间隔距离为横坐标,虹膜直径上的像素数量为纵坐标。图17示出了虹膜的图像随着间隔距离的减小而变大,使得该图像对着图像传感器阵列的更多像素。尽管内插过程并不向虹膜图像中增加信息,但是内插的确使用于识别的虹膜图像数据达到更好的条件,从而在虹膜识别中带来更好的辨别。图18示出了作为间隔距离范围的函数的、散焦波的数量的图形标绘图1800。图形标绘图1800的横坐标为以米为单位的间隔距离,纵坐标为散焦的波的数量。间隔距离为2.1和2.4米的垂直虚线指出了选择用于本发明的虹膜识别成像系统的一个实施例中的间隔距离。并不选择使距离范围内散焦的波的最大数量最小化的最佳焦距位置,而是选择这样的范围,使得当对象更近时存在更多散焦。尽管MTF随着用于包含波前编码的成像系统的空间频率单调减小,但是,由于当虹膜远离成像系统时需要更高的空间频率,因此,这种选择均衡了整个间隔距离范围上的可用SNR。如图18所示,对于感兴趣的间隔距离,不多于5个散焦的波需要被校正。现在参照图19-21,通过计算分析从包括IHONS1.1波前编码元件的^f莫拟成^f象系统(例如,将在下文讨论的图33的成l象系统3300)得到的PSF和MTF,确定期望的系统性能。检查PSF在成像体积上的紧致性和不变性。检查MTF在以上所述的期望间隔距离范围中感兴趣的空间频带中的调制强度。如图21的极性MTF所示,作为间隔距离的函数并在全部角度方位上对感兴趣的频率上的调制(对比度)和SNR进行检查。图19示出了用于IHONS1.1成像系统的、在不同间隔距离(以米为单位标记在每个子图像的左上角)下的一组模拟的经过焦点的标准化的PSF1900。为了清楚起见,PSF用对数灰度化和门限化。如图18所示,最佳焦距为2.27m。在成像系统中用一个透镜测量的彗形像差也包含在IHONS1.1成像系统中,但是这一特征并不是IHONS1.1成像系统中固有的。值得注意地,图19中示出的用IHONS1.1成像系统得到的PSF与用IHOS成像系统得到的矩形可分离设计中所期望的PSF是类似的。也就是说,可期望地,从IHONS1.1成像系统中得到的PSF不随着间隔距离的变化而明显改变,从而允许在需要的间隔距离范围上仅使用少量滤波器就实现大间隔距离的虹膜识别。图20示出了用于IHONS1.1成像系统的、在不同间隔距离(以米为单位标记在每个子图像的左上角)下的一组模拟的经过焦点的MTF2000。为了清楚起见,MTF用对数灰度化和门限化。同样,尽管彗形像差并不是IHONS1.1成像系统的固有特征,但是,为了完整性的要求,模拟中仍然包括了彗形像差的采样。可以注意到,图20中,在垂直和水平方向都存在高度调制,但是,与完全可分离设计(例如,IHOS)相反,对角线和非对角线调制略微变大,尤其是当对象远离最佳焦距而期望更多的调制时。IHONS1.1成^f象系统的MTF的这一特性与图19所示的PSF的緩慢变化相结合,说明了在此大间隔距离下的虹膜识别系统的特定应用中,IHONS1.1系统提供的弱不可分离设计相对于IHOS系统的优点。图21示出了IHONS1.1系统的极性MTF等高线标绘图。等高线标绘图2100的横坐标是以米为单位的间隔距离,纵坐标为以弧度为单位的极角。图中的灰度等高线表示感兴趣的空间频率(即,与0.1mm.的临界采样对象特征相关的频率)作为方向(纵轴)和间隔距离(横轴)的函数的调制,其中考虑了作为间隔距离的函数的空间频率变化。为了实现大间隔距离下的虹膜识别,可论证地,所有方向都同等重要。图22是提供精确性能测量的、所有方向上均衡的平均对比度的标绘图2200。标绘图2200的横坐标是以米为单位的间隔距离,纵坐标是对比度。图22示出了对于本发明的IHONS1.1系统,在所有方向(-7T到+7T)上均衡的、作为间隔距离的函数的、感兴趣的空间频率上的平均对比度。如图22所示,感兴趣的最高空间频率(对应于0.1mm的对象细节)上的对比度较高。图23示出了平均SNR与间隔距离的相关标绘图。可计算平均对比度并将其用作系统性能的定量测量,平均SNR更是如此。图24示出了使用根据本发明的IHONS1.1成像系统、用于处理捕获的WFC图像的滤波器的图形表示2400。使用接近最佳焦距位置捕获的三个PSF的平均值由Wiener参数方法建立该滤波器。Wiener滤波器参数包括噪声参数250和对象细节1.2。得到的噪声增益为0.54,表示该滤波器是平滑的。图像模拟是基于任务的成像系统(例如,虹膜识别)的设计过程中的重要步骤。图25示出了说明用于生成模拟图像的处理2500的流程图。处理2500可在例如图15的图像数据处理装置1530中实现。例如,图像数据处理装置1530可包括用于实现处理2500的软件或固件。用于模拟图像的处理2500从准备步骤2505开始,在该步骤中,实现系统初始化和其它任务。在步骤2515,对包括空间频率范围的高分辨率输入的图像数据2510进行傅立叶变换(例如,通过FFT(快速傅立叶变换)方法),以得到傅立叶空间的输入图像镨2520。确定成像系统的高分辨率散焦OTF数据2525和高分辨率像素MTF数据2535,然后在步骤2530将其与输入图像谱2520相乘,以生成高分辨率图像的修改的图像谱。通过像素MTF的相乘,可考虑到像素采样和低通滤波。OTF数据可包括测得的采样透镜的波前误差。由于散焦根据间隔距离(do)而变化,因此可对OTF进行内插以具有与高分辨率图像的谱相同的矩阵大小。对于在反傅立叶变换步骤2545中实现图像数据的实空间转换,知道矩阵大小也是重要的。可通过例如改变成像系统内的波前编码元件来修改OTF,以使输出图像中的SNR和不具有SNR的其它系统相比得到进一步增加。在步骤2545,通过反傅立叶变换将来自步骤2530的修改的图像语转化为修改的图像。然后使用该修改的图像生成输出图像。在步骤2550,通过下采样将图像大小调整为最终的分辨率,从而考虑可变的放大率(例如,由于对象距离的变化)。通过下釆样而不对图像进行低通滤波,也考虑到混叠。作为一种选择,下采样可包括对给定下采样原点的修改的图像,和通常使用的采样积进行处理;然后通过在下采样过程中改变下采样原点生成调整过大小的图像的多个混叠版本。在下文关于图28和29的讨论中,对适当点的下采样和原点变化的处理进行讨论。虹膜识别算法可需要具有特定大小(例如,640x480像素)的图像。由于原始图像可为高放大率下的图像,因此包括虹膜的区域可小于该大小。在步骤2555中,可对图像进行零填充,但是这一处理可导致图像周围不真实的边缘。为了得到更真实的图像,可对模拟图像填充一份其外部边缘线。边缘线是图像的最高一行、最底一行、最左一列和最右一列。可复制这些边缘线,直到图像充满640x480,从而得到围绕边缘的条紋。图30示出了这些边缘效应的实施例。最后,在步骤2560,使用实际检测器中存在的相同的噪声参数(例如,充分计数和读噪声计数),在图像中加入泊松分布的散粒噪声和高斯分布的读噪声。其结果是输出图像2565,其除了不表示检测器饱和外,其余均为IHONS1.1系统实际捕获的图像的可靠重合。然后可用所选的滤波器内核对输出图像滤波,产生如图30所示的图像。模拟过程不考虑在光瞳内部和图像的其它区域中的镜面反射点处出现的检测饱和。图25的模拟算法包括散焦图像上的波前编码效应,以使得可在模拟的图像上实现算法识别,因而允许整体系统性能的预见。图26示出了用于优化方法的框图2600,该方法中使用例如极性SNR的给定参数来优化基于任务的成像系统。图26与上文引用的第11/000,819号美国专利申请的图2相同,并将其复制到本文中以说明光学和数字系统设计优化的一般方法。设计优化系统2612可用于优化系统设计2613,包括光学系统设计2614和数字系统设计2615。例如,光学系统设计可为波前编码元件的初始光学规则,如图16所示。数字系统设计2615可为用于对来自光学系统的图像进行信号处理的滤波器的初始设计,如图24所示。设计优化系统2612可用于生成优化的系统设计2630。优化的系统设计2630可包括优化的光学系统设计2632和优化的数字系统设计2634。示例性的优化设计为本文描述的IHONS1.1设计。将系统设计2613输入到i殳计优化系统2612,以创建系统才莫型2616。系统模型2616示例性地包括光学系统模型2617和数字系统才莫型2618,模型2617和2618分别表示光学系统设计2614和数字系统^L计2615。设计优化系统2612可才莫拟系统才莫型2616的功能,以生成输出2619。输出2619例如可包括由光学系统模型2617的^^莫拟生成的光瞳图和与数字系统模型2618的相关联的比特流信息。设计优化系统2612包括分析器2620,其对输出2619进行处理以生成分数2622。如上,分析器2620可利用一个或多个度量确定分数2622。度量(metric)2621适合于光学系统模型2617与数字系统模型2618。可由分析器2620对来自每个度量2621的结果进行加权并处理,以形成分数2622。对每个度量2621的加权例如可由用户指定和/或用算法确定。优化器2623对分数2622进行处理并确定系统模型2616相对于目标2626的性能,目标2626也可由用户指定(例如,用户定义的目标2624,如目标极性SNR值)用于作为优化器2623的输入。如果系统模型2616未优化,则设计优化系统响应于优化器2623的输出2625以修改光学系统模型和/或响应于优化器2623的输出2638以修改数字系统模型2618。如果系统模型2617或2618的任一个被修改,则再次通过设计优化系统2612模拟系统才莫型2616,且由分析器2620对输出2619打分以生成新的分数2622。优化器2623因此继续反复地修改系统才莫型2617和2618,直到达到i殳计目标2626。对于虹膜识别,一个目标例如优化感兴趣的一组空间频率内的极性MTF<直。达到设计目标2626之后,设计优化系统2612则可输出由优化器2623修改的、基于系统模型2616的优化的系统设计2630。如图所示,优化的系统设计2630包括优化的光学系统设计2632和优化的数字系统设计2634。优化的系统设计2630因此可包括指定满足目标2626的电光系统的设计对象的参数。设计优化系统2612可输出预计的性能2640,该性能例如概括了优化的系统设计2630的能力。图27所示的流程图描述了示例性的优化方法2700,其使用极性SNR以优化基于任务的成像系统。优化方法2700例如可作为图15的图像数据处理装置1530的一部分实现。也就是说,图像数据处理装置1530可包括与图像数据捕获系统1520协同工作、用于实现优化方法2700的软件或固件。优化方法2700从准备步骤2705开始,在该步骤中,实现系统初始化和其它4壬务。由用户确定光学评价函数(meritfunction)2710的初始值,并将其作为修改的光学评价函数2715的初始值。在步骤2725,将光瞳函数参数2720的初始值和修改的光学评价函数2715的值一起输入光学设计软件包中用于优化,所述软件例如ZEMAX⑧、CODEV⑧或OSLO(或者本领域已知的其它程序)。然后可通过光学设计软件修改光瞳函数参数,并提供^f务改的光瞳函数参数2730。在步骤2735和2745中,可考虑到场景中对象距离(d0)的期望范围而计算成像系统的OTF和极性SNR。然后,在步骤2755,将计算出的极性SNR与目标极性SNR2750相比较,对于许多应用来说,目标极性SNR2750可以是非常简单的函数。例如,目标极性SNR可为表示在成像系统的操作范围内所需的SNR的最小值的直线。接着,如果计算出的SNR与期望的目标极性SNR2750足够接近(其中设计者确定怎样为足够接近)、或者如果计算出的SNR大于期望的SNR,那么,优化完成且该处理进入到步骤2760并结束。否则,处理通过环路2765进行,以使设计者可创建新的光学评价函数2725,以使设计者可创建新的修改的光学评^介函数2725以解决计算出的才及性SNR中的不足(例如在给定方向增加成像系统的MTF的目标调制)。可反复进行优化直到达到设计目标。图28是示出了由成像系统观察到的原始图像、PSF和下采样图像的相对位置的一系列示意图2800。原始的高分辨率图像2810示为小方块的2D阵列。如果对图像2810临界采样,则可将其考虑为源场景的理想表示。下采样的低分辨率图像(2820、2820'或2820")可表示小于源场景的临界数字化版本的图像。下采样低分辨率图像(2820、2820'或2820")示为封入了高分辨率图像的9个更小方块的2D方块阵列。PSF2830示为具有径向辐条和同心环的黑色中心点。PSF2830可与图像2810内的具体像素相关联。在此实施例中,当进行下采样时,两个图像的相对原点可移位到9个可能位置中的任意一个(3x3到1xl下采样)。这种移位可改变PSF2830到新的图像(2820、2820'或2820")的映射。这种移位还可使新的图<象之间以及新的图<象相对于旧的图像产生不同量的混叠。可计算出全部的混叠位置,并将其用于图26中的分析器2620作为优化方法的一部分,或者将其用于图25的模拟过程中的步骤2550。图29是详细说明关于下采样中的变化原点的混叠效应的一组标绘图2900。标绘图2902是条形码状的图案2910的2D模拟。图案2910在形成图案2910的矩形边界内的值为1。全部其它值为0。虚线2920是扫描线,其被采样以创建用于标绘图2904的数据。标绘图2904示出了与三个可变地移位的扫描线相关联的曲线。点线(曲线2930)表示零像素的移位。实线(曲线2940)表示一个像素的移位。虛线(曲线2950)表示两个^f象素的移位。为了生成每个曲线(2930、2940和2950),具有示例性的PDF的适当移位与图案2910的数据进行巻积操作,然后沿着扫描线2920对巻积的绕图像进行采样。通过比较曲线2930、2940和2950,可以看到,图案2910内的形状得以4f改。图30示出了一组模拟的最终图像3000,其中并入了波前编码元件和相关处理的效应。由一组优化的滤波器参数对最终图<象进行处理,所述参数从这些图像的中间版本确定,例如使用优化2700得到。如图19和20分别所示,图30中的子图像中的间隔距离在2米到2.5米之间变化。每个子图像的间隔距离都在该子图像的左上角示出。然后由35虹膜识别系统软件对捕获的WFC图像进行处理,提供滤波器质量的度量。最初,在间隔距离范围内使用多个滤波器。然而,已经确定,可使用图24所示的滤波器满足全部成像要求。滤波器数量的这种减少相对于现有技术提供了显著的优势。然后由虹膜识别算法识别通过模拟获得的滤波图像。并生成每个虹膜图像的虹膜分数(例如修改的HD(汉明距离))。图31示出了对于不具有波前编码的模拟成像系统,得到的虹膜分数作为间隔距离的函数的标绘图3100。标绘图3100的4黄坐标为以米为单位的间隔距离,其纵坐标为汉明距离。在HD值0.31附近的水平实线示出了肯定的识别所需的最小HD。从大约2.17到2.36米的间隔距离的值限定了通过虹膜识别系统可正确识别对象的区域。为了对IHONS1.1系统进行评估,创建了不同的模板。模板是对对象的虹膜的平均理想化。图31示出了用于识别相同对象的两个模板的HD分数。菱形点示出了与模板A相关的数据。圆形点示出了与模板B相关的数据。两组数据都是在多次测量上的平均。模板B似乎提供稍微更好的结果,这是因为其虹膜识别基于稍微更好的图像(即,更大的可视虹膜区域)。不具有波前编码的模拟系统的识别范围大约为18cm。图32示出了模拟IHONS1.1系统得到的虹膜分数的标绘图3200。标绘图3200的横坐标为以米为单位的间隔距离,其纵坐标为HD。图中菱形点示出了与模板A相关的数据。圆形点示出了与模板B相关的数据。两组数据均为多次测量的平均。图32指示出当使用IHONS1.1时,使用单一的滤波器就可实现感兴趣的整个范围上的虹膜识别。这种模拟结果在设计过程的最后用于验证所选的设计(包括但不限于滤波器和WFC元件)如期望地工作。图33示出了用于验证IHONS1.1系统的实验设置3300。在用于虹膜识别验证的原型基于任务的成像系统中,图像数据捕获装置包括透镜系统3320和照相机3330(例如CCD阵列),透4竟系统3320则包括IHONS波前编码元件(例如图16所示)以及具有30mm入射光瞳直径和210mm有效焦距的广角透镜。透镜系统3320和照相机3330安装在自动轨道系统3340上。对象3310将他的或她的头搁在距离轨道系统33402.05米远的三角架上。照相机3330是分辨率为2048x2048的10比特CCD阵列。透镜系统3320进一步包括包含两个照明装配的照明设备,每个照明装配包括四个中心波长为840nm的LED,所述照明设备由Fresnel透镜校准以得到大约2mW/cm2的总辐照度。透镜系统3320将来自对象3310的电磁能量波前在CCD阵列3330上成像为中间图像,同时还修改波前的相位(即,波前编码)。这种相位修改的设计使得得到的包括波前编码的系统的SNR大于不具有波前编码的成像系统的SNR。使用安装在迷你轨道顶端的光学立柱使眼睛个别地关于成像系统的^L场对准。轨道系统3340包括计算^L控制的同轴螺旋轨道,其用于改变间隔距离。轨道系统3340由控制器3350控制,控制器3350响应于计算机3360执行MATLAB⑧脚本,该脚本在2.05米到2.45米之间的26个等距位置捕获十个短序列的图像。继续参照图33,图像数据处理装置也由计算机3360控制。另一个MATLAB⑧脚本使用结合图24所述的内核对图像进行解码。一种商业上可用的软件包使用Daugman的算法的变体实现虹膜识别任务(见J.G.Daugman的"Theimportanceofbeingrandom:statisticalprinciplesofirisrecognition",Part.Rec,36,279-291(2003))。将图像存储到数据库中,然后由另一个MATLAB⑧脚本对其进行分析,该脚本对图像进行处理并基于预先记录的高分辨率模板对每个图像指定分数。通过改变透镜(改变为不具有波前编码效应的透镜)和重新调焦,将实验设置3300从具有波前编码转变为不具有波前编码。类似的设置捕获PSF,一个区别在于将对象替换为10jimi的针孔。该针孔由白光源照射,所述白光源被过滤以阻止其可见光谱而使近红外光通过。图34示出了根据本发明的、使用IHONS1.1成像系统得到的用于间隔距离范围(在每个子图像的左上角用米指示)的一系列实验测量的PSF。对光源强度和照相机的曝光时间进行调整以使PSF保持接近饱和,从而使用系统的最大动态范围。通过将在每个位置收集的15个PSF平均使噪声减小。照相机使用10比特传感器,且通过将像素值小于18的全部像素的值减小为零,实现非线性的噪声去除。在全部轨道范围内(2.05m到2.45m)的26个等距位置收集PSF。这26个PSF位置概括在图34所示的9个等距PSF中。(图34中的)这些实验PSF和(图19中的)模拟PSF之间的类似指示了设计的良好再现,尤其是考虑到噪声去除平均经常具有平滑PSF的不可期望的效果。系统性能在图35中进一步说明,其中示出了对实验PSF傅立叶变换计算出的一系列标准化的实验MTF。可以注意到,图35的实验MTF与图20的模拟MTF类似,并且除了在间隔距离范围的远端(2.45米)具有轻微的下降之外,在整个间隔距离范围内都维持了高的轴上调制。在图36的极性MTF标绘图3600中,这种轴上调制的下降更加直观。极性MTF标绘图3600示出了全部方向上随距离变化的调制仅在感兴趣的最大空间频率处的调制,其中考虑到了范围内对象放大率的变化。同样,在图36所示的图形标绘图和图21所示的模拟的极性MTF标绘图之间具有显著的类似之处。尽管标绘图2100和3600的细节不同,但是在图21和36中都具有强的轴上响应(0、土ir/2和士ir方向上)和离轴方向上的所需大小。最后,图37示出了在感兴趣的最高空间频率、全部方向上的平均对比度的图形标绘图3700。该标绘图对假定全部方向上的虹膜对象分析同等重要的虹膜识别情况具有特别的兴趣。图37的标绘图清楚示出了远端区域对比度的不期望的下降。幸运地,这种下降发生的范围已超出了目标范围,并可通过将最佳焦距移动到更远而使这种下降部分地偏移(尽管这样会对近端范围带来损害)。图37的标绘图还指示出,可通过配置WFC元件以使两个峰值移动到相距更远,从而增加总的范围(尽管以减小2.17m处的局部最小值为代价),来改进未来的设计。除了图37中的对比度峰值之间的距离更窄之外(在模拟的和实验的标绘图之间的比例尺具有小的变化),图37与图22的模拟标绘图之间的比较也显示了值得注意的类似。在虹膜识别中使用波前编码的效果可概括为使得能对用于更大范围识别的HD进行折衷。作为WFC提供的散焦的函数的调制(对比度)的更宽分布可解释这种折衷。为了精确估计这种折衷,使影响HD的全部其它参数保持恒定是重要的。这些参数包括但不限于l)照明度;2)眼睑的位置;3)光路上眼镜、隐形眼镜或其它物体的存在;以及4)对象的运动。可为光学成像条件执行这种估计,其中在所述光学成像条件中,在图像捕获的过程中,对象处于静止并且眼睛净开直接看着照相机。使用高强度的、受到眼睛安全级别限制的活动的近红外照明。这些参数的任何变化都将转化为测量的SNR的下降,或者更可能地转化为虹膜识别软件不能正确地从得到的图像中分割出虹膜部分。在低SNR情况下(例如,接近间隔距离范围的边缘),对实验参数的分割的灵敏度尤其高。应该注意到,大多数虹膜识别算法喜欢用虹膜图像中的大约200个像素进行操作。给定实际的成像条件下的成像参数,则虹膜中的像素数量在最远范围处可减小到小于150个,如图17所示。为了补偿这种效果,在实验中用1.18的内插因子对全部图像线性地内插。由于在实际的虹膜识别系统中不可能具有到对象的虹膜的精确距离,因此全部图像同等地内插,也就是,信号处理应该与范围无关。内插因子由经验确定,其可为进一步优化的对象。然而,应该注意到,与不具有内插的系统相比,具有内插的系统始终显示出更高的性能。图38示出了对于不具有波前编码的成像系统,汉明距离作为到虹膜的距离(从虹膜到成像系统的第一玻璃表面的测量距离)的函数的标绘图。图38中,具有尖锐过渡区域的窄凹部的存在是值得注意的,其中,窄凹部对应于散焦引起识别算法使用的空间频率处的调制(对比度)下降的区域。接近于最佳焦距的平坦区域(2.2到2.3米)对应于散焦引起高于该算法使用的全部空间频率的空间频率处的降低的区域。在每个对象位置,对每个眼睛捕获十个图像,对这些图像进行处理,并将其与虹膜编码进行比较。对应于所述虹膜编码,眼睛向我们提供标绘图3800所示的用于每个眼睛的平均HD。由实线连接的圓圏指定右眼,由点线连接的方块指定左眼。根据图38的标绘图,可推导出,不具有波前编码的成像系统在0.2的最大HD处(HD-0.2处的点划线)产生14.9cm的识别范围。通过与图31所示的模拟的汉明距离标绘图进行比较,图38的标绘图还能验证模拟的图像的精确性。图39示出了对于包括波前编码的成像系统,作为虹膜距离的函数的HD的图形标绘图3900。图39包括作为间隔距离范围的函数的汉明距离的标绘图,所述间隔距离范围用于使用IHONS1.1成4象系统实验地估计的虹膜识别系统,其中示出了识别范围加倍到大约40cm。由实线连接的圆圈指定右眼,用点线连接的方块指定左眼。在这种情况下,示出了浅且宽的凹部(从2.05到2.45米的间隔距离),从而有效地表明了用于扩展景深的最低HD的折衷。如果用SNR描述,这种折衷则可更好地理解。如果超过的SNR足够高,则可将其减小以扩展景深而不对HD产生任何明显的效果。另一方面,如果SNR刚好超过用于校正虹膜识别的最佳值,如同在设计为不具有WFC的系统中通常所具有的一样,那么,景深的任何扩展都将转化为最小HD的下降。可以注意到,包括WFC的成像系统在0.2的最大HD处(HD-0.2的点划线)提供了几乎40cm的识别范围。此外,与不具有波前编码的成像系统相比,在包括波前编码的成像系统中,给定位置的汉明距离的方差显著增加。最后,通过与图32所示的标绘图比较,图39的标绘图允许验证模拟图像的精确性,从而提供使用模拟图像分析未来的WFC设计的可信度如上所述,WFC可对用于当前任务的扩展范围的HD(或SNR)有效地折衷。当系统具有过度的SNR时,这种折衷尤其具有吸引力,从而允许例如增加虹膜识别范围而并不显著增加HD。在适当情况下,包括WFC的成像系统中的识别范围可大于不具有波前编码的成像系统的两倍,而其主要局限性在于,对于由WFC捕获的图像,虹膜识别算法偶尔不能正确地分割出虹膜图像。这一缺陷可例如由对光瞳中出现的镜面反射的形状的算法假设而引起。这些反射假设在用包括WFC的成像系统捕获时具有不同形状,而对于最佳性能应该考虑到这些形状。此外,当在散焦上维持几乎不变的PDF时(其为可分离设计的特性),相位元素的弱不可分离形式产生稍微更大的调制离轴(其为不可分离设计的特性)。这种折衷得到比使用完全可分离设计得到解决方案更有利的方案,并在全部设计范围上采用单一的滤波器满足了全部设计目标。说明,但是应该理解,本发明所述的系统可采用具有位于各种位置和相互方向的各种组件的各种具体配置,并仍然保持在本发明的精神和范围之内。可在本文所述的基于任务的成像系统中进行上述和其它变化,而不偏离本文的范围。因此,应该理解,以上说明中包含的或者附图中示出的内容应该解释为示例性的,而不作为限制。以下权利要求趋向于覆盖本文所述的全部一般的和具体的性质、以及本文提出的方法和系统的范围的全部论述,本文的全部性质和论述在语言上都可落入权利要求的保护范围中。此外,可使用适当的等价物替代或补充各种组件,这些替代的或补充的组件的功能和使用保持为本领域技术人员所熟悉的,并因此认为其落入本发明的保护范围。例如,尽管上述每个实施方式主要对于弱可分离相位函数的情况而讨论,但是提供其它相位函数的WFC元件也可用于基于任务的成像系统中,并且,相对于当前可用的不具有WFC的基于任务的成像系统,其仍然能提供改进。因此,提供的实施例应认为是示例性而非限制性的,并且本公开不限于本文提供的细节,而是可在权利要求的范围内修改。权利要求1.一种基于任务的成像系统,其用于获得与任务中使用的场景相关的数据,所述成像系统包括图像数据捕获装置,其用于(a)将来自所述场景的电磁能量的波前在空间频率范围上成像为中间图像,(b)修改所述波前的相位,(c)检测所述中间图像,以及(d)在所述空间频率范围上生成图像数据;以及图像数据处理装置,其用于处理所述图像数据并执行所述任务,所述图像捕获装置与所述图像数据处理装置协同工作,以使得在所述空间频率范围上,所述基于任务的成像系统的信噪比大于对所述波前不进行相位修改的基于任务的成像系统的信噪比。2.如权利要求1所述的基于任务的成像系统,其中所述任务选自以下各项中的至少之一生物虹膜识别、生物面部识别、用于访问控制的生物识别、用于威胁鉴别的生物识别、条形码阅读、装配线中用于质量控制的成像、光学字符识别、生物成像和用于对象检测的汽车成像。3.—种基于任务的成像系统,用于获得与任务中使用的场景相关的数据,所述成像系统包括至少一个光学元件,其用于(a)将来自所述场景的电磁能量波前成像为中间图像,以及(b)修改所述波前的相位;以及第一检测器,在空间频率范围上检测所述中间图像;所述至少一个光学元件配置用于与所述第一;f企测器协同工作,以使得在所述空间频率范围上,所述基于任务的成像系统的信噪比大于对所述波前不进行相位修改的基于任务的成像系统的信噪比。4.如权利要求3所述的基于任务的成像系统,其中所述任务选自以下各项中的至少之一生物虹膜识别、生物面部识别、用于访问控制的生物识别、用于威胁鉴别的生物识别、条形码阅读、装配线中用于质量控制的成像、光学字符识别、生物成像和用于对象检测的汽车成像。5.如权利要求3所述的基于任务的成像系统,进一步包括用于执行所述任务的图像处理装置。6.如权利要求5所述的基于任务的成像系统,进一步包括用于修改所述波前的相位的调制元件,其中所述调制元件和所述图像处理装置协同工作,以使得与不具有所述调制元件的基于任务的成像系统和所述图像处理装置相比,减少所述基于任务的成像系统中的至少一个成像像差。7.如权利要求6所述的基于任务的成像系统,其中所述成像像差是温度相关像差和冲击感生像差中的一个或多个。8.如权利要求3所述的基于任务的成像系统,进一步包括第二检测器,其与所述第一检测器电子通信,以使得所述图像数据能在所述第一检测器和所示第二检测器之间传递。9.如权利要求3所述的基于任务的成像系统,其中,相位修改由如下形式的光瞳函数表征<formula>formulaseeoriginaldocumentpage3</formula>其中,x和y是标准化的空间坐标,r是入射光瞳的半径,"("力是用于指数i和j的光瞳函数系数,且其中,当指数i和j中的至少之一等于0时,系数"(z',力中的至少之一具有至少为l的值。10.如权利要求9所述的基于任务的成像系统,其中所述光瞳函数系数给定为c<0,3)=O!(3,0)=23.394,c<0,5)=a(5,0)=60.108,c<0,7)=c<7,0)=-126.421,c<0,9)=c<9,0)=82.128,c<3,3)=5.021,c<5,5)=-21.418,c<7,7)=-310.749,以及c<9,9)=-1100.336。11.如权利要求3所述的基于任务的成像系统,其中所述至少一个光学元件是可变光学元件。12.如权利要求11所述的基于任务的成像系统,其中所述可变光学元件提供所述波前的相位的可变修改。13.如权利要求12所述的基于任务的成像系统,其中所述可变光学元件包括自适应光学器件和空间光调制器中的至少之一。14.如权利要求11所述的基于任务的成像系统,其中所述可变光学元件提供所述中间图像的可变缩》欠。15.如权利要求11所述的基于任务的成像系统,其中所述可变光学元件包括选自以下各项中的至少之一液态透镜、液晶变化器、可滑动光学元件配置、滑动变化器装置和滑动孔径变化器。16.如权利要求3所述的基于任务的成像系统,其中所述至少一个光学元件修改所述波前的振幅。17.用于生成由基于任务的成像系统的检测器捕获的场景的输出图像的方法,所述检测器包括多个像素,所述场景包括位于对象距离范围内的给定对象距离处的至少一个对象,所述对象距离被定义为所述对象和所述基于任务的成像系统之间的距离,所述方法包括在空间频率范围内捕获所述场景的高分辨率图像;将所述高分辨率图像转化为所述场景的图像谱;确定所述基于任务的成像系统在所述对象距离范围内上散焦的光学传递函数;确定在所述检测器的所述多个像素上的像素调制传递函数;将所述图像镨与所述光学传递函数和所述调制传递函数相乘,以生成所述场景的修改的图像语;将所述修改的图像语转化为所述场景的修改的图像;以及根据所述修改的图像生成所述输出图像。18.如权利要求17所述的方法,其中所述生成步骤包括根据所述修改的图像形成调整大小的图像,以及根据所述调整大小的图像形成所述输出图像。19.如权利要求18所述的方法,其中形成所述调整大小的图像包括根据所述给定对象距离,将所述修改的图像下采样到最终分辨率。20.如权利要求19所述的方法,其中所述下采样包括不进行低通滤波而对所述修改的图像调整大小。21.如权利要求19所述的方法,其中所述下采样包括对于给定的下采样原点和下采样周期,处理所述修改的图像;以及通过在所述下采样周期内改变所述下采样原点,生成所述调整大小的图像的多重混叠版本。22.如权利要求18所述的方法,其中所述检测器具有散粒噪声和读噪声特性,且形成所述输出图像包括将所述散粒噪声和读噪声特性中的至少之一添加到所述调整大小的图像中。23.如权利要求18所述的方法,其中所述调整大小的图像包括至少一个边界线,所述方法进一步包括通过复制所述边界线填充所述调整大小的图像,以生成具有期望图像大小的填充图像。24.如权利要求17所述的方法,进一步包括用滤波器内核过滤所述输出图像,以生成滤波的图像。25.如权利要求17所述的方法,进一步包括从所述输出图像计算所述场景上的信噪比;修改所述成像系统的所述散焦的光学传递函数,以使所述输出图像中的信噪比大于从不修改所述散焦的光学参数的输出图像计算的信26.如权利要求25所述的方法,进一步包括在所述场景的方向范围上对所述信噪比进行平均,以生成平均信p桑比;以及改变所述散焦的光学传递函数,以使所述输出图像中的所述平均信噪比大于从不改变所述散焦的光学参数的所述输出图像计算的信噪比。27.如权利要求26所述的方法,其中平均所述信噪比包括计算所述场景上的加权平均信噪比。28.如权利要求27所述的方法,其中计算所述加权平均信噪比包括根据选自信号强度的减少和不相干成像系统调制的减少的至少之一,作为所述给定对象距离的函数改变所述信噪比的加权因子。29.如权利要求27所述的方法,进一步包括将所述基于任务的成像系统的焦点设置在一定的位置,在对应于该位置的位置处计算出的、所述对象距离范围内的最小和最大对象距离的信噪比相等。30.如权利要求26所述的方法,其中所述改变操作包括修改所述噪比。基于任务的成像系统以实现以下形式的光瞳函数<formula>formulaseeoriginaldocumentpage7</formula>其中,x和y是标准化的空间坐标,r是入射光瞳的半径,"("力是用于指数i和j的光瞳函数系数,且<formula>formulaseeoriginaldocumentpage7</formula>其中,当指数i和j中的至少之一等于0时,系数a(")中的至少之一具有至少为1的值。31.如权利要求17所述的方法,进一步包括对所述输出图像进行后处理,用于执行选自以下各项中至少之一的任务生物虹膜识别、生物面部识别、用于访问控制的生物识别、用于威胁鉴别的生物识别、条形码阅读、装配线中用于质量控制的成像、光学字符识别、生物成像和用于对象检测的汽车成像。32.用于与基于任务的成像系统一起使用的方法,包括将来自场景的电磁能量在空间频率范围成像为所述基于任务的成像系统的中间图像;修改所述电磁能量的波前的相位;检测所述中间图像;以及基于所述中间图像,生成所述空间频率范围上的图像数据,以使得在所述空间频率范围上,所述基于任务的成像系统的信噪比大于不修改相位的基于任务的成像系统的信噪比。33.如权利要求32所述的方法,进一步包括执行选自以下各项中的至少之一分析用户生物虹膜识别的虹膜图案、分析用于生物面部识别的面部图案、通过生物识别鉴别威胁、控制到受限区域的访问、在装配线上用于质量控制的成像、光学地识别字母数字字符、在生物成^f象时识别特征、在汽车应用中对对象成^f象、以及生成可^f见的最终图34.如权利要求32所述的方法,其中修改所述波前的相位包括用以下形式的光瞳函数改变所述相位<formula>formulaseeoriginaldocumentpage8</formula>其中,x和y是标准化的空间坐标,r是入射光瞳的半径,"("力是用于指数i和j的光瞳函数系数,且<formula>formulaseeoriginaldocumentpage8</formula>其中,当指数i和j中的至少之一等于0时,系数a(z',力中的至少之一具有至少为1的值。35.如权利要求34所述的方法,其中所述光瞳函数系数给定为c<0,3)=c<3,0)=23.394,c<0,5)=a(5,0)=60.108,c<0,7)=c<7,0)=-126.421,c<0,9)=c<9,0)=82.128,c<3,3)=5.021,o(5,5)=-21.418,c<7,7)=-310.749,以及《(9,9)=-1100.336。36.用于优化基于任务的成像系统的方法,所述基于任务的成像系统用于获得在对象距离范围内的任务中使用的场景的数据,所述场景包括位于对象距离范围内的给定对象距离处的至少一个对象,所述对象距离被定义为所述对象和所述基于任务的成像系统之间的距离,所述方法包括.1)确定所述基于任务的成像系统的目标信噪比;.2)指定一组初始的光瞳函数参数和评价函数;.3)基于所述评价函数生成一组新的光瞳函数参数;.4)计算所述对象距离范围上的信噪比;.5)将所述信噪比与所述目标信噪比进行比较;以及.6)重复步骤2)到5),直到所述信噪比在数值上至少等于所述目标信噪比。37.如权利要求36所述的方法,其中,确定所述目标信噪比包括确定目标极性信噪比,以及计算信噪比包括计算所述对象距离范围上的极性信噪比。38.在用于获得与在任务中使用的场景相关的数据的基于任务的成像系统中,所述基于任务的成像系统包括至少一个光学元件以及检测器,所述光学元件用于将来自所述场景的电磁能量波前成像为空间频率范围内的中间图像,所述检测器用于检测所述中间图像并用于在所述空间频率上生成图像数据,改进包括相位修改元件,其用于修改所述波前的相位,以使所述基于任务的成像系统的信噪比大于不使用所述相位修改元件的基于任务的成像系统的信噪比。39.在如权利要求38所述的基于任务的成像系统中,进一步的改进包括用于执行所述任务的处理器。40.在如权利要求39所述的基于任务的成像系统中,进一步的改进在于,所述处理器创建所述任务的记录,并将所述记录记录在数据存储单元中。全文摘要一种基于任务的成像系统,其用于获得与任务中使用的场景相关的数据,所述成像系统包括图像数据捕获装置,其用于(a)将来自所述场景的电磁能量的波前在空间频率范围上成像为中间图像,(b)修改所述波前的相位,(c)检测所述中间图像,以及(d)在所述空间频率范围上生成图像数据;以及图像数据处理装置,其用于处理所述图像数据并执行所述任务,所述图像捕获装置与所述图像数据处理装置协同工作,以使得在所述空间频率范围上,所述基于任务的成像系统的信噪比大于对所述波前不进行相位修改的基于任务的成像系统的信噪比。文档编号G02B27/00GK101288013SQ200680037455公开日2008年10月15日申请日期2006年9月19日优先权日2005年9月19日发明者保罗·E·X·西尔韦拉,小爱德华·R·道斯基,拉库马·纳拉岩斯瓦迈,格雷戈里·E·约翰逊,罗伯特·H·考麦克申请人:Cdm光学有限公司