专利名称:一种新型硅基液晶彩色微显示器件的利记博彩app
技术领域:
本实用新型涉及光电领域,特别是一种新型硅基液晶反射式彩色微显示器件。
近年来,高清晰度电视(HDTV)的技术发展非常迅速,发展起了许多新型的显示技术,如等离子体显示(PDP)技术、薄膜晶体管(TFT)显示技术、数字微反射镜显示(DMD)技术、以及硅基液晶反射式(LCOS)显示技术等等。其中,LCOS显示技术由于是由已非常成熟的硅基底CMOS工艺和液晶灌装工艺组合而成的,因而具有分辨率高、成本低、容易实现大规模生产等优点,受到人们的青睐,被公认为是下一代的主流显示技术之一。
但目前的LCOS芯片都是单色的,要实现彩色显示,通常是采用一套较复杂的光学系统,先将白色光分成红、绿、蓝三基色光,分别投射到三块LCOS芯片上,然后再将这三束光合成彩色图象。这种彩色显示方法有着机构较复杂、成本较高、性能不够稳定等缺点。针对这种情况,专利申请01246153.9提出了将微型彩色滤光片列阵集成进LCOS芯片中去,直接构成彩色LCOS器件的设想,具有结构简单、成本低廉、性能稳定等特点。由于目前LCOS芯片的象元形状都是正方形,利用这种象元形状的LCOS芯片直接做成彩色LCOS器件,其显示图像会有部分被拉伸而发生失真,虽然这种失真可以通过投影光学系统来加以矫正,但毕竟会增加光学设计的难度。
本实用新型是专利申请01246153.9的进一步改善,其目的在于提供一种新型的无失真的彩色LCOS显示芯片器件。
本实用新型的目的通过如下技术方案来实现将一块用CMOS工艺制作的带有可寻址金属反射层象元的硅基片(LCOS基片),与另一块镀有微型多层介质光学干涉滤光片列阵和透明导电层的透明玻璃基底的镀膜面分别涂布上液晶定向层并作定向处理。所述的微型多层介质光学干涉滤光片列阵上的微型滤光片共分三类,分别透过红、绿、和蓝三基色光,而对其它波长的光则均为反射。其每个微型滤光片的形状、尺寸均与上述LCOS基片上的金属反射层象元面相同或接近,并呈一一对应关系。每三片微型滤光片(红、绿、蓝)构成一基本象素单元。每个基本象素单元为正方形结构或蜂窝状结构,均匀整齐地排列而构成无失真的图像显示面。然后再将这两块已作好定向处理的基片面对面,并使微型滤光片与LCOS金属反射层象元一一对应并准直地封装在一起,中间灌注上液晶层,组成本实用新型的LCOS与微型滤光片列阵组合器件。当白偏振光照射到该组合器件时,一部分光被微型滤光片反射回去,并且不改变其偏振方向,而另一部分光则透过微型滤光片,并穿过液晶层到达LCOS基片的金属反射层上后,再被反射回去,该反射光的偏振方向会随液晶层所加的电压不同而发生变化。因此,采用一个偏振分光棱镜,可将该部分反射光与没有经过液晶层的反射光区分开来。这部分经过液晶层的反射光由于已经过液晶调制,带有图像信息,因而可直接经过一成象系统,作彩色显示用,而那部分没有经过液晶层的反射光则被反射回去,通过一定的装置可将该部分光能量回收,并反射回来重复利用。
本实用新型的
如下图1为本实用新型的微型彩色显示器件的截面结构示意图。
图2为以前技术的微型滤光片列阵的平面排列分布示意图。(其中a为品字型排列;b为梳状排列)图3为本实用新型的微型滤光片列阵的平面排列分布示意图。(其中a为正方形排列;b为蜂窝状排列)图4为一种蜂窝状排列的象素基本单元的结构示意图。
以下结合附图对本实用新型作详细阐述。但并不限制本实用新型的内容。
图1是本实用新型的微型彩色显示器件的截面结构示意图。首先在一块对角线尺寸约为10毫米~50毫米大小的硅片1上用CMOS工艺制作可寻址的象元阵列,然后在各象元上再镀上金属反射镜2,这些金属反射镜不仅可作光的反射层,同时也是金属电极,可通过寻址驱动电路的控制使它们分别加上不同的电压。另外在一块与上述硅基片尺寸相仿的透明玻璃基底7上,用光刻和真空镀膜相结合的方法,制作上红绿蓝三色微型滤光片列阵6。每片微型滤光片均由多层介质光学薄膜制成,分别透过红光、绿光、和蓝光,而对可见区域其它光谱则均为高反射。这些微型滤光片的数量、形状、尺寸和排列方式均与上述硅基底上的金属反射镜象元的数量、形状、尺寸和排列方式相一致,形成一一对应关系。将该彩色微型滤光片列阵作平面化处理后,在其上再镀上一层透明导电膜5,然后再与上述带有金属反射镜象元列阵的硅基底一起,在其表面均涂布上一层液晶定向层3(材料为聚酰亚胺或类似材料),并经过定向处理(机械磨擦或其它方法)后,将这两块基底面对面的合在一起,中间间隔距离在0.5微米至10微米之间,并使微型滤光片与金属反射镜一一对应,并对准、对齐。在中间间隔中灌注进液晶材料4,并将周边密封,即制成微型滤光片列阵与LCOS基片的组合器件。当一白色线偏振光从玻璃基底一端垂直入射时,其一部分光谱的光被微型滤光片反射回去,(例如照射到红光滤光片上的光线,其绿光和蓝光部分被反射回去) 且不改变其偏振方向,而另一部分光谱的光则透过微型滤光片(例如照射到红光滤光片上的光线的红光部分),并穿过液晶层,最后被象元上的金属反射镜反射回去,该部分反射光由于经过液晶层,被液晶层所调制,即其偏振方向会随液晶层上所加的电压而变化。利用该偏振效应,可以实现彩色图象的显示。而那部分直接被微型滤光片反射回去且不改变其偏振方向的光,则被反射回照明系统,通过设置一些反射装置,可以将该部分再次反射回来加以重复利用,从而提高光能量的利用效率。另外,在各象元的微型滤光片之间的间隙8上(间隙距离约在0.3~1微米之间)镀上非透明镀层,如铝、铬、镍、铜等等,可以减少漏光,从而进一步改善该器件的图象质量,提高图象对比度和信噪比。还可以保护硅基片上的集成电路,使其免受强光照射而引起的性能衰退,延长使用寿命。(参见专利申请01139206.1)在以前技术中(见专利申请01246153.9),每个象元的形状均为正方形,每三个象元(红绿蓝)以梳状(见附图2(a))或者品字状(见附图2(b))排列方式组成一个基本象素单元,进而构成整个显示画面。但这种正方形形状的象元无论以何种方式排列,均会带来显示画面图像的失真变形。如一个长宽比为4∶3的输入画面图像,在以附图2(a)的梳状排列方式显示画面时,其显示出的画面图像长宽比变形为4∶1。而在以附图2(b)的品字状排列方式显示画面时,则其显示出的画面图像长宽比会变形为1∶1。虽然这种失真变形可以通过投影光学系统来加以矫正,但是这种矫正会增加投影光学系统的复杂性,增加投影光学系统的成本,还有可能降低投影图像的画面质量。
要想获得无失真的显示画面图像,必须改变原有设计的象元形状。附图3(a)是一种新型无失真的彩色LCOS器件的象元形状和排列方式,它的每个象元形状是长宽比约为3∶1的长方形,每三个长方形的象元(红绿蓝)组成一个正方形的基本象素单元。因而,它不会引起显示画面图像的变形失真。而且,在保持这红绿蓝三个象元的宽度之和不变(等于其长度)的前提下,通过适当改变这三个象元的宽度之比,可以调整投影图像的色调平衡和补偿。例如目前的投影显示系统的照明光源通常为超高压汞灯,而超高压汞灯的发射光谱中红光的光谱分量明显低于绿光和蓝光的光谱分量,因此可以通过适当增加红色象元的长方形的宽度,而相应减少绿色和蓝色象元的宽度,以提高红色象元的面积占总面积的比例,从而进行色补偿,以达到色平衡。附图3(a)所示的象元形状的一个缺点是长宽比的比值过高。对于微型显示器件来说,其象元形状的最小尺度受到微电子加工工艺的限制。特别是对于微型液晶显示器件来说,其象元形状的最小尺度还受到液晶分子尺度的限制。显然,长宽比过高的象元形状不利于显示器件的进一步集成。因此,如附图3(a)所示的象元形状只适用于较少象素(即较低分辨率)的图像显示。
附图3(b)所示的是一种适合于较多象素(即较高分辨率)图像显示的彩色LCOS器件的象元形状和排列方式。它的红绿蓝三个象元的形状均为平行四边形,红绿蓝三个象元的平行四边形合在一起组成一个六边形的基本象素单元,各基本象素单元再以蜂窝状结构排列组合成整个显示面。在合成整个显示面后,这基本象素单元有一个等效长度和等效宽度。通过调整这基本象素单元的六边形的内角度值和各边长,可以使其等效长度和等效宽度之比接近于1,因而不会引起显示画面的变形失真。而且通过调整这基本象素单元的六边形的内角度值和各边长,可以改变各颜色的象元在总显示面积中所占的比例,从而可以进行色补偿,调整色彩平衡。这种蜂窝状排列结构的优点是各象元的平行四边形的边长长度接近,因此有利于做得更密集,以得到更多象素,更高分辨率。
附图4是这种排列结构的一个实例,它的一个基本象素单元是由红绿蓝三个菱形的象元组成的六边形,这六边形的六条边长相等,通常在4~10微米之间。绿9、蓝10两个象元菱形的形状相同,且各有一个内角在53°左右,而另一个象元,即红色象元11的菱形有一个内角在74°左右。这样,这个六边形的基本象素单元在以蜂窝状结构排列起来后,其每个基本象素单元的等效长度和等效宽度之比非常接近于1,即这个结构不会带来图形失真变形。而且,各象元菱形的边长相等,有利于器件的进一步集成。另外,红色象元的面积比绿色象元和蓝色象元的面积略大(红色象元的面积约是绿色象元面积的1.11倍),这有助于改善由于照明光源中红光光谱能量较弱引起的投影图像中红色分量缺乏的视觉效果。另外,在各象元的微型滤光片之间的间隙12上(间隙距离约在0.3~1微米之间)镀上一层非透明镀层,如铝、铬、镍、铜等等,可以减少漏光,从而进一步改善该器件的图象质量,提高图象对比度和信噪比。
本实用新型具有如下优点1.可以方便地实现单芯片的彩色显示方案。
2.可以大大简化目前彩色投影装置中的光学系统部分,从而有效地提高了可靠性,减少了体积,并可大大降低成本。
3.可以保持投影图像不失真变形。
4.可以有效地提高光的利用效率,从而可大大降低光源的能耗,并可大大减少由于光源发热而引起的一系列副作用。
5.可以补偿由于照明光源或光学系统带来的色彩不平衡。
6.可以延长微显示器件的使用寿命。
7.可以在台式电脑、家用电视机、商用投影系统、以及头戴式显示装置等方面得到广泛应用。
权利要求1.一种微型硅基液晶反射式彩色微显示器件,包括带有集成电路结构的硅基底芯片、金属反射镜列阵、液晶定向层、液晶层、液晶定向层、透明导电层、微型红、绿、蓝三基色彩色滤光片列阵、玻璃基片,其特征在于a)是将一片镀有金属反射镜列阵的带有集成电路结构的硅基底芯片和另一片镀有微型彩色滤光片列阵和透明导电层的玻璃基片,分别在其表面涂布液晶定向层,并进行定向处理后再封装成一体,中间灌注入0.5微米~10微米厚的液晶材料层;b)微型彩色滤光片列阵的象元形状与金属反射镜列阵的象元形状相同,并在封装时对准,呈一一对应关系;c)其金属反射镜列阵的各象元同时也可以作为金属电极并可由其底下硅基底芯片上的集成电路进行寻址,从而分别加上一定的直流电压或电压脉冲。
2.如权利要求1所述的微型硅基液晶反射式彩色微显示器件,其特征在于其微型彩色滤光片列阵是由红绿蓝三基色三种形状相同或不相同的微型滤光片组合而成,且其中的每个微型滤光片均由两种或两种以上的不同折射率的介质薄膜交替组合而成,其膜层总厚度在1微米~5微米之间。
3.如权利要求1所述的微型硅基液晶反射式彩色微显示器件,其特征在于其微型彩色滤光片之间的间隙约在0.3~1微米之间,并镀有非透明镀层,非透明镀层的材料可以是但不限于铝、铬、镍、铜。
4.如权利要求1所述的微型硅基液晶反射式彩色微显示器件,其特征在于其微型彩色滤光片列阵的每个基本单元形状均为由红、绿、蓝三个长与宽之比约为3的长方形微型滤光片组成的正方形结构,且整个列阵为该正方形结构的基本单元紧密排列而成的方形结构。
5.如权利要求1所述的微型硅基液晶反射式彩色微显示器件,其特征在于其微型彩色滤光片列阵的每个基本单元形状均为由红、绿、蓝三个平行四边形的微型滤光片组成的六边形结构,且整个列阵为该六边形结构的基本单元呈蜂窝状方式紧密排列而成。
6.如权利要求5中所述的微型硅基液晶反射式彩色微显示器件,其特征在于它的蜂窝状排列的微型彩色滤光片列阵的每个基本单元的红、绿、蓝三个微型滤光片的形状均为菱形,且其中有两个菱形各有一个内角在50°~56°之间,而另一个菱形则有一个内角在70°~78°之间。
专利摘要本实用新型提供了一种新型硅基液晶彩色微显示器件,它是一种将硅集成电路、光学微型滤光片、以及液晶层结合在一起的组合器件。它采用了蜂窝状等非方形的象元排列结构,可使显示图像排列紧凑、占空比高,无失真,并能有助于色彩补偿。
文档编号G02F1/1333GK2563599SQ0221735
公开日2003年7月30日 申请日期2002年5月14日 优先权日2002年5月14日
发明者邵剑心, 樊斌 申请人:邵剑心, 樊斌