液晶参数与盖板厚度间有优化关系的等离子体编址显示屏的利记博彩app

文档序号:2641573阅读:288来源:国知局
专利名称:液晶参数与盖板厚度间有优化关系的等离子体编址显示屏的利记博彩app
本申请要求1996年7月12日提交的美国临时申请60/021677的权利。
本发明涉及具有液晶参数与盖板厚度之间优化关系的等离子体编址液晶显示屏。
美国专利5077553公开了一种用于编址数据存储元件的装置。美国专利5077553所示装置的实际操作如图2所示。
图2的显示屏包括,从下面开始,偏振器2、沟道基片4、盖板6(通常称为微板)、扭转向列(TN)液晶材料层10、平行透明数据驱动电极阵列(在图2中只能看到其中之一,标为12)、承载数据驱动电极的上基片14、和上偏振器16。沟道基片2一般由玻璃制成并在其上主表面形成有多条平行沟道20。沟道20充填有可离子化气体,例如氦。在每条沟道20设置地电极和选通电极(未示出)。沟道20与数据驱动电极正交,数据驱动电极与沟道交叉(垂直屏面观看)的区域形成分离的屏面单元26。每个屏面单元可认为是包括层10和上下偏振器2和16的多个元件。在彩色显示屏的情况下,屏面单元包括层10与上基片14之间的滤色器(未示出)。界定屏单元的显示屏上表面区域构成显示屏的单个象素28。
如美国专利5077553所述,在一条沟道内的选通和地电极之间建立起适合的电位差时,沟道内的气体形成等离子体,在盖板6的下表面提供导电通路。如果数据驱动电极为地电位,在TN液晶材料的体积单元中无明显的电场,象素认为是截止,而如果数据驱动电极为实质不同于地的电位,则在液晶材料的体积单元中存在明显的电场,象素被认为是导通。在屏面之下设置扩展光源(未示出)。象素截止时,上偏振器通过从液晶材料的体积单元接收的光,象素发光,如果象素导通,上偏振器阻挡从液晶材料的体积单元接收的光,象素不发光。在相邻屏面单元之间设置黑色环绕材料(未示出),以便吸收散射光和使导通象素与截止象素与间保特最大的对比度。
图3所示的简单扭转向列(TN)液晶显示屏包括其上分别具有电极阵列44、46的上下基片40、42,分别按行和列相互垂直取向的两个电极阵列;和在两个基片之间的TN液晶材料层48。由行和列电极的交叉区域限定象素的矩形矩阵。在图2所示PALC显示屏的情形,在下基片40之下有下偏振器50,在上基片之上有上偏振器52。在屏面之下设置扩展光源(未示出),象素截止时(在行与列电极之间无电位差),上偏振器通过从液晶材料的体积单元接收的光,象素发光,如果象素导通,上偏振器阻挡从液晶材料的体积单元接收的光,象素不发光。
TN液晶材料的制造者通常用三个电压值V90、V50和V10来标志其材料。V90是必须加在图3所示类型的简单TN单元的行电极与列电极之间的电压,用于在正常的黑色模式,把位于行和列电极的交叉点的象素从截止态转换为90%的透射。同样,电压V50和V10分别是为了在正常的黑色模式,把单元从截止态转换为50%透射和10%透射所必须施加的电压。V10、V50和V90的值一般是1.5伏、2.0伏和3.1伏。简单TN单元工作所需电压的动态范围因此只有2伏左右。
图2所示PALC显示屏的屏元件在截止与导通态之间转换的物理机制与图3所示简单TN液晶显示屏的屏元件的相同。但是,在PALC显示屏中,等离子体作为行电极,因而行电极与列电极之间的电位差分布在盖板与液晶材料层之间。因此,电压Vth(PALC显示屏的屏元件实质通过所有光的最大电压)与电压Von(屏元件实质阻挡所有光的最大电压)之间的动态范围实际上大于简单TN单元的对应电压。
在许多已在文献中公开的PALC显示中,Vth与Von之间的差V动态是30伏以上。若V动态值降至25伏以下将是可取的,最好低至18伏,因为这将有利于降低数据驱动电极之间的串扰、降低功率损耗,和降低驱动数据驱动电极的电路成本。但是,涉及PALC显示屏的文献未给出V动态与屏的定量或可定量特征之间的关系,例如使人们可设计V动态具有期望值的PALC显示屏。
TN液晶材料的制造者可以在不影响PALC显示屏的光学特性的条件下实施对该材料的垂直和平行介电常数的低度控制,在不影响显示屏的光学特性的条件下可以改善盖板的厚度和介电常数。但是,液晶层厚度影响屏的光学特性及电特性。
TN液晶显示屏的对比度取决于视角。TNLC显示屏的实际应用之一是膝上型计算机的监视器。通常认为膝上型计算机的监视器应能在法线左侧45°、法线右侧45°、法线上侧30°和法线下侧10°的角度范围内提供10∶1的对比度。所得多面体限定出期望的视角实体。PALC显示屏的实际应用与TNLC显示屏的应用有某种程度的重叠,因此在某些情形,对PALC显示屏的视角实体的要求类似于对TNLC显示屏的要求。
根据本发明的第一方案,提供一种等离子体编址液晶显示屏,包括沟道基片,盖板,扭转向列液晶材料层,上基片和位于上基片下表面的电极阵列,其中[2.43(V90-V50)+V50][1+dTDdLC·ϵ1ϵTD]-0.9V10[1+dTDdLC·ϵ⊥ϵTD]≤25]]>这里,VX是在正常黑色模式中将使简单TN液晶单元从截止态转换为X%透明度的电压,dID是盖板厚度,dLC是液晶层厚度,εTD是盖板的介电常数,ε⊥是液晶材料的垂直介电常数,ε1是液晶材料的平行介电常数,dLCΔnLC在约0.4~0.5的范围,ΔnLC是液晶材料的折射率差。
根据本发明的第二方案,提供一种等离子体编址液晶显示屏的操纵方法,所述显示屏包括沟道基片,盖板,扭转向列液晶材料层,上基片,位于上基片下表面的电极阵列,所述方法包括用动态范围小于约25伏并由下式给出的电压驱动数据驱动电极[2.43(V90-V50)+V50][1+dTDdLC·ϵ1ϵTD]-0.9V10[1+dTDdLC·ϵ⊥ϵTD]]]>这里,VX是在正常黑色模式将使简单TN液晶单元从截止态转换为X%透明度的电压,dTD是盖板厚度,dLC是液晶层厚度,εTD是盖板的介电常数,ε⊥是液晶材料的垂直介电常数,ε1是液晶材料的平行介电常数,dLCΔnLC在约0.4~0.5的范围,ΔnLC是液晶材料的折射率差。
为了更好地了解本发明,并展示本发明是如何实施的,以下结合附图通过实施例进行说明,其中,

图1是根据本发明的等离子体编址液晶显示屏的部分剖面示意图。
图2是已有技术的等离子体编址液晶显示屏的部分剖面示意图。
图3是已有技术的扭转向列液晶显示屏的部分剖面示意图。
在几幅图中,相同参考标号代表对应部件。
在说明书和权利要求书中,取向和定位的词,例如上侧和下侧,是用来建立一种与附图相关的取向,并不是绝对含意的限制。
图1展示了一种PALC彩色显示屏,其中在淀积数据驱动电极12之前,在上基片14的下表面上设置滤色材料。因此,每个屏单元26包括位于数据驱动电极与上基片14之间的滤色器30。图1还展示了相邻滤色器间的黑色围绕材料34。在屏单元26内,TN液晶材料层10由盖板6和数据驱动电极12约束。所以,在屏单元26中,从沟道20至上基片14的部件序列由盖板6、层10、数据驱动电极12和滤色器30按此顺序组成。
通过实验及分析发现,为了使屏单元从截止转换至导通所必须在具有图1所示构型的PALC显示屏的数据驱动电极与地电极之间施加的电压信号的动态范围由下式给出
公式1这里,VX(X=10,50或90)是将使在正常黑色模式的简单TN液晶单元从截止态转换为X%透明度的电压,dTD是盖板厚度,dLC是液晶层厚度,εTD是盖板的介电常数,ε⊥是液晶材料的垂直介电常数,ε1是液晶材料的平行介电常数。对于给定的V动态值,在公式1的关系保持正确的t维空间中存在一个表面。此外,对于具有商业上可接受的构型的视角实体,dLCΔnLC≈0.4-0.5公式2这里ΔnLC是液晶材料的寻常与非寻常折射率之差。
dLCΔnLC的值取决于期望的视角实体并取决于对准层相对于上基片的下表面的前倾角。通常,开始把dLCΔnLC设定为约0.45左右,然后反复调节dLC值直到获得期望的视角实体。
对于VX值已知的给定TN液晶材料,可简化公式1。例如,对于市售TN液晶材料,V10、V50和V90的值一般是1.5伏、2.0伏3.1伏,因此V动态=4.673R.ε1-1.35R.ε⊥+3.323这里,R=dTDdLC·ϵTD]]>如果V动态的期望值是20伏,则R.ε⊥=3.4615.R.ε1-12.353
ΔnLC的值在约0.04~0.16,对于给定的液晶材料,根据公式2,特定的ΔnLC值将设定dLC值的范围。然后可以选取dTD、εTD、ε⊥和ε1各值,返回V动态的期望值。如果发现不可接受的视角实体的各值的具体选择,可以改变dLC,但可调节dTD使R保持恒定。
由此可见,如果除了dTD、εTD和液晶材料的垂直,及平行介电常数之外的其余常数根据光学要求预先确定,则可根据实际值的限制调节dTD和介电常数的值,达到V动态的特定值。
PALC显示屏的盖板厚度一般约为30μm,但可以制造厚度小于20μm的益板,甚至厚度可小至5μm,尤其是采用如共同未决的临时申请60/018000所记载的就地减薄工艺。公式1为预测V动态的改变在盖板厚度上的作用提供了合理及定量的基础。例如,采用除dTD之外的可变的适当值时,公式1显示通过减少盖板厚度30μm~5μm,V动态可以减小至少50%。还可使人确定,为了提供与盖板厚度的给定变化等效的作用,其它参数应如何改变,及改变到什么程度。
应该了解,本发明并不限于已说明的具体实施例,在不脱离由权利要求书及其其同物所限定的本发明范围的条件下可以做出各种变化。
权利要求
1.一种等离子体编址液晶显示屏,包括沟道基片,盖板,扭转向列液晶材料层,上基片,和位于上基片的下表面的电极阵列,其中[2.43(V90-V50)+V50][1+dTDdLC·ϵ1ϵTD]-0.9V10[1+dTDdLC·ϵ⊥ϵTD]≤25]]>这里,VX是正常黑色模式中将使简单TN液晶单元从截止态转换为X%透明度的电压,dID是盖板厚度,dLC是液晶材料层厚度,εTD是盖板的介电常数,ε⊥是液晶材料的垂直介电常数,ε1是液晶材料的平行介电常数,dLCΔnLC在约0.4~0.5的范围,ΔnLC是液晶材料的折射率差。
2.一种等离子体编址液晶显示屏的操纵方法,所述显示屏包括沟道基片,盖板,扭转向列液晶材料层,上基片,位于上基片的下表面的电极阵列,所述方法包括,用动态范围小于约25伏并由下式给出的电压驱动数据驱动电极,[2.43(V90-V50)+V50][1+dTDdLC·ϵ1ϵTD]-0.9V10[1+dTDdLC·ϵ⊥ϵTD]]]>这里,VX是正常黑色模式中将使简单TN液晶单元从截止态转换为X%透明度的电压,dIP是盖板厚度,dLC是液晶材料层厚度,εTD是盖板的介电常数,ε⊥是液晶材料的垂直介电常数,ε1是液晶材料的平行介电常数,dLCΔnLC在约0.4~0.5的范围,ΔnLC是液晶材料的折射率之差。
全文摘要
一种等离子体编址液晶显示屏,包括沟道基片、盖板、扭转向转液晶材料层、上基片、位于上基片的下表面的电极阵列,这里,V
文档编号G09G3/36GK1195154SQ97117818
公开日1998年10月7日 申请日期1997年7月11日 优先权日1996年7月12日
发明者K·J·伊尔西辛, T·S·布泽克, P·C·马丁 申请人:特克特朗尼克公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1