专利名称:显示设备的驱动电路的利记博彩app
技术领域:
本发明涉及一种平板显示设备的驱动电路,特别是涉及一种接收数字图象信号以产生具有与接收的数字图象信号相适应的灰度的显示图象的显示设备的驱动电路。
图1是一种数据驱动器,它举例性地表示一种传统显示设备的驱动电路,该显示设备接收数字图象数据以产生具有与接收的数字图象数据相适应的灰度的显示图象。为了简化说明起见,在此,设数字图象数据由两位(D0,D1)组成。数据驱动器将驱动电压供应给扫描行上的N个象素(在此,N为正整数),该扫描行已根据扫描信号而被选取。
图2是图1的数据驱动器的电路组成部分。以编号20所表示的电路通过数据线将驱动电压供应给沿着一个扫描行设置的上述N个象素中的第n象素(在此,n为1至N之间的整数)。电路20包括采样(主)触发器21,其中每一触发器接收数字图象数据(D0,D1)中的1位;保持(副)触发器22,其中每一触发器也接收1位;译码器23;以及4个模拟开关24至27。信号电压V0至V3分别由不同的电压源供应给4个模拟开关24至27。D触发器或其他不同的触发器都可用作采样触发器21。
图2所示的电路按以下方式工作。当接收到对应于第n象素的采样脉冲T(smpn)的前沿时,采样触发器便获得该数字图象数据(D0,D1)并保持住该获得的数据。当如此而完成对一个扫描行上的第1至第N象素的这种图象数据采样后,便有一个输出脉冲OE加到保持触发器22。保持触发器22在接收该输出脉冲OE后,便从采样触发器21获得数字图象数据(D0,D1),并将如此获得的数字图象数据传送给译码器23。译码器23对数字图象数据(D0,D1)的各位译码,并按照如此译码的各位的值接通模拟开关24至27中之一。于是,电路20便输出由4个不同的电压源(它们对应于如此导通的模拟开关24、25、26或27)的信号电压V0至V3之一。
传统的数据驱动器(如上所述)需要2n个不同的电压源(在此,n为构成数字图象数据的位数)。换言之,当数字图象数据扩大1位,则需要的电压源数增加1倍。例如,当数字图象数据由4位构成,以便产生具有16灰度的显示图象时,需要的电压源数为24=16。类似地,当数字图象数据由5位构成,以便产生具有32灰度的显示图象时,需要的电压源数为25=32。当数字图象数据由6位构成,以便产生具有64灰度的显示图象时,需要的电压源数为26=64。
这种电压源通过数据驱动器的模拟开关而联接至例如为液晶板的显示设备,显示设备对电压源而言是重负载。因而,各电压源应满足足够的性能要求以便驱动重负载。这种高性能电压源的数量增加是整个驱动电路制造成本变得较高的重要因素。而且,由于高性能电压源不能方便地设置在构成驱动电路的大规模集成电路之中,因此只能将它们设置在大规模集成电路以外。这就意味着驱动液晶板的信号电压必需从外电压源供至大规模集成电路。因而随着电压源数量的增加,大规模集成电路的输入端子也必需相应增加。要生产具有如此大量的输入端子的大规模集成电路是非常困难的。即使能够制造这种大规模集成电路,然而在其大量生产过程中还会有许多的安装、加工问题。因此,实际上是不可能大量生产这种大规模集成电路的。
在尚未公开的日本专利申请NO.4-129164中提出了一种振荡电压驱动方法及采用该方法的驱动电路,该方法在于解决上述的传统驱动方法存在的问题,即需要的电压源数目等于需要产生的灰度数目。在所提出的驱动方法和驱动电路中,采取外电压源来提供灰度参考电压,后者用于进一步获得多个内插电压,以便将该灰度参考电压和内插电压共同用于产生灰度。因此,可能产生出的灰度数目就大于驱动电路中的电压源数目。有若干种采用这种振荡电压驱动方法的数据驱动器已进入实际应用。
图3所示的电路30以举例方式说明上述的采用振荡电压驱动方法的驱动电路的数据驱动器的组成部分。
表1示出了由电路30加到象素上的电压V0至V7与从4个电压源分别供出的灰度参考电压V0、V2、V5至V7之间的关系。如该表1中所示,由电路30加到象素上的4个电压V1、V3、V4和V6分别是以从4个灰度参考电压V0、V2、V5至V7获得的4个内插电压(V0+2V2)/3,(2V2+V5)/3、(V2+2V5)/3和(2V5+V7)/3。灰度参考电压V0、V2、V5和V7和由它们产生的内插电压V1、V3、V4和V6都被用以产生灰度。这意味着,在此数据驱动器中,只需从4个灰度参考电压(它们分别由4个电压源提供)即可产生8个灰度。
表1
如上所述,这种采用振荡电压驱动方法的驱动电路的优点在于,可能获得的灰度数目大于电压源数目。然而,这种传统驱动电路包含着如下所述的问题。
图4表示由上述的电路30加到象素上的电压与象素的透射系数(transmittance)之间的关系。本发明要解决的问题将以该电压V0为例进行说明。该电压V0用来获得最低透射系数,即最高灰度(黑)。
如图4所示,在使得透射系数接近于0的高电压值范围,透射系数随电压增加而逐渐趋向0%。因此,当电压V0的绝对值增加到实际可能的数值时,透射系数趋近于0%。在电路30中,灰度参考电压V0用于获得如表1所示的内插电压,因而很难于单独地调节灰度参考电压V0和内插电压V1。当通过调节电压V1从而使得由加到象素上的该电压V1而获得适当的灰度时,电压V0就根据电压V1而确定。相反地,当调节V0从而使得由加到象素上的该电压V0而获得适当的灰度时,电压V1就根据电压V0而确定。在此例中,电压V0仅用于产生内插电压V1。然而随着构成数字图象的位数的增加,需要从电压V0获得的内插电压的数量就增加。这就使得单独调节电压V0和由它而需要产生出的各内插电压变得困难多。因此,这种传统驱动电路具有这样的缺点例如当稍微增加电压V0以便使一个黑图象(即最高灰度的图象)更变暗,从而在整个显示图象中获得最高反差时,不可能精确地增加电压V0而不对由内插电压而获得的其他的灰度造成有害影响;只要电压V0稍微增加,也会使整个显示图象的灰度特性变坏。因此,采用这种传统驱动电路的显示设备不能产生高对比度显示图象。这一问题也发生在用于获得最高透射系数(即最小灰度(白))的电压V7的情况。
本发明是关于一种显示设备的驱动电路,该显示设备包括通过将特定电压到其上时可产生显示图象的象素,该驱动电路包括第一电压输出装置,用于根据加到其上的灰度参考电压而产生内插电压,还用于将所述内插电压加到所述象素上,该内插电压电平处于所述各灰度参考电压的电压电平之间;和第二电压输出装置,用于将与所述灰度参考电压不同的电压供应给所述象素。
在本发明的一个实施例中,由所述第二电压输出装置加到所述象素上的电压用于获得最高灰度。
在本发明的另一个实施例中,由所述第二电压输出装置加到所述象素上的电压用于获得最低灰度。
因此,在此描述的本发明的优点是为显示设备提供这样一种驱动电路,其中由灰度参考电压分别地提供出用于产生最高灰度或最低灰度、或同时产生最高和最低灰度的电压,从而该用于产生最高和/或最低灰度的电压可分别地由该灰度参考电压进行调节,因此允许显示设备产生出具有液晶板可能达到的最高对比度的显示图象。
在参照附图阅读和理解以下的详细说明后,熟悉本技术领域的技术人员将对本发明的上述和其他优点十分明了。
图1是示出传统的数据驱动器电路的原理示意图;
图2是示出图1的传统的数据驱动器电路的电路组成部分的原理示意图;
图3是示出另一种传统的驱动器的电路组成部分的原理示意图;
图4是加到象素上的电压与由此产生的象素的透射系数之间的关系的曲线图;
图5是示出本发明的驱动电路的例子的一种数据驱动器电路组成部分的原理示意图;
图6是用于输入到图5中的选择控制电路53的信号t的波形图;
图7是示出本发明的另一种驱动电路例子的一种数据驱动器电路组成部分的原理示意图;
图8是表示加到象素上的电压与由此产生的象素的透射系数之间的关系的曲线图。
本发明将通过参照各个例子而进一步说明。在此,将一种矩阵型液晶显示设备用作被本发明的驱动电路驱动的显示设备。但是,应该理解,本发明的驱动电路也可应用于其他类型显示设备。
图5示出电路50的结构,它是以举例形式表示本发明的驱动电路的数据驱动器的组成部分。电路50对应于沿显示设备的各扫描行而设置的N个象素中的第n个象素(在此,N为正整数,n为1至N之间的整数)。在此例子中,数字图象数据由3位(D0,D1,D2)构成。
电路50包括采样(主)触发器51和保持(副)触发器52,它们都用于接收和保持数字图象数据。电路50还包括选择控制电路53;4个模拟开关55至58,不同的灰度参考电压即供应到这些模拟开关上;和模拟开关54,其上被加有不同于灰度参考电压的电压。选择控制电路53单独地接通或切断模拟开关54至58,从而控制它们的通/断状态。选择控制电路53接收信号t。电路50的输出通过数据线供应到第n象素。
在此,术语“灰度参考电压”被定义为用于获得至少一个如上述日本专利申请NO.4-129164的振荡电压驱动方法中的内插电压的电压。
电路50的工作将参照图5而叙述。采样触发器51在接收对应于第n象素的采样脉冲T(Smpn)的前沿后,使获得数字图象数据的各位(D0,D1,D2),并将由此获得的数据进行保持,从而完成对对应于第n象素的图象数据的采样。在数据驱动器中,对于沿一个描扫行设置的所有上述N个象素都执行这种图象数据采样(即,执行对应于一个水平周期的采样)。在对应于一个水平周期的采样已完成之时,就有一个输出脉冲OE加到保持触发器52上。保持触发器52在接收输出脉冲OE后,便从采样触发器51获得数字图象数据(D0,D1,D2),并将接收到的数字图象数据输出至选择控制电路53。选择控制电路53设有输入端d0,d1和d2以及输出端S′0,S0,S2,S5和S7。数字图象数据的3位(D0,D1,D2)分别通过输入端d0,d1和d2输入到选择控制电路53。选择控制电路53通过输出端S′0,S0,S2,S5和S7而分别输出控制信号以便接通或切断模拟开关54至58,从而控制它们的通/断。具有不同电压电平的灰度参考电压V0,V2,V5和V7分别供应到模拟开关55至58。与这些灰度参考电压不同的电压V′0被加到模拟开关54上。这些电压电平之间的关系是V′0>V0>V2>V5>V7。这些电压中的各电压仅当相应的模拟开关54,55,56,57或58接通时才被输入到数据线。
表2是表示选择控制电路53的输入和输出之间关系的逻辑表。表2的第一部分(即左起的前3列)示出了分别输入至选择控制电路53的输入端d2,d1和d0的3位的值。表2的第二部分(即,其次的5列)示出了分别由选择控制电路53的输出端S′0,S0,S2,S5和S7输出的控制信号的值。各模拟开关54至58当由与其相联的输出端S′0,S0,S2,S5和S7接收到1值的控制信号时使导通,而当由与其相联的输出端接收到0值的控制信号时便关断。表2中第二部分里的各空位表示控制信号值为0。各“t”表示当信号t之值为1时控制信号值为1,而当信号t之值为0时控制信号值为0。相反地,各“t”表示当信号t之值为1时控制信号值为0,而信号t之值为0时控制信号值为1。
表2
图6示出上述信号t的波形图。信号t是其值在0与1之间以占空比1∶2而周期性地交变的脉冲信号。具体地说,信号t具有0值与具有1值的时间的比率为1∶2。
下面将参照表2说明选择控制电路53的工作。
例如,当输入至输入端d2,d1和d0的3位分别为0,0和1时,来自输出端S0和S2的控制信号输出分别具有t的值和信号t的值。当信号t具有1值时,联接至输出端S2的模拟开关56导通,而其他模拟开关关断,因而允许灰度参考电压V2从电路50输出至数据线。当信号t具有0值时,t之值变为1,使得联接至输出端S0的模拟开关55导通,而其他模拟开关关断,从而允许灰度参考电压V0从电路50输出至数据线。由于信号t的值在0与1之间周期性地交变,如上所述,由电路50输出至数据线的电压就变成为振荡电压,并以与脉冲信号t相同的周期在灰度参考电压V0和V2电平之间振荡。由此而经数据线加到象素上的振荡电压是电平为(V0+2V2)/3的电插电压,该电平处在灰度参考电压V0与V2的电平之间。
按照与上述相同的方式,由电路50输出到数据线并从而输出到象素上的还有在灰度参考电压V2与V5电平之间振荡的、和在灰度参考电压V5与V7电平之间振荡的振荡电压。这些加到象素上的振荡电压也是内插电压,其电平分别处于V2与V5、以及V5与V7的电压电平之间。因此,由于灰度参考电压V0、V2、V5和V7都被用于获得内插电压,它们不可能由内插电压单独地进行调节。
另一方面,当输入到选择控制电路53的输入端d2,d1和d0的3位都为0时,具有1值的控制信号从选择控制电路53的输出端S′0输出,从而与其相联的模拟开关54导通。其他模拟开关55至58保持关断。结果,电压V′0使由电路50输出至数据线。电压V′0不用于产生任何振荡电压,因而它可由所有的其他电压而单独调节。因此,通过采用电压V′0得到的最高灰度可在不影响其他灰度的情况下变暗,从而使得显示设备产生高对比度显示图象。
图7是示出本发明的另一种驱动电路例子的一种数据驱动器电路组成部分的电路70的结构。电路70将电压通过数据线加到显示设备中沿各扫描线设置的N个象素中的第n个象素上。电路70的结构与图5的电路50之间只有一点不同电路70的选择控制电路73设有另一输出端S′7,它联接到模拟开关79,该模拟开关79被供应以另一电压V′7。电压V′7不同于所有的灰度参考电压V0、V2、V5和V7,也不同于电压V′0。这些电压电平之间的关系是V′0>V0>V2>V5>V7>V′7。电路70的其他结构的细节说明在此从略。
电压V′7按照与图5的电路50中的电压V′0的类似方式而可由其他电压进行单独调节。因此,由电压V′7获得的最低灰度可由其他灰度单独地调节。这将在下面参照表3而详细叙述。
表3是示出选择控制电路73的输入与输出之间关系的逻辑表。如表3所示,当所有输入至选择控制电路73的输入端d2,d1和d0的3位的值都是1时,具有1值的控制信号便由选择控制电路73的输出端S′7输出,从而与其相联的模拟开关79便导通。其他模拟开关74至78保持关断。于是电路70将电压V′7输出至数据线。电压V′7不用于获得任何振荡电压,从而它可由其他电压单独调节。
图8示出由包括图7的电路70在内的上述本发明的驱动电路加到象素上的电压与所产生的象素的透射系数之间的关系。如图8所表明的那样,形成的电压V′0高于最高灰度参考电压V0,而形成的电压V′7低于最低灰度参考电压V7。因此,电压V′0和V′7分别被用于最高和最低灰度。如上所述,由于电压V′0和V′7可由其他电压来单独调节,分别由它们获得的最高和最低灰度可在不影响其他灰度的情况下调节。因此,
表3
采用这种驱动电路的显示设备可产生具有液晶板所能达到的最高对比度的显示图象。
如上所述,本发明提供仅用于产生最高灰度的电压V′0或分别产生最高和最低灰度的电压V′0和V′7,从而使它们可单独地由其他电压进行调节。或者,可提供仅用于产生最低灰度的电压V′7,从而它可单独地由其他电压进行调节。在此情况下,也可使显示设备获得最高对比度显示图象。
根据本发明,可将一个或两个附加电压(即上述的可以被单独调节的、用于产生最高和/或最低灰度的电压)供应给构成驱动电路(即数据驱动器)的大规模集成电路,从而该大规模集成电路的端子数和该数据驱动器中的模拟开关的数目相应地增加。然而,这种增加绝不是很显著的。例如,为了由6位数字图象数据产生具有64灰度的显示图象,采用传统的振荡电压方法的驱动电路需要9个电压源。为了产生与此相同的显示图象,根据本发明采用一个附加电压(该电压可被单独地调节以便产生最高或最低灰度)仅仅需要增加一个电压源,即共需10个电压源。由于电压源数仅仅由9增加至10,对于数据驱动器的每个输出端,模拟开关的数目仅增加1。这就表示大规模集成电路的端子数和模拟开关数目由于电压源数目增加而引起的增加在本发明的驱动电路情况是很小的。
由上所述,根据本发明提供一个或两个与灰度参考电压不同的电压以便单独地进行调节。因此,用于产生最高或最低灰度的电压、或用于产生最高灰度的电压及用于产生最低灰度的电压可由其他电压而单独地进行调节。这就使得可以产生具有液晶板所能达到的最高对比度的显示图象,而同时保留振荡电压驱动方法的优点即可获得的灰度的数目大于电压源数目。
对于本领域的熟练技术人员而言,在不脱离本发明的范围和精神的情况下的其他各种变型都是明显的和容易实现的。因此,本申请的保护范围不应仅限于本说明书叙述范围,而应按权利要求书所规定的范围得到保护。
权利要求
1.一种显示设备的驱动电路,该显示设备包括通过将特定电压加到其上时可产生显示图象的象素,该驱动电路的特征在于包括第一电压输出装置,用于根据加到其上的灰度参考电压而产生内插电压,还用于将所述内插电压加到所述象素上,该内插电压电平处所述各灰度参考电压的电压电平之间,和第二电压输出装置,用于将与所述灰度参考电压不同的电压供应给所述象素。
2.根据权利要求1所述的驱动电路,其特征在于,由所述第二电压输出装置加到所述象素上的电压用于获得最高灰度。
3.根据权利要求1所述的驱动电路,其特征在于,由所述第二电压输出装置加到所述象素上的电压用于获得最低灰度。
全文摘要
一种显示设备的驱动电路,该显示设备包括通过将特定电压加到其上时可产生显示图象的象素。该驱动电路包括用于按加到其上的灰度参考电压产生内插电压和将内插电压加到象素上的第一电压输出装置(该内插电压电平处于各灰度参考电压电平之间)和用于将与该灰度参考电压不同的电压供应给象素的第二电压输出装置。
文档编号G09G3/20GK1092194SQ9312032
公开日1994年9月14日 申请日期1993年11月25日 优先权日1992年11月25日
发明者冈田久夫, 西谷忠继, 柳俊洋 申请人:夏普公司