氮化物纤维的渐进式脱碳方法与流程

文档序号:11626310阅读:752来源:国知局
氮化物纤维的渐进式脱碳方法与流程

本发明涉及陶瓷纤维技术领域,具体的涉及一种氮化物纤维的渐进式脱碳方法。



背景技术:

先驱体转化法是制备陶瓷纤维的重要方法,该方法充分利用了元素有机聚合物的纺丝成纤的特性,经过无机转化可以得到细直径连续陶瓷纤维。通过设计先驱体组成结构,可以制得多种组成结构和性能的陶瓷纤维,目前,国内外已经成功制备出了多种型号的连续碳化硅纤维、氮化硅纤维、氮化硼纤维和sibn纤维等。后三种氮化物纤维,大多是由含碳的先驱体制备得到,后续无机化工艺过程必须脱除其中绝大部分的碳元素,以实现最终纤维的高电阻、低介电常数的性能。

日本东燃公司采用聚硅氮烷和含硼聚硅氮烷纺成聚合物纤维后,通过氨气氮化制备了氮化硅和sibon纤维(j.ceram.soc.jpn.1990,98,104;jms.1994,29:2238)。日本原子能研究所采用pcs纤维氮化方法制备了氮化硅纤维,通过控制氨气流量可以调控碳元素含量(radiationphysicsandchemistry1999,54,575)。同样的方法,也运用于制备氮化硼纤维(advfunmater200212:228)。国防科技大学采用氮化脱碳技术制备出氮化硅纤维、氮化硼纤维和sibn纤维。氮化脱碳的机制主要是通过高温下氨气的作用使纤维中的甲基等含碳基团转化为甲烷等气体脱除。上述纤维的直径一般在10-20微米之间,比较容易实现氮化脱碳。但是,这种氮化脱碳过程,涉及氨气分子由外向内的渗透和烷烃分子由内向外的逸出,必然在所形成的的纤维表面产生气体通道。氮化过程造成的纳米级缺陷降低了氮化物的纤维力学性能。



技术实现要素:

本发明的目的在于提供一种氮化物纤维的渐进式脱碳方法,该发明解决了现有氮化物纤维制备过程中产生的氨气外溢对最终所得纤维造成纳米级损伤缺陷,影响所得纤维力学性能;纤维制备过程中氨气利用率低的技术问题。

本发明提供一种氮化物纤维的渐进式脱碳方法,包括以下步骤:包括以下步骤:用氮气吹扫除去空气后,对氮化物纤维进行脱碳处理,其特征在于,脱碳处理包括以下步骤:

a、调节炉内压力至0.2~0.4mpa,按升温速度为0.5~1℃/分钟从室温升温至300~450℃后,按流量为5~10l/分钟通入氨气;

b、按升温速度为0.2~1℃/分钟继续升温至600~700℃后,停止通氨气,按流量为5~10l/分钟通入氮气;

c、继续保持速率升温至950℃后,按升温速度为3~10℃/分钟继续升温到1200~1500℃后,保温1~3小时完成脱碳,得到碳含量低于1wt%的氮化物纤维;氨气的总体积与氮化物纤维中所含氮化物的质量比为10~25l/g。

本发明提供的方法基于氮化机理的研究,由聚合物分子中的氨基取代反应、转氨化反应,在达到基本无机化之后主要通过缩合反应完成致密化。据此实现对反应各阶段的精确控制。同时,本发明有效利用氨气的氮原子,提高了原子经济性,有利于降低成本。

通过分段升温,精确控制纤维脱碳过程中所处反应温度,使得纤维内部的反应依序发生,并结合气体通入量的控制,避免了纤维表面各类纳米级缺陷的形成,提高了纤维的力学性能,同时实现了对氨气的精确使用,避免了浪费。

通过测试陶瓷纤维的碳含量即可表征氮化物纤维的脱碳程度。本发明中以碳含量低于1wt%作为基本完成脱碳的判据。碳含量的测试采用c/s联测仪。

进一步地,氮气为纯度大于99.99999%;氨气纯度大于99.99999%。

进一步地,氮化物纤维为聚硅氮烷纺丝纤维、聚硼氮烷纺丝纤维或聚硼硅氮烷纺丝纤维。

本发明的一方面提供了一种氮化物纤维,按上述的方法制备得到。采用上述方法制备的奥的该氮化物纤维表面减少了纳米级缺陷,由于采用该方法,使得氨气的外溢通道减少或改变,从而对其微观结构造成改变从而提高了所得纤维的力学性能。

相对现有技术,本发明的技术效果:

本发明提供氮化物纤维的渐进式脱碳方法,通过在300-650℃下进行氨气取代反应,从而引入氨基脱除大部分h和甲基,之后再在650-950℃下实现利用氨基的转氨化反应消除了参与反应的烷基。通过控制氨气介入时机和介入程度,实现纤维渐进式脱碳,避免了大量纳米缺陷的出现,获得了性能优异的氮化物陶瓷纤维,提高所得纤维的力学性能。

本发明提供氮化物纤维的渐进式脱碳方法,相对于文献中通用的在1000℃以下全程通入氨气的方法,本发明提供的方法中氨气使用量小,同时提高了氨气的利用率,所得纤维的力学强度仍然得到显著的提高。

具体请参考根据本发明的氮化物纤维的渐进式脱碳方法提出的各种实施例的如下描述,将使得本发明的上述和其他方面显而易见。

附图说明

图1是本发明优选实施例1所得氮化物陶瓷纤维的超景深显微镜照片示意图;

图2是本发明优选实施例1所得氮化物陶瓷纤维的x-射线能谱仪谱图。

具体实施方式

构成本申请的一部分的附图用来提供对本发明的进一步理解,本发明的示意性实施例及其说明用于解释本发明,并不构成对本发明的不当限定。

以下实施例中所用聚合物纤维均为自制,所用其他物料和仪器均为市售。

实施例1

(1)将100克聚硅氮烷纤维样品,置于高温石墨炉,纤维单丝直径15微米,抽真空置换高纯氮气,并重复两次;(2)按升温速度为0.5℃/分钟从室温升温至300℃,开始通入高纯氨气,流量为5l/分钟,保持炉内压力为0.2mpa,以1℃/分钟继续升温至650℃,累计通入高纯氨气1250l;(3)按升温速度为1℃/分钟继续升温至650℃停止通入氨气,通入高纯氮气,流量为10l/分钟,以1℃/分钟升温至950℃;4)以5℃/分钟继续升温到1200℃,并保温2小时,即可获得氮化硅陶瓷纤维,纤维超景深显微镜照片显示氮化纤维光滑致密,x-射线能谱仪分析纤维碳含量为0.22wt%,单丝强度1.92gpa,弹性模量181gpa。

实施例1中所得纤维的超景深显微镜照片如图1所示,图中所示为一束光滑致密的纤维,什么本发明提供的方法能制备具有纤维形状结构的纤维,同时所得纤维的表面光滑致密。

图2为本实施例中所得纤维的x-射线能谱仪谱图,由图可见,该样品主要由si、n元素组成,含有少量的o和微量的c。

实施例2

(1)将100克聚硼氮烷纤维样品,置于高温石墨炉,纤维单丝直径12微米,抽真空置换高纯氮气,并重复两次;(2)按升温速度为1℃/分钟从室温升温至450℃,开始通入高纯氨气,流量为10l/分钟,保持炉内压力为0.3mpa,以1℃/分钟继续升温至650℃,累计通入高纯氨气1000l;(3)650℃停止通入氨气,通入高纯氮气,流量为5l/分钟,以0.2℃/分钟升温至950℃;4)以10℃/分钟继续升温到1500℃,并保温0.5小时,即可获得氮化硼陶瓷纤维,碳含量为0.25wt%,单丝强度1.75gpa,弹性模量156gpa。

实施例3

(1)将100克聚硼硅氮烷纤维样品,置于高温石墨炉,纤维单丝直径13微米,抽真空置换高纯氮气,并重复两次;(2)按升温速度为1℃/分钟从室温升温至400℃,开始通入高纯氨气,流量为10l/分钟,保持炉内压力为0.4mpa,以0.5℃/分钟继续升温至650℃,累计通入高纯氨气2500l;(3)650℃停止通入氨气,通入高纯氮气,流量为5l/分钟,以0.5℃/分钟升温至950℃;4)以8℃/分钟继续升温到1400℃,并保温1小时,即可获得sibn陶瓷纤维,碳含量为0.28wt%,单丝强度1.80gpa,弹性模量165gpa。

实施例4

与实施例1的区别在于:

a、调节炉内压力至0.4mpa,按升温速度为1℃/分钟从室温升温至450℃后,按流量为10l/分钟通入氨气;

b、按升温速度为1℃/分钟继续升温至700℃后,停止通氨气,按流量为10l/分钟通入氮气;

c、继续保持速率升温至950℃后,按升温速度为3℃/分钟继续升温到1200℃后,保温1~3小时完成脱碳,得到碳含量低于1wt%的所述氮化物纤维;所述氨气的总体积与所述氮化物纤维中所含氮化物的质量比为10l/g。

实施例5

与实施例1的区别在于:

a、调节炉内压力至0.2mpa,按升温速度为0.5℃/分钟从室温升温至300℃后,按流量为5l/分钟通入氨气;

b、按升温速度为0.2℃/分钟继续升温至600℃后,停止通氨气,按流量为5l/分钟通入氮气;

c、继续保持速率升温至950℃后,按升温速度为3℃/分钟继续升温到1200℃后,保温1小时完成脱碳,得到碳含量低于1wt%的所述氮化物纤维;所述氨气的总体积与所述氮化物纤维中所含氮化物的质量比为10l/g。

本领域技术人员将清楚本发明的范围不限制于以上讨论的示例,有可能对其进行若干改变和修改,而不脱离所附权利要求书限定的本发明的范围。尽管己经在附图和说明书中详细图示和描述了本发明,但这样的说明和描述仅是说明或示意性的,而非限制性的。本发明并不限于所公开的实施例。

通过对附图,说明书和权利要求书的研究,在实施本发明时本领域技术人员可以理解和实现所公开的实施例的变形。在权利要求书中,术语“包括”不排除其他步骤或元素,而不定冠词“一个”或“一种”不排除多个。在彼此不同的从属权利要求中引用的某些措施的事实不意味着这些措施的组合不能被有利地使用。权利要求书中的任何参考标记不构成对本发明的范围的限制。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1