专利名称:用于飞行器外部防护的环境稳定的混合织物系统的利记博彩app
技术领域:
本发明基本上涉及飞行器外部涂层、层、表面和复合结构。更具体地说说,本发明涉及用于飞行器外部防护系统,该系统提供耐腐蚀性、耐雨水侵蚀性、环境耐用性、结构性能以及电磁防护包括雷击防护。
背景技术:
传统上,为了防护雷击,飞行器方法在机身金属主体整体上包括低阻抗路径,以耗散电能。金属化纤维增强结构材料沿着复合元件外表面使用,提供介质来快速耗散能量。其中ー些目前的雷击防护结构,虽然适合用在航空器和一些飞行器上,但是不适合用在频繁使用的飞行器上。这是因为商用飞行器经受严酷且持续的压力、湿度和温度环境变化,以及受到与这些变化有关的不同的成本和维护制約。测试证明,在频繁使用(high use)的商用飞行器操作条件下,特定的雷击防护结构易于遭受基材微裂纹和面材裂纹,使得它们更容易被腐蚀和被紫外线降解。微裂纹有时称为“编织电传(weave telegraphing)”。编织电传指代(a)面材的视觉不规则性呈现表面的底层编织图案的样子;(b)所述图案在服务中变得更为突出;(C)以及形成基材和/或涂料面材裂纹并且扩展。所述微裂纹易于形成,归因于重复且极端的温度、湿度和压カ波动。微裂纹发生的原因在于许多因素,包括源于热膨胀系数差异以及复合结构中部件之间交界粘结不良而导致的内应カ。微裂纹可能延伸到可见的涂料层,这样可能导致外观老化且增加维护和检查时间和成本。増加维护诸如修补涂料,并不仅仅为了外观,而且还指出何时需要重新施加涂料来防止底层有机材料的紫外线降解。増加检查不仅仅为了监测腐蚀,而且还用来保证微裂纹没有对结构完整性产生不良影响。因此,对于长期用于商业环境来说,这种结构并不总是能节约成本。一种雷击防护结构包括基材层、金属网格屏蔽件和非结构外膜,该外膜可以用材料诸如玻璃或聚酯进行加強。所述网格可以是通常膨胀的穿孔金属件、金属编织织物或无序衬垫。根据金属和基材,额外的非结构预浸溃层可以用于电流隔离(galvanicisolation),以避免基体基材和金属网格之间的腐蚀。虽然这种结构提供了希望的雷击防护性能,但是其没有带来结构优势,并且通常包含多个非结构层。因此,这种结构本身耗费劳动カ并且生产成本较高。包裹所述网格以防止腐蚀并提供光滑表面所需的树脂重量可能超过金属网格的重量,因此较重。而且,网格系统可能易于发生微裂纹。另ー种防护结构方案是在复合材料上采用整体(solid)金属件。这种结构也较重,而且在作为整体膜共同固结或者作为喷涂件施加到固结元件吋,难于处理到不带生产缺陷,诸如空隙。喷涂处理诸如铝焰喷涂,因要求航线设施处具有通常不具备的合格人员以及设备而増加了复杂性。因此,飞行器需要一种改进的雷击防护结构,其不存在上述劣势,并提供耐腐蚀性、耐雨水侵蚀性、环境耐用性、结构性能以及电磁防护包括希望的雷击防护特性。
发明内容
通过将具有载体的受载表面料结合(unite)到混合预浸溃基材,本发明的ー种实施例为飞行器提供了ー种形成外部表面防护层的方法。所述混合预浸溃基材包括带有集成导电部件的碳纤维,所述导电部件结合到基体基材。所述受载表面料和所述混合预浸溃基材同时固结,包括交界粘结所述受载表面料和所述混合预浸溃基材之间的材料。如果与基体基材共同固结,则可以降低加工成本。上述实施例的混合基材提供改进的结构耐用性以及电磁防护性。不会出现与该混合基材有关的额外电磁防护成本,因为防护能力集成到其结构混合预浸溃体中。本发明的实施例提供若干优势。所述优势其中之ー是在混合织物基材上使用无机·填料加载的表面料,它们在固结时掺杂。所述混合织物基材提供了希望的雷电防护性,同时受载表面料和混合织物基材相结合,提供了希望的结构支撑性和环境防护性。使用受载表面料抑制了腐蚀和微裂纹两者,因此改善了耐久性。本发明实施例提供的另ー项优势在干,将受载表面料均匀分布在混合预浸溃基材表面上,并将所述表面料交界粘结到所述基材。具有载体和填料的所述表面料补偿了因设计或工具特征导致的压カ差异,否则所述差异将促使分区(mark-off)并导致表面料厚度变化较大。这有利于防止最終会导致微裂纹和涂料裂纹的编织电传。上述优势相结合提供了ー种防护结构,该防护结构能经受合格测试以及频繁使用的商用飞行器操作环境。參照以下详细说明,结合附图一起考虑,本发明本身,连同进一歩的目标和附帯的优势将得到最好的理解。根据附图以及附带的权利要求书审视时,本发明其他特征、益处以及优势将会从以下本发明的说明中变得明显。
为了更为全面地理解本发明,现在讨论附图中更为详细图示以及借助本发明的示例在以下说明的实施例,其中图I是飞行器透视图,包含根据本发明实施例的样品外部织物防护系统;图2是图I所示样品外部织物防护系统的侧视封闭截面图;和图3是逻辑流程图,图示了根据本发明实施例的外部织物防护结构形成方法。
具体实施例方式经过测试,已经确定高度使用的飞行器操作条件下,包含带金属导线的碳纤维的雷击防护结构易于遭受基材微裂纹和面层裂纹,其中所述的金属导线设置在环氧树脂中。本发明克服这种问题,并在以下详细说明。虽然本发明主要參照形成飞行器外部防护结构进行说明,但是本发明可以应用并适配到各种应用场合。本发明可以应用到航空领域、电カ领域、航海领域、铁路领域、自动车辆领域、医疗领域和商业与住房领域,这些场合希望具有耐用的雷击防护结构,其展现出最小限度编织电传或不存在编织电传,尤其是在考虑重量或劳动カ成本的时候。另外,也考虑了其他各种实施例,它们具有以下所述本发明特征的不同组合,具有除本文所述之外的特征,或者甚至缺少ー个或多个所述特征。因此,应该理解,本发明可以以其他各种适当方式实施。在以下说明中,各种操作參数和部件说明用于ー种构造实施例。所述具体參数和部件作为示例包括在内,且并不作为限制。另外,在以下说明中,术语“部件”指代人工制品(artifact),该人工制品是构成复合整体的其中ー个特定部分。部件可以指代可以从系统上分离或可以连接到系统的元件,系统或组件的一部分,或本领域已知的其他元件。
此外,术语“表面”指代人工制品的外边界,或组成或类似该边界的材料层。表面不仅可以包括材料外边缘,而且可以包括材料最外侧的部分或层。表面可以具有厚度,并包括各种颗粒。现在參照图1,示出了飞行器10的透视图,该飞行器包含本发明实施例的样品外部织物防护系统12。防护系统12提供布满飞行器10外部14的结构支撑。防护系统12施加在飞行器元件上,诸如飞行器10机身16和尾部或机翼18,用来防护雷击并抵御其他环境条件。防护系统结合机身16可以认为是飞行器10的主要支撑结构。防护系统12包括多个层20,它们在以下详细说明。现在參照图2,示出了本发明实施例防护系统12的侧视封闭截面图。防护系统12包括基体基材30。混合预浸溃织物基材32设置在基体基材30上方并耦接到基体基材。受载表面料膜52设置在混合基材32上方并耦接到混合基材。面材或面层36,诸如喷涂的表面料、销孔填料、底漆料和涂料外涂层,可以施加在受载表面料52上。尽管对于基体基材30、混合基材32和受载表面料52每ー个示出了特定的层数,但是可以采用任何层数。换句话说,虽然示出了ー层涂料层、一层受载表面料层、ー层混合预浸溃基材层和四个基体基材层,但是各自可以使用任何数目。例如,额外的混合基材层可以用来改善性能。基体基材30可以是复合机构,包括多个结构支撑层38。结构支撑层38可以由碳纤维/环氧等形成,并呈带材或织物形式。结构支撑层38可以具有各种安放角度。例如,每个相邻层,诸如层40、41和42,可以具有取向不同的单向碳带材,诸如0°、+45°和90°,从而增加基体基材30的结构性能以及总体耐用性。基体基材30是飞行器元件的内部部分。飞行器元件可以是层压件、夹层结构或这两者相结合的结构,并由各种金属或非金属材料形成。尽管在本发明所预想的一种实施例中,基体基材30施加到碳/环氧复合机身,但是基体基材30也可以施加到本领域已知的各种材料形成的某些其他复合或混合元件上。混合基材32包括碳纤维44、以导线48形式集成到碳中的金属、和环氧树脂46。图2示出了一条导线49周围的树脂富集区域47,但是实际上环氧设置在整个混合基材32中。混合基材32可以呈现交织导线织物(IffffF)形式,如图所示,或者类似形式。纤维44A示于混合基材32的碳拖带(tow)中,且垂直于导线48延伸。示出碳拖带44B平行于导线48延伸。纤维44A和碳拖带44B—起形成IWWF53。虽然导线48示出沿着单个方向延伸,但是它们也可以沿着其他方向延伸。术语“IWWF”指代通常编织成平坦编织物的碳纤维,但是也可以使用其他编织形式。平坦编织物的每条拖带包含导电部件或导线,诸如其中一条导线48。在所示实施例中,导线48具有直径D约为O. 004英寸的截面。IWWF53不包括离散金属屏蔽件,也不包括金属编织物或具有延展的金属箔层的结构。IWWF53是混合织物,带有作为集成部件包含于其中的金属导线。IWWF53可以承受载荷,与包含金属网格或箔片的更为常见的雷击防护结构不同。可以使用的不例 IffffF 是 Washington, Tacoma, Toray Composites (America)生产的IffffF环氧预浸溃体FL6676G-37E,包含中等模量的高强度碳纤维。IWWF53可以具有约112ksi的拉伸强度和IOMSI的拉伸模量,如果在碳重量约为50%-70%的基础上,以30%_50%的环氧树脂含量的IWWF预浸溃体制造的话。另ー种用来形成混合基材32的示例是将California, Dublin 的 Hexcel Corporation 制造的 AS-4 碳纤维与 California, Anaheim的Cytec Engineered Materials Inc.制造的材料编号No. 977环氧相组合。混合基材32中的纤维可以是各种碳类型。当然,也可以使用其他纤维、织物类型、金属和树脂等,只要它们具有类似于前述的特征即可。
混合基材32可以预浸溃,更常称为“预浸溃体”,或可以是干混合织物产品,带有作为生产过程的一部分诸如树脂转移模制或树脂注入而添加的环氧树脂。干混合织物产品的ー种示例是Hexcel Corporation生产的AS-4碳纤维。混合织物基材主要是稱接到基体基材的碳织物,带有百分比较小的金属或其他高导电性材料。本文所述混合基材32的导电部件可以表现为包含在大约每条碳拖带44B内的连续金属导线形式,但是并非限于这种形式或材料。金属/碳/树脂的比率取决于部件类型和服务环境。所用树脂的量保持在预定范围内以防止微裂纹,并保持孔隙率水平低于约2%而且提供希望的结构完整性。所用的量可以借助超声检查设备进行測量。微裂纹和孔隙率水平设定了该范围的下端。所希望的结构完整性设定了该范围的上端。与金属网格不同,混合基材32提供结构优势,而不仅仅是电磁防护。与提供电磁防护包括雷击防护、屏蔽防护以及静电防护有关的混合基材重量降低,因为金属成分的量減少。混合基材32或上述IffffF可以包括导线,所述导线由磷青铜、铝、镍涂覆的铜、铜、不锈钢或其他具有类似电气和热学特性的导电材料形成或者由这些材料组合形成。铝或其他类似材料因密度、导电性和热学特性,所以可以用于改善防雷击性能。另ー方面,不锈钢等可以用来改善耐腐蚀性。为给定应用场合形成防护结构时,成本、实用性、腐蚀敏感性、内应カ包括来自热膨胀系数的内应カ和来自其他热学或电气特性的内应カ是需要考虑的一些參数。混合基材32为飞行器10提供额外的结构支撑,并可以用作主支撑结构的一部分。混合基材32可以替代基体基材30或结构支撑层38的一部分。因此,一般来说,混合基材32减小了基体基材30的厚度和重量、減少生产基体基材30的时间和成本以及降低了飞行器10的总重量。受载表面料52以诸如ニ氧化钛的无机填料(未示出)进行加载。无机填料和载体,由虚线51表示,位于有机环氧树脂50中。可以由包括锻制ニ氧化硅和氧化铝以及本领域已知的其他填料或这些材料的相组合的无机填料来加载环氧50。载体51可以表现为聚酯衬垫(mat)、碳纤维衬垫、玻璃衬垫、金属化衬垫等形式。导电载体的量可以増大,以改善防雷击弹性。有机环氧50是相容性的,直到大约介于250 T-350 T的固结温度。固结后,在导线48上,厚度T约为0. 004英寸吋,受载表面料52的重量范围大约介于0. 02-0. 06磅每平方英尺(lb/ft2)之间。根据IffffF或类似材料的树脂含量以及流动特性以及工具装备(tooling fit-up)成比例调节受载表面料52的重量,以确保导线和外表面之间有足够量的表面料,并且在频繁使用的商用飞行器环境中,确保具有长期耐用性。可以使用的受载表面料不例是 CytecEngineered Material Surface Master 905,其标称重量为 O. 03251b/ft2。受载表面料52提供适合涂刷底漆和涂料的表面。类似于图2的微观照片掲示了表面料局部穿过混合基材32,下到基体基材。受载表面料52经过选择,以使混合基材32中的导电部件44可以经过受载表面料52和其上的任何涂料层挥发,用于最大限度的防护。历史上,没有使用表面料,因为它们容易使防护结构的防雷击性能变差。但是,本文所述的掺杂技术连同IWWF的使用,提供了满足防雷击要求的防护结构。受载表面料52的厚度T根据雷击防护量以及希望的其他环境防护量进行调节。环境防护量,诸如耐雨水侵蚀量、耐腐蚀量以及总体耐用性与雷击防护量此消彼长。一般来说,受载表面料52越厚,防雷击性能越差,但是环境防护性能越好,反之亦然。延续以上示例的内容,使用SurfaceMaster905的O. 03251b/ft2型号的表面料,结合树脂含量约为40%的混合预浸溃基材,具有包含约196克/米2的碳和约63克/米2的金属的干坯料,对于通常飞行器结构来说,能防止最初雷击接触造成的击穿。通常飞行器结构是具有标准生产面材并经测试达到飞行器认证所需水平的结构,从而满足联邦航空管理规定(FAR)第25部分。防护系统12耐用并可以承受与商用飞行器包括诸如频繁使用的大型商用飞行器有关的环境循环。在批准投入商业使用之前,飞行器外部部分接受严格的测试,以模拟商业使用。其中一些测试包括让部件承受较大的温度、适度和压カ极限变化。例如,测试样品可能在约120 °F下暴露于95%的湿度水平并持续数小吋,并且可能经受4000次或更多次介于约65 °F至165 °F之间的温度波动循环,以证明商用可行性。这种测试可能包括在地-空-地舱中进行数千次循环,以模拟其极限对应于飞行剖面图(flight profile)的压力、湿度和温度的变化。现在參照图3,示出了根据本发明实施例,形成诸如系统12的外部织物防护结构或系统的方法的逻辑流程图。虽然以下步骤主要针对图2的实施例来说明,但是这些步骤可以经过简单改动而适用于本发明其他实施例。在步骤100中,具有载体的受载表面料,诸如受载表面料52和载体51,施加到模具中。该模具可以是各种类型、样式、形状和尺寸,取决于需要形成的部件或结构。在步骤102中,混合预浸溃基材,诸如带有碳织物44和金属48的混合基材32,施加到所述加载表料上。在一种实施例中,所述预浸溃基材是IWWF,如上所述。在步骤104中,基体基材,诸如基体基材30,施加到所述预浸溃基材。在所述示例中,所述基体基材表现为预浸溃体形式并共同固结。但是,基体基材层可以预成形并在施加预浸溃基材之前固结或者之后固结。但是,根据所用的共同结合技术,性能可能不同。以下的步骤106-110类似于步骤100-104,但是以相反顺序执行。在步骤106中,基体基材施加到预浸溃体形式的模具中。基体基材层可以预成形并在施加到工具中或者或插入工具之前固结或者之后固结。在步骤108中,具有碳织物和诸如导线的集成导电部件的混合预浸溃基材,施加到所述基体基材。在步骤110中,包括载体的受载表面料施加到所述混合预浸溃基材。、
在步骤112中,所述受载表面料、所述预浸溃基材以及所述基体基材固结,以形成所述防护结构。包括所述受载表面料、所述混合预浸溃基材以及所述基体基材的所述模具置于高压釜(autoclave)等中并烘干。对于本示例,所述高压釜中的温度大约介于245-355 T之间。所用固结温度低于混合基材中导电部件或导线的熔化温度,以防止所述导线熔化。所述模具置于高压釜中的时间长度取决于所用材料的固结特性。在固结过程中,所述受载表面料交界粘结到所述混合预浸溃基材,而不是所述受载表面料全部保持在预浸溃基材顶部。受载表面料和预浸溃基材中的材料或树脂混合在一起并固结,从而彼此交界粘结。此外,所述受载表面料使得在加热时,其均匀分布并通过模具和/或预浸溃基材固结,以形成具有特定厚度诸如厚度T的单个连续层。这样保证了预浸溃基材中的导线诸 如导线48被受载表面料覆盖。在示例实施例中,所用受载表面料固结到厚度约为O. 004英寸。所述受载表面料可以在局部区域向下延伸到基体基材。表面料中的树脂与混合织物基材中的树脂在固结过程中掺杂,同时将足量的表面料层成分保持在导电部件顶部,提供了希望的环境耐用性。在步骤114中,通过固结所述受载表面料、所述预浸溃基材和所述基体基材形成的防护结构或系统在固结后从模具中取出。根据应用场合,上述掺杂表面料的方案对于强度较高或模量较高的碳类型来说,特别是对那些以易于发生微裂纹的树脂浸溃的碳类型来说,特别具有优势。上述步骤意在图示示例,所述步骤可以依次、同步或同时实施,或者根据应用场合以不同的顺序实施。当然所述系统和所执行步骤的一部分可以手动实现,或者不用特定的设备或机械。本发明为形成雷击防护系统提供了成本节约和高效的系统和方法。本发明重量轻、设计简单、防腐蚀并且耐用。因此,本发明延长了飞行器和相关外部部件的使用寿命并降低了维护成本。虽然针对ー种或多种实施例说明了本发明,但是应该理解,已经说明的具体机构和技术仅用于图示本发明的原理,在不背离附帯的权利要求书限定的精神和范围的条件下,可以对所述方法和装置进行许多改动。
权利要求
1.一种为飞行器形成外部表面防护结构的方法,包括 将包括载体的受载表面料结合到混合预浸溃基材; 将包含带有集成导电部件的碳纤维的所述混合预浸溃基材结合到基体基材;和 固结所述受载表面料和所述混合预浸溃基材,包括交界粘结所述受载表面料和所述预浸溃基材之间的材料。
2.如权利要求I所述的方法,其特征在于,所述固结包括将所述受载表面料均匀分布在所述预浸溃基材上,以形成覆盖所述碳纤维中多条导线主要部分的层。
3.如权利要求I所述的方法,其特征在于,所述固结包括将所述受载表面料均匀分布在所述预浸溃基材上,以形成厚度约为0. 004英寸的层。
4.如权利要求I所述的方法,其特征在于,所述固结包括在大约介于250至350T之间的温度下烘干所述受载表面料和所述预浸溃基材。
5.如权利要求I所述的方法,其特征在于,所述结合所述预浸溃基材包括将交织导线织物结合到所述基体基材。
6.如权利要求I所述的方法,其特征在于,所述结合所述混合预浸溃基材包括将编织到碳织物中并以环氧浸溃的碳纤维结合到所述基体基材。
7.如权利要求I所述的方法,其特征在于,所述结合所述预浸溃基材包括施加不带金属屏蔽件的交织导线织物。
全文摘要
一种为飞行器(10)形成外部表面防护结构(12)的方法,包括将具有载体(51)的受载表面料(52)结合到混合预浸渍基材(32)。所述预浸渍基材(32)包括带有集成导电部件(48)的碳织物(44),并结合到基体基材(30),其中所述集成导电部件具有金属导电性范围内的导电性。固结所述受载表面料(52)和所述预浸渍基材(32),包括交界粘结所述受载表面料(52)和所述预浸渍基材(32)之间的材料。一种用于飞行器(10)外部(14)的防护织物系统(12)包括基体基材(30)。所述预浸渍基材(32)耦接到所述基体基材(30)。所述带有载体(51)的受载表面料(52)交界粘结到所述预浸渍基材。
文档编号B32B15/092GK102658687SQ2012101768
公开日2012年9月12日 申请日期2006年10月24日 优先权日2005年10月25日
发明者阿琳·M·布朗 申请人:波音公司