专利名称:极低密度聚乙烯和高密度聚乙烯共混物的利记博彩app
1.发明领域本发明一般性地涉及聚烯烃共混物和从聚烯烃共混物生产的薄膜。更具体地说,本发明涉及通过使用金属茂催化剂制得的极低密度聚乙烯与高密度聚乙烯的共混物,和从该共混物形成的产品如薄膜。
2.背景技术各种类型的聚乙烯是本技术领域中已知的。低密度聚乙烯(“LDPE”)能够在高压下通过使用自由基引发剂,或在气相工艺过程中通过使用齐格勒-纳塔或钒催化剂来制备,并且典型地具有在0.916-0.940g/cm3范围内的密度。LDPE也已知为“支化”或“不均匀支化”聚乙烯,因为较大数目的长链分支从主聚合物骨架中延伸。是线性的但不含长链分支的在相同的密度范围内(即0.916-0.940g/cm3)的聚乙烯也是已知的;这一“线性低密度聚乙烯”(“LLDPE”)能够用常规的齐格勒-纳塔催化剂或用金属茂催化剂来生产。较高密度LDPE,典型地在0.928-0.940g/cm3之间,有时候称为中密度聚乙烯(“MDPE”)。具有更高密度的聚乙烯是高密度聚乙烯(“HDPE”),即具有大于0.940g/cm3的密度的聚乙烯,并且一般是用齐格勒-纳塔催化剂制备。极低密度聚乙烯(“VLDPE”)也是已知的。各种VLDPE能够通过使用多种不同工艺过程来生产而得到具有不同性能的聚合物,但一般描述为具有低于0.916g/cm3,典型地0.890-0.915g/cm3或0.900-0.915g/cm3的密度的聚乙烯。
美国专利No.5,272,236和5,278,272公开了称作“基本上线性的乙烯聚合物”(“SLEP”)的聚乙烯。这些SLEP体现特征于具有被大约0.01个长链分支/1000个碳到大约3个长链分支/1000个碳,更优选大约0.01个长链分支/1000个碳到大约1个长链分支/1000个碳,和尤其大约0.05个长链分支/1000个碳到大约1个长链分支/1000个碳所取代的聚合物骨架。正如在这里和在美国专利No 5,272,236和5,278,272中所使用的,具有“长链支化”的聚合物被定义为具有至少约6个碳的链长度的分支,高于它使得该长度无法使用13C NMR谱来区分。它还公开,长链分支能够与聚合物骨架的长度有几乎相同的长度。在本公开物中使用的术语“线性”适用于具有线性骨架和不具有长链分支的聚合物;即“线性”聚合物是不具有SLEP聚合物的长链分支特性的一种聚合物。
3.发明概述通常,本发明涉及聚合物共混物,该共混物包括具有低于0.916g/cm3的密度的极低密度聚乙烯(VLDPE),和具有高于0.940g/cm3的密度的高密度聚乙烯(HDPE)。该VLDPE聚合物能够在金属茂-催化的工艺过程,优选气相金属茂-催化的工艺过程中生产。本发明的mVLDPE聚合物体现特征于独特的一组性能,其中包括下列性能中的一种或多种(a)50-85%,另外60-80%,或55-75%,或55%或55%以上70%或70%以下的组成分布CDBI;(b)2-3,另外地2.2-2.8的分子量分布Mw/Mn;(c)低于2的分子量分布Mz/Mw;和(d)在TREF测量中两个峰的存在。
在一个实施方案中,本发明涉及聚合物共混物,该共混物包括金属茂生产的VLDPE聚合物,后者包含具有25wt%或25wt%以下,优选20wt%或20wt%以下,和更优选15wt%或15wt%以下的共聚单体含量的乙烯共聚物。
在另一个实施方案中,本发明涉及聚合物共混物,该共混物包括金属茂生产的VLDPE聚合物,优选气相金属茂生产的VLDPE聚合物,该VLDPE聚合物是乙烯和至少一种C3-C12的α-烯烃的共聚物并且具有0.890-0.915g/cm3的密度和0.1-20g/10min的熔体指数。
在另一个实施方案中,本发明涉及聚合物共混物,该共混物包括气相金属茂生产的VLDPE聚合物,该VLDPE聚合物是乙烯和1-丁烯,1-己烯,4-甲基-1-戊烯,或1-辛烯的共聚物并具有0.890g/cm3,0.900g/cm3,0.905g/cm3,0.910g/cm3或0.911g/cm3的下限到0.915g/cm3或0.913g/cm3的上限的密度,0.5-20g/10min的熔体指数,60-80wt%的组成分布宽度指数,和2.2-2.8的分子量分布(Mw/Mn)。
在另一个实施方案中,本发明涉及从包括mVLDPE聚合物和HDPE聚合物的共混物形成的吹塑或流延的单层薄膜。
在另一个实施方案中,本发明涉及吹塑或流延多层薄膜,其中多层薄膜的至少一层是由包括mVLDPE聚合物和HDPE聚合物的共混物形成的。
在另一个实施方案中,本发明涉及包括本发明的薄膜的制品,用本发明的薄膜包裹的制品,和涂有本发明的膜的基材。
4.发明详述4.1VLDPE组分在至少一个特定的实施方案中,该聚合物共混物包括使用气相聚合工艺过程制得的VLDPE聚合物。这里使用的术语“极低密度聚乙烯”聚合物和“VLDPE”聚合物是指具有低于0.916g/cm3的密度的聚乙烯聚合物。这里使用的术语“气相聚合”是指在气体流化床中从单体制备聚合物的聚合反应。例如,本发明的VLDPE可通过在具有流化床和流化介质的气相反应器中,在反应活性条件下,于金属茂催化剂存在下聚合α-烯烃来制备。在优选的实施方案中,该VLDPE聚合物可通过在单个反应器(与多反应器相比)中的聚合反应来制备。正如下面所详细讨论的,可使用各种气相聚合工艺过程。例如,聚合可按非冷凝或“干燥”模式,冷凝模式,或“超冷凝模式”来进行。在特定的实施方案中,流化介质中的液体能够保持大于2wt%的水平,基于流化介质的总重量。
离开反应器的物料包括极低密度聚乙烯(VLDPE),具有在本文别处描述的范围内的密度,例如具有0.890-0.915的密度,和更窄地0.910-0.915的密度,和包括未反应单体气体的物流。在聚合之后,回收聚合物。在某些实施方案中,该物流被压缩和冷却,且与原料组分混合,据此气相和液相回到该反应器。
在优选的方面,本发明的VLDPE是共聚物,从乙烯与至少一种共聚单体例如己烯或辛烯一起制得。具有两种类型以上的单体的聚合物,如三元共聚物,也包括在这里使用的术语“共聚物”中。例如,VLDPE三元共聚物可以通过使用乙烯单体与丁烯、己烯和辛烯中任何两种一起来制备。对于包括乙烯/丁烯共聚物的VLDPE聚合物的一个实施方案,丁烯与乙烯的摩尔比应该是大约0.015-0.035,优选0.020-0.030。对于包括乙烯/己烯共聚物的VLDPE聚合物的一个实施方案,己烯与乙烯的摩尔比应该是大约0.015-0.035,优选0.020-0.030。对于包括乙烯/辛烯共聚物的VLDPE聚合物的一个实施方案,辛烯与乙烯的摩尔比应该是大约0.015-0.035,优选0.020-0.030。
一般用于制造VLDPE共聚物的共聚单体包括α-烯烃,如C3-C20的α-烯烃和优选C3-C12的α-烯烃。该α-烯烃共聚单体能够是线性或支化的,和如果需要的话,使用两种或多种共聚单体。合适的共聚单体的例子包括线性C3-C12的α-烯烃,和具有一个或多个C1-C3烷基分支或芳基的α-烯烃。特定的例子包括丙烯;1-丁烯,3-甲基-1-丁烯;3,3-二甲基-1-丁烯;1-戊烯;具有一个或多个甲基、乙基或丙基取代基的1-戊烯;具有一个或多个甲基,乙基或丙基取代基的1-己烯;具有一个或多个甲基,乙基或丙基取代基的1-庚烯;具有一个或多个甲基、乙基或丙基取代基的1-辛烯;具有一个或多个甲基、乙基或丙基取代基的1-壬烯;乙基、甲基或二甲基取代的1-癸烯;1-十二碳烯;和苯乙烯。应该认识到,以上共聚单体的列举仅仅是举例而已,不认为是限制性的。优选的共聚单体包括丙烯,1-丁烯,1-戊烯,4-甲基-1-戊烯,1-己烯,1-辛烯和苯乙烯,更优选1-丁烯,1-己烯,和1-辛烯。
虽然通常不是优选的,但是其它有用的共聚单体包括极性乙烯基,共轭的和非共轭的二烯烃,乙炔和醛单体,它们能够以少量包括在三元共聚物组成中。用作共聚单体的非共轭二烯烃优选是具有6-15个碳原子的直链、烃二烯烃或环链烯基取代的烯烃。合适的非共轭二烯烃包括,例如(a)直链无环二烯烃类,如1,4-己二烯和1,6-辛二烯;(b)支链无环二烯烃类,如5-甲基-1,4-己二烯;3,7-二甲基-1,6-辛二烯;和3,7-二甲基-1,7-辛二烯;(c)单环脂环族二烯类,如1,4-环己二烯;1,5-环辛二烯和1,7-环十二碳二烯;(d)多环脂环族稠合和桥接的环二烯烃类,如四氢茚;降冰片二烯;甲基-四氢茚;双环戊二烯(DCPD);双环(2.2.1)-庚-2,5-二烯;链烯基,烷叉基(alkylidene),环链烯基和环烷叉基降冰片烯,如5-亚甲基-2-降冰片烯(MNB),5-丙烯基-2-降冰片烯,5-异丙叉基-2-降冰片烯,5-(4-环戊烯基)-2-降冰片烯,5-亚环己基-2-降冰片烯,和5-乙烯基-2-降冰片烯(VNB);和(e)环链烯基取代的烯烃类,如乙烯基环己烯,烯丙基环己烯,乙烯基环辛烯,4-乙烯基环己烯,烯丙基环癸烯,和乙烯基环十二烯。在典型使用的非共轭二烯烃当中,优选的二烯烃是双环戊二烯,1,4-己二烯,5-亚甲基-2-降冰片烯,5-乙叉基-2-降冰片烯,和四环-(Δ-11,12)-5,8-十二碳烯。特别优选的二烯烃是5-乙叉基-2-降冰片烯(ENB),1,4-己二烯,双环戊二烯(DCPD),降冰片二烯,和5-乙烯基-2-降冰片烯(VNB)。需要指出的是,在整个本说明书中术语“非共轭二烯烃”和“二烯烃”可互换使用。
应该理解的是,共聚单体的用量将取决于VLDPE聚合物的所需密度和所选择的特定的共聚单体。通常,该共聚单体能够以25wt%或25wt%以下,优选20wt%或20wt%以下和更优选15wt%或15wt%以下的量存在。在一个实施方案中,该共聚单体以5wt%或5wt%以上的量存在。对于给定的共聚单体,从它生产的VLDPE聚合物的密度将随着共聚单体含量增加而下降。本领域的技术人员能够容易地确定适合于生产具有所需密度的VLDPE聚合物的合适共聚单体含量。
金属茂催化剂是本发明的重要特征。对于专利说明书和权利要求,“金属茂催化剂”被定义为含有一个或多个与过渡金属结合的环戊二烯基结构部分的至少一种金属茂催化剂组分。该活性催化剂体系应该不仅包括金属茂,而且包括活化剂,如铝氧烷或它的衍生物(优选MAO),离子化活化剂,路易斯酸,或它们的结合物。该催化剂体系优选被负载于载体上,典型地无机氧化物或氯化物或树脂类材料如聚乙烯。优选地,该催化剂体系包括由单种或多种环戊二烯基组分与金属烷基或烷氧基组分或离子化合物组分反应所获得的金属茂组分。这些催化剂能够包括部分地和/或完全地活化的前体组合物。该催化剂可以通过预聚合或包封来改性。用于实施本发明的特定金属茂和催化剂体系被公开于WO 96/11961(国际专利申请No.PCT/US95/12789)和WO96/11960(国际专利申请No.PCT/US95/12737)。金属茂催化剂和催化剂体系的其它非限制性例子已在美国专利No 4,808,561、5,017,714、5,055,438、5,064,802、5,124,418、5,153,157和5,324,800中讨论,这些文献的公开内容和教导被引入本文供参考。还有其它有机金属配合物和/或催化剂体系被描述在Organometallics,1999,2046;PCT出版物WO 96/23010,WO 99/14250,WO 98/50392,WO 98/41529,WO98/40420,WO 98/40374,WO 98/47933;和欧洲专利出版物EP 0 881233和EP 0 890 581中。
这里使用的术语“金属茂”和“金属茂催化剂前体”是指具有4,5或6族过渡金属(M),与环戊二烯基(Cp)配位体(可以被取代),至少一种非环戊二烯基衍生的配位体(X),和含有零个或一个杂原子的配位体(Y)的那些化合物,该配位体配位于M上和在数值上对应于它的价态。该金属茂催化剂前体通常需要用合适的助催化剂(称为“活化剂”)活化,以便得到“活性金属茂催化剂”,即具有供配位、插入和聚合烯烃类用的空的配合位置的有机金属配合物。该金属茂催化剂前体优选是以下类型中任何一种或两种的金属茂化合物的一种或混合物(1)有两个Cp环体系用于配位体的环戊二烯基(Cp)配合物。该Cp配位体与金属形成了夹心配合物并且能自由旋转(未桥连)或通过桥接基团而锁定成硬质构型。这些Cp环配位体能够是相同的(like)或不相同的(unlike),未被取代的,取代的,或它们的衍生物,如被取代的杂环体系,而且该取代基能够稠合而形成其它饱和或不饱和的环体系,如四氢茚基,茚基,或芴基环体系。这些环戊二烯基配合物具有以下通式(Cp1R1m)R3n(Cp2R2p)MXq其中Cp1和Cp2是相同的或不同的环戊二烯基环;R1和R2各自独立地是卤素或含有至多约20个碳原子的烃基,卤碳基,烃基取代的有机准金属基团或卤碳基取代的有机准金属基团;m是0-5;p是0-5;在与其配合的环戊二烯基环的相邻碳原子上的两个R1和/或R2取代基能够连接在一起而形成含有4到大约20个碳原子的环;R3是桥接基团;n是在两个配位体之间的直接链中的原子的数目并且是0-8,优选0-3;M是具有价态3-6的过渡金属,优选来自元素周期表的4、5或6族并且优选处于它的最高氧化态下;各X是非环戊二烯基配位体和独立地是氢,卤素或含有至多约20个碳原子的烃基,含氧烃基,卤碳基,烃基取代的有机准金属,含氧烃基取代的有机准金属或卤碳基取代的有机准金属基团;和q等于M的价态减去2。
(2)有仅仅一个Cp环体系作为配位体的单环戊二烯基配合物。该Cp配位体与金属形成了半夹心配合物并且自由旋转(未桥连)或通过桥接基团连接到含杂原子的配位体上而锁定成硬质构型。该Cp环配位体能够是未被取代的,取代的,或它们的衍生物,如可被取代的杂环体系,而且该取代基能够稠合而形成其它饱和或不饱和的环体系,如四氢茚基,茚基,或芴基环体系。含有杂原子的配位体通过桥接基团键接于金属上和非必要地键接于Cp配位体上。该杂原子本身是元素周期表的15族中具有配位数3的或16族中具有配位数2的原子。这些单-环戊二烯基配合物具有以下通式(Cp1R1m)R3n(YrR2)MXs其中各R1独立地是,卤素或含有至多约20个碳原子的烃基,卤碳基,烃基取代的有机准金属或卤碳基取代的有机准金属基团,“m”是0-5,和在与其结合的环戊二烯基环的相邻碳原子上的两个R1取代基能够结合在一起形成含有4到大约20个碳原子的环;R3是桥接基团;“n”是0-3;M是具有价态3-6的过渡金属,优选来自元素周期表的4、5或6族的元素并且优选处于它的最高氧化态;Y是含杂原子的基团,其中杂原子是来自15族的具有配位数3或来自16族的具有配位数2的元素(优选氮、磷、氧或硫);R2是选自C1-C20烃基,取代的C1-C20烃基(其中一个或多个氢原子被卤素原子取代)中的基团,和当Y是3配位和未桥接的时,则在Y上有两个R2基团,它们两者各自独立地是选自的C1-C20烃基,取代的C1-C20烃基(其中一个或多个氢原子被卤素原子取代)中的基团,和各X是非环戊二烯基配位体并且独立地是氢,卤素或含有至多约20个碳原子的烃基,含氧烃基,卤碳基,烃基取代的有机准金属,含氧烃基取代的有机准金属或卤碳基取代的有机准金属基团,“s”等于M的价态减去2。
在用于生产本发明的m-VLDPE聚合物的以上(1)组中描述的那一类型的双环戊二烯基金属茂的例子公开于美国专利No 5,324,800;5,198,401;5,278,119;5,387,568;5,120,867;5,017,714;4,871,705;4,542,199;4,752,597;5,132,262;5,391,629;5,243,001;5,278,264;5,296,434;和5,304,614中。
举例性地,然而并非限定的,在以上(1)组描述的那一类型的合适双环戊二烯基金属茂的例子是下面的外消旋异构体μ-(CH3)2Si(茚基)2M(Cl)2;μ-(CH3)2Si(茚基)2M(CH3)2;μ-(CH3)2Si(四氢茚基)2M(Cl)2;μ-(CH3)2Si(四氢茚基)2M(CH3)2;μ-(CH3)2Si(茚基)2M(CH2CH3)2;和μ-(C6H5)2C(茚基)2M(CH3)2;其中M是Zr或Hf。
在以上(1)组中描述的那一类型的合适的非对称的环戊二烯基金属茂的例子公开于美国专利No 4,892,851;5,334,677;5,416,228;和5,449,651中;和在出版物J.Am.Chem.Soc.1988,110,6255中。
举例性地,然而并非限定的,在以上(1)组描述的那一类型的优选的非对称的环戊二烯基金属茂的例子是μ-(C6H5)2C(环戊二烯基)(芴基)M(R)2;μ-(C6H5)2C(3-甲基环戊二烯基)(芴基)M(R)2;
μ-(CH3)2C(环戊二烯基)(芴基)M(R)2;μ-(C6H5)2C(环戊二烯基)(2-甲基茚基)M(CH3)2;μ-(C6H5)2C(3-甲基环戊二烯基)(2-甲基茚基)M(Cl)2;μ-(C6H5)2C(环戊二烯基)(2,7-二甲基芴基)M(R)2;和μ-(CH3)2C(环戊二烯基)(2,7-二甲基芴基)M(R)2;其中M是Zr或Hf,和R是Cl或CH3。
在以上(2)组描述的那一类型的合适的单环戊二烯基金属茂的例子公开于美国专利No.5,026,798;5,057,475;5,350,723;5,264,405;5,055,438;和在WO 96/002244中。
举例性地,然而并非限定的,在以上(2)组描述的那一类型的优选的单环戊二烯基金属茂的例子是μ-(CH3)2Si(环戊二烯基)(1-金刚烷基酰氨基(amido))M(R)2;μ-(CH3)2Si(3-叔丁基环戊二烯基)(1-金刚烷基酰氨基)M(R)2;μ-(CH2(四甲基环戊二烯基)(1-金刚烷基酰氨基)M(R)2;μ-(CH3)2Si(四甲基环戊二烯基)(1-金刚烷基酰氨基)M(R)2;μ-(CH3)2C(四甲基环戊二烯基)(1-金刚烷基酰氨基)M(R)2;μ-(CH3)2Si(四甲基环戊二烯基)(1-叔丁基酰氨基)M(R)2;μ-(CH3)2Si(芴基)(1-叔丁基酰氨基)M(R)2;μ-(CH3)2Si(四甲基环戊二烯基)(1-环十二烷基酰氨基)M(R)2;和μ-(C6H5)2C(四甲基环戊二烯基)(1-环十二烷基酰氨基)M(R)2;其中M是Ti,Zr或Hf;和R是Cl或CH3。
可用于这里所述的VLDPE聚合物的催化剂的其它有机金属配合物是具有二酰亚氨基(diimido)配位体体系的那些,如在WO 96/23010中所述。描述合适的有机金属配合物的其它参考文献包括Organometallics,1999,2046;PCT出版物WO 99/14250,WO 98/50392,WO 98/41529,WO 98/40420,WO 98/40374,WO 98/47933;和欧洲专利出版物EP 0881233和EP 0890581。
该金属茂化合物和/或其它有机金属配合物与活化剂接触而生产活性催化剂。一种类型的活化剂是非配位阴离子,其中该术语“非配位阴离子”(NCA)是指不配位到过渡金属阳离子上或仅仅弱配位于过渡金属阳离子上,从而保持了可被中性路易斯碱置换的足够不稳定性的一种阴离子。“相容的”非配位阴离子是当最初形成的配合物分解时不会降解成中性的那些。此外,该阴离子不会转移阴离子取代基或片段到阳离子上从而引起它形成了中性的四配位金属茂化合物和从阴离子形成中性副产物。根据本发明有用的非配位阴离子是相容性的,在平衡它的离子电荷在+1状态中的意义上使该金属茂阳离子稳定化,还保持足够的不稳定性以允许在聚合过程中被烯属或炔属不饱和单体置换的那些非配位阴离子。另外,可用于本发明中的阴离子是大的或庞大的,这是在足够的分子尺寸基本上抑制或防止金属茂阳离子被除了在聚合工艺过程中存在的可聚合的单体以外的路易斯碱所中和的意义上而言。典型地该阴离子将具有大于或等于约4埃的分子尺寸。
制备金属茂催化剂的附加方法使用离子化阴离子前体,它最初是中性路易斯酸,但在与金属茂化合物发生离子化反应之后形成了阳离子和阴离子。例如,三(五氟苯基)硼用于从金属茂化合物上夺取烷基,氢(hydride)或甲硅烷基配位体而得到金属茂阳离子和稳定化的非配位阴离子;参见EP-A-0 427 697和EP-A-0 520 732。加成聚合用的金属茂催化剂也能够通过过渡金属化合物的金属中心被含有金属氧化基团和阴离子基团的阴离子前体的氧化来制备;参见EP-A-0 495 375。
能够用于使本发明的金属茂化合物发生离子阳离子化和因此被所形成的非配位阴离子所稳定化的合适活化剂的例子包括三烷基取代的铵盐如四苯基硼酸三乙基铵;四苯基硼酸三丙基铵;四苯基硼酸三(正丁基)铵;四(对-甲苯基)硼酸三甲基铵;四(邻-甲苯基)硼酸三甲基铵;四(五氟苯基)硼酸三丁基铵;四(邻,对-二甲基苯基)硼酸三丙基铵;
四(间,间-二甲基苯基)硼酸三丁基铵;四(对-三氟甲基苯基)硼酸三丁基铵;四(五氟苯基)硼酸三丁基铵;和四(邻-甲苯基)硼酸三(正丁基)铵;N,N-二烷基苯铵盐如四(五氟苯基)硼酸N,N-二甲基苯铵;四(七氟萘基)硼酸N,N-二甲基苯铵;四(全氟-4-联苯基)硼酸N,N-二甲基苯铵;四苯基硼酸N,N-二甲基苯铵;四苯基硼酸N,N-二乙基苯铵;和四苯基硼酸N,N-2,4,6-五甲基苯铵;二烷基铵盐如四(五氟苯基)硼酸二-(异丙基)铵;和四苯基硼酸二环己基铵;和三芳基鏻如四苯基硼酸三苯基鏻;四苯基硼酸三(甲基苯基)鏻;和四苯基硼酸三(二甲基苯基)鏻。
合适的阴离子前体的其它例子包括包含稳定的碳鎓离子和相容的非配位阴离子的那些。这些包括四(五氟苯基)硼酸卓鎓盐(tropillium);四(五氟苯基)硼酸三苯基甲基鎓盐;四(五氟苯基)硼酸苯(重氮)盐;苯基三(五氟苯基)硼酸卓鎓盐;苯基-[三(五氟苯基)]硼酸三苯基甲基鎓盐;苯基-三(五氟苯基)硼酸苯(重氮)盐;四(2,3,5,6-四氟苯基)硼酸卓鎓盐;四(2,3,5,6-四氟苯基)硼酸三苯基甲基鎓盐;四(3,4,5-三氟苯基)硼酸苯(重氮)盐;
四(3,4,5-三氟苯基)硼酸卓鎓盐;四(3,4,5-三氟苯基)硼酸苯(重氮)盐;四(3,4,5-三氟苯基)铝酸卓鎓盐;四(3,4,5-三氟苯基)铝酸三苯基甲基鎓盐;四(3,4,5-三氟苯基)铝酸苯(重氮)盐;四(1,2,2-三氟乙烯基)硼酸卓鎓盐;四(1,2,2-三氟乙烯基)硼酸三苯基甲基鎓盐;四(1,2,2-三氟乙烯基)硼酸苯(重氮)盐;四(2,3,4,5-四氟苯基)硼酸卓鎓盐;四(2,3,4,5-四氟苯基)硼酸三苯基甲基鎓盐;和四(2,3,4,5-四氟苯基)硼酸苯(重氮)盐。
其中该金属配位体包括卤素(halide)结构部分时,例如,二氯·(甲基-苯基)亚甲硅基(四甲基-环戊二烯基)(叔丁基-酰氨基)合锆,它在标准条件下不能发生离子化夺取,它们能够经由利用有机金属化合物如锂或铝氢化物或烷基化物,烷基铝氧烷,格利雅试剂等的已知烷基化反应而转化。对于描述了在活化用阴离子化合物的添加之前或添加时烷基铝化合物与二卤素取代的金属茂化合物之间的反应的工艺过程,参见EP-A-0 500 944,EP-A1-0 570 982和EP-A1-0 612 768。例如,烷基铝化合物可以在被引入反应器中之前与金属茂混合。因为烷基铝也适合作为清除剂(如下所述),它的使用量超过了为金属茂的烷基化所需要的正常化学计量将允许它与金属茂化合物一起加入到反应溶剂中。正常地,铝氧烷不与金属茂一起添加,因此避免了过早活化,但是在同时用作清除剂和烷基化活化剂时能够在可聚合单体存在下直接加入到反应器中。
烷基铝氧烷另外适合作为催化剂活化剂,特别用于具有卤素配位体的那些金属茂。用作催化剂活化剂的铝氧烷典型地是由通式(R-Al-O)n(它是环状化合物)或R(R-Al-O)nAlR2(它是线性化合物)表示的低聚铝化合物。在这些通式中,各R或R2是C1-C5烷基,例如,甲基,乙基,丙基,丁基或戊基,和“n”是1-约50的整数。最优选地,R是甲基和“n”是至少4,即,甲基铝氧烷(MAO)。铝氧烷能够通过现有技术中已知的各种程序来制备。例如,烷基铝可以用已溶于惰性有机溶剂中的水进行处理,或它可以与水合盐如悬浮在惰性有机溶剂中的水合硫酸铜接触,得到铝氧烷。通常,无论如何制备,烷基铝与有限量的水反应得到了铝氧烷的线性和环状物质的混合物。
非必要地,还使用清除化合物。这里使用的术语“清除化合物”是指有效从反应溶剂中除去极性杂质的那些化合物。此类杂质能够无意地随这些聚合反应组分中的任何一种,尤其随溶剂、单体和共聚单体原料一起引入,并且通过减少或甚至消除催化活性而不利地影响催化剂活性和稳定性,特别当金属茂阳离子-非配位阴离子对是该催化剂体系时。极性杂质或催化剂毒害物,包括水、氧、氧化烃类、金属杂质等。优选地,在此类原料物质被提供到反应器中之前采取多个步骤,例如在各种组分的合成或制备之后或过程中通过化学处理或精细的分离技术,但是在聚合工艺过程本身中正常仍然需要一些少量的清除用化合物。典型地,该清除化合物是有机金属化合物,如美国专利No5,153,157和5,241,025;EP-A-0 426 638;WO-A-91/09882;WO-A-94/03506;和WO-A-93/14132的13族有机金属化合物。举例性质的化合物包括三乙基铝,三乙基硼烷,三异丁基铝,异丁基铝氧烷,而具有以共价键连接于金属或准金属中心上的庞大取代基的那些是最大程度地减少与活性催化剂的不利相互作用所优选的。
离开反应器的物料包括VLDPE聚合物和含有未反应的单体气体的物流。在聚合之后,回收聚合物。在某些实施方案中,该物流被压缩和冷却,然后与原料组分混合,据此气相和液相回到该反应器。
通常,在进行这里所述的气相聚合工艺过程中,该反应器温度能够在大约50℃到大约110℃的范围内,有时更高。然而,该反应器温度不应该超过所形成的VLDPE的熔点。举例的反应器温度在大约80℃。该反应器压力应该是100-1000磅/平方英寸(psig),优选大约150-600磅/平方英寸,更优选200-大约500磅/平方英寸和最优选在250-400磅/平方英寸之间。
优选,该工艺过程以连续循环进行操作。现在描述在连续循环中操作的气相聚合工艺过程的特定、非限制性的实例,但应该理解,也可使用其它形式的气相聚合。
含有一种或多种单体的气体物流在金属茂催化剂存在下,在反应条件下连续穿过流化床。这一气体物流从流化床中排出并再循环回到反应器中。同时,聚合物产品可以从反应器中排出和添加新的单体以替代已反应的单体。在该循环的一部分中,在反应器中,循环气流利用聚合热来加热。该热量是在循环的另一部分中通过反应器外部的冷却系统被除去。由反应产生的热量可被除去,以将在反应器内气流的温度保持在低于聚合物和催化剂分解温度的一种温度下。此外,常常希望防止不能作为产物排出的聚合物大块料的聚结或形成。这可通过现有技术中认可的各种方式,例如通过控制反应床中气流的温度到低于在聚合反应过程中生产的聚合物颗粒的熔融或发粘温度的一种温度来实现。
热量应该被除去,因为在流化床聚合工艺过程中生产的聚合物的量一般与从反应器内流化床中的反应区中排出的热量有关。在气相聚合工艺过程中,通过在反应器之外冷却该气态再循环物流来从该物流中除去热量。在流化床工艺过程中气态再循环物流的速度应该足以维持流化床在流化态下。在某些常规的流化床反应器中,被循环用于除去聚合热的流体的量常常大于为流化床的支持和为流化床中固体的充分混合所需要的流体量。然而,为了防止在从流化床中排出的气流中夹含过多的固体,气流的速度应该调节。
该再循环物流能够冷却到低于露点的温度,导致了再循环物流的一部分的冷凝,如在美国专利No.4,543,399和美国专利No.4,588,790中所述,它们的公开内容在与本发明一致的程度上被引入本文供参考。正如在这些专利中所述,含有夹带液的所得物流应该返回到反应器中,但没有当在流化床聚合过程中引入液体时所遇到的上述聚结和/或堵塞问题。对于这一专利的目的,在该工艺过程中液体在再循环物流或反应器中的这一故意的引入通常认为是气相聚合工艺过程的“冷凝模式”操作。正如上述专利所教导的,当再循环物流温度被降低到低于在“冷凝模式”操作中它的露点的温度时,聚合物生产的增加是可能的,与在“非冷凝”或“干”模式中的生产相比,因为增加的冷却能力。同时,时空产率-在给定的反应器体积中聚合物生产量-的显著增长,能够通过按“冷凝模式”操作来实现,而在产品性能上有很少或没有变化。同时,在某些“冷凝模式”操作中,双相气体/液体再循环物流混合物的液相保持被夹含或悬浮在混合物的气相中。再循环物流被冷却以生产该二相混合物的操作可导致形成液相/汽相平衡。当增加热量或降低压力时,发生了液体的汽化。时空产率的增加是再循环物流的这一增加的冷却能力的结果,这依次归因于在输入的再循环物流温度和流化床温度之间较大的温差和归因于在再循环物流中夹含的冷凝液体的汽化。在用于制造具有改进韧性的VLDPE的这里所述工艺过程的一个特定、非限制性实例中,使用操作的“冷凝模式”。
在操作该气相聚合工艺过程以获得本发明的VLDPE时,聚合物和催化剂的量,反应器的操作温度,共聚单体与单体的比率以及氢气与单体的比率应该预先确定,这样能够获得所需的密度和熔体指数。
虽然各种气相聚合工艺过程可用于制造本发明的聚烯烃,包括“非冷凝”或“干”模式,但是优选的是使用各种“冷凝模式”工艺过程中的任何一种,其中包括在以上专利上描述的冷凝模式工艺过程,以及改进的“冷凝模式”气相聚合工艺过程,如在Griffin等人的美国专利No.5,462,999和美国专利No.5,405,922中公开的那些,这些文献在与这里公开的工艺过程一致的程度上被引入本文供参考。其它类型的冷凝模式工艺过程也适用,其中包括所谓的“超冷凝模式”工艺过程,如在美国专利No5,352,749和5,436,304中所讨论的,两者在与本发明一致的程度上充分引入本文供参考。
在冷凝模式气相聚合操作中的一种中使用的“可冷凝的流体”可包括饱和或不饱和的烃类。合适的惰性可冷凝流体的例子是容易挥发的液体烃类,它们选自含有2-8个碳原子的饱和烃类。一些合适的饱和烃类是丙烷,正丁烷,异丁烷,正戊烷,异戊烷,新戊烷,正己烷,异己烷,和其它饱和C6烃类,正庚烷,正辛烷和其它饱和C7和C8烃类或它们的混合物。优选的惰性可冷凝烃类是C4-C6饱和烃类。该可冷凝的流体也包括可聚合的可冷凝的共聚单体,如烯烃,α-烯烃,二烯烃,含有至少一种α烯烃的二烯烃或它们的含有一些上述单体的混合物,这些可以部分地或全部地引入到聚合物产品中。
在这里所述的气相聚合工艺过程的任何一种中,其中包括在这里参考引用的专利中的那些,在产品物流中的未反应单体可以再循环利用。优选地,为了制造具有所需密度的本发明的VLDPE,再循环物流的组成应该小心地加以控制,应使得保持合适的共聚单体比率,如以上所讨论。
本发明的具有改进性能的聚乙烯的密度是在0.890g/cm3,0.900g/cm3,0.905g/cm3,0.910g/cm3或0.911g/cm3的下限到0.915g/cm3或0.913g/cm3的上限的范围内。
该VLDPE聚合物进一步体现特征于0.5-20g/10min(dg/min)的熔体指数(MI),根据ASTM-1238条件E测量。在一个或多个特定的实例中,熔体指数的另一供选择的下限包括0.7和1.0g/10min,和熔体指数的另一供选择的上限包括5,10,12和15g/10min,其中在任何下限到任何上限范围内的熔体指数都是在本发明的范围内。
该优选的气相、金属茂法获得的VLDPE聚合物能够进一步体现特征于窄组成分布。本领域中的那些技术人员会知道,共聚物的组成分布与共聚单体在聚合物分子中的分布的均匀性有关。金属茂催化剂已知会在它们所生产的聚合物分子中非常均匀地引入共聚单体。因此,从具有单种金属茂组分的催化剂体系生产的共聚物具有非常窄的组成分布,这在于大部分的聚合物分子具有粗略相同的共聚单体含量,并且在各分子内该共聚单体将无规地分布于其中。相反,常规的齐格勒-纳塔催化剂通常得到具有宽得多的组成分布的聚合物,在聚合物分子中共聚单体包含量变化大。
组成分布的测量是“组成分布宽度指数”(“CDBI”)。组成分布宽度指数(CDBI)的定义和测定CDBI的方法,能够在美国专利No.5,206,075和PCT出版物WO 93/03093中找到。从重量分数对组成分布曲线中,通过确定具有共聚单体含量在中值(median)共聚单体含量的50%内的样品在该中值的每一侧上的重量百分数来测定CDBI。共聚物的CDBI可通过使用用于分离共聚物样品的各级分的熟知技术来容易地测定。一种这样的技术是在Wild等人,J.Poly.Sci.,Poly.Phys.Ed.,20卷,441页(1982)中描述的Temperature Rising Elution Fractionation(温升洗脱分级,即TREF)。
为了测定CDBI,首先制作共聚物的溶解度分布曲线。这可通过使用从以上所述的TREF技术中获取的数据来完成。这一溶解度分布曲线是溶解的共聚物的重量分数作为温度的函数的曲线。该曲线可转换成重量分数对组成分布曲线。为了简化组成与洗脱温度的相互关系,全部的级分被假设具有Mn≥15,000,其中Mn是该级分的数均分子量。所存在的任何低重量分数代表了VLDPE聚合物的微不足道的部分。本叙述的剩余部分和所附权利要求保持了假设在CDBI测量中全部级分具有Mn≥15,000的惯例。
该VLDPE聚合物还体现特征于分子量分布(MWD)。分子量分布(MWD)是在给定的聚合物样品中分子量的范围的量度。众所周知的是,MWD的宽度体现特征于各种平均分子量的比率,如重均分子量与数均分子量的比率Mw/Mn,或Z均分子量与重均分子量的比率Mz/Mw。
Mz、Mw和Mn能够通过使用凝胶渗透色谱法(GPC),也已知为筛析色谱法(SEC),来测量。这一技术利用配有填充了多孔珠粒的柱子,洗脱溶剂,和检测器的仪器来分离不同尺寸的聚合物分子。在典型的测量中,所使用的GPC仪器是具有在145℃下操作的ultrastyro凝胶柱的Waters色谱仪。所使用的洗脱溶剂是三氯苯。该色谱柱通过使用具有精确已知的分子量的十六个聚苯乙烯标准样品来进行校正。从标准样品获得的聚苯乙烯保留体积与被试验聚合物的保留体积之间的相互关系可获得聚合物分子量。
平均分子量M能够从下式计算M=ΣiNiMin+1ΣiNiMin]]>其中Ni是具有分子量Mi的分子的数目。当n=0时,M是数均分子量Mn。当n=1时,M是重均分子量Mw。当n=2时,M是Z均分子量Mz。所需的MWD函数(例如,Mw/Mn或Mz/Mw)是相应M值的比率。M和MWD的测量是本领域技术人员已知的并且详细地在例如Slade,P.E.Ed.,Polymer Molecular Weights第II部分,Marcel Dekker,Inc.,NY(1975)287-368页;Rodriguez,F.,Principles of Polymer Systems第三版,Hemisphere Pub.Corp.,NY(1989)155-160页;美国专利No.4,540,753;Verstrate等人,Macromolecules,21卷,(1988)3360;以及这些文献引用的参考文献中进行了讨论。
在所附权利要求中提及的VLDPE聚合物优选是线性聚合物,即没有长链分支。在本公开物中使用的术语“线性”适用于具有线性骨架和不具有长链分支的聚合物;即“线性”聚合物是不具有SLEP聚合物的长链分支特性的一种聚合物,如在美国专利No.5,272,236和5,278,272中所定义。因此,在这些专利中公开的“基本上线性”聚合物不是“线性”聚合物,因为长链支化的存在。
优选的VLDPE聚合物除了具有这里所述的密度、熔体指数和其它参数外,还具有下列特性中的一个或多个(a)50-85%,另外60-80%或55-75%,或55%或55%以上到70%或70%以下的组成分布CDBI;(b)2-3,另外2.2-2.8的分子量分布Mw/Mn;(c)低于2的分子量分布Mz/Mw;和(d)在TREF测量中两个峰的存在。
具有这些特性中的一些或全部的特别优选的VLDPE是以上所述的气相金属茂生产的VLDPE。
在本说明书和所附权利要求中使用的TREF测量中的两个峰是指在使用于下面的实施例部分中公开的TREF方法所获得的标称化ELS响应(垂直轴或y轴)对洗脱温度(水平轴或x轴,温度从左至右升高)的曲线图中,两个清晰的标称化ELS(蒸发质量光散射(evaporation masslight scattering))响应峰的存在。在此的上下文中的“峰”是指随着升高温度,曲线的总体斜率从正值变化到负值的地方。在两个峰之间的是局部最小值,其中随着升高温度,曲线的总体斜率从负值变化到正值。曲线的“总体趋势”希望排除以2℃或2℃以下的间隔出现的多重局部最小值和最大值。优选地,两个清晰的峰有至少3℃间距,更优选至少4℃间距,更优选至少5℃间距。另外,两个清晰的峰出现在该曲线上高于20℃和低于120℃的温度上,其中该洗脱温度延伸到0℃或0℃以下。这一限制避免了与通过在最低洗脱温度下仍然可溶的物质所引起的在该曲线上低温处的清晰峰产生混淆。在该曲线上的两个峰显示出了双模态的组成分布(CD)。双模态的CD也可通过在本领域中那些技术人员已知的其它方法测定。如果上述方法没有显示两个峰,则一种可使用的用于TREF测量的此类替代方法公开于B.Monrabal,“Crystallization Analysis FractionationA New Technique for theAnalysis of Branching Distribution in Polyolefins”,Journal of AppliedPolymer Science,52卷,491-499(1994)中。
根据本发明的各种性能的优选平衡,尤其在薄膜应用中,是在VLDPE的长链支化减少时实现的。所以,对于以上所述的催化剂结构,双Cp结构比单Cp结构更优选,未桥接的结构比桥接的结构更优选,和未桥接的双Cp结构是最优选的。最大程度减少或消除长链支化以生产基本上没有或没有长链支化的聚合物的优选催化剂体系是基于未桥接的双Cp二茂锆,例如但不限于二氯·双(1-甲基-3-正丁基环戊二烷(cyclopentadiane))合锆。
对称金属茂可用来生产本发明的VLDPE聚合物。对称金属茂包括,但不限于,二氯·双(甲基环戊二烯基)合锆,二氯·双(1,3-二甲基环戊二烯基)合锆,
二氯·双(1,2-二甲基环戊二烯基)合锆,二氯·双(1,2,4-三甲基环戊二烯基)合锆,二氯·双(1,2,3-三甲基环戊二烯基)合锆,二氯·双(四甲基环戊二烯基)合锆,二氯·双(五甲基环戊二烯基)合锆,二氯·双(乙基环戊二烯基)合锆,二氯·双(丙基环戊二烯基)合锆,二氯·双(丁基环戊二烯基)合锆,二氯·双(异丁基环戊二烯基)合锆,二氯·双(戊基环戊二烯基)合锆,二氯·双(异戊基环戊二烯基)合锆,二氯·双(环戊基环戊二烯基)合锆,二氯·双(苯基环戊二烯基)合锆,二氯·双(苄基环戊二烯基)合锆,二氯·双(三甲基甲硅烷基甲基环戊二烯基)合锆,二氯·双(环丙基甲基环戊二烯基)合锆,二氯·双(环戊基甲基环戊二烯基)合锆,二氯·双(环己基甲基环戊二烯基)合锆,二氯·双(丙烯基环戊二烯基)合锆,二氯·双(丁烯基环戊二烯基)合锆,二氯·双(1,3-乙基甲基环戊二烯基)合锆,二氯·双(1,3-丙基甲基环戊二烯基)合锆,二氯·双(1,3-丁基甲基环戊二烯基)合锆,二氯·双(1,3-异丙基甲基环戊二烯基)合锆,二氯·双(1,3-异丁基甲基环戊二烯基)合锆,二氯·双(1,3-甲基环戊基环戊二烯基)合锆,和二氯·双(1,2,4-二甲基丙基环戊二烯基)合锆。
非对称的金属茂可用来生产本发明的VLDPE聚合物。非对称的金属茂包括,但不限于,
二氯·环戊二烯基(1,3-二甲基环戊二烯基)合锆,二氯·环戊二烯基(1,2,4-三甲基环戊二烯基)合锆,二氯·环戊二烯基(四甲基环戊二烯基)合锆,二氯·环戊二烯基(五甲基环戊二烯基)合锆,二氯·环戊二烯基(丙基环戊二烯基)合锆,二氯·环戊二烯基(丁基环戊二烯基)合锆,二氯·环戊二烯基(戊基环戊二烯基)合锆,二氯·环戊二烯基(异丁基环戊二烯基)合锆,二氯·环戊二烯基(环戊基环戊二烯基)合锆,二氯·环戊二烯基(异戊基环戊二烯基)合锆,二氯·环戊二烯基(苄基环戊二烯基)合锆,二氯·环戊二烯基(苯基环戊二烯基)合锆,二氯·环戊二烯基(1,3-丙基甲基环戊二烯基)合锆,二氯·环戊二烯基(1,3-丁基甲基环戊二烯基)合锆,二氯·环戊二烯基(1,3-异丁基甲基环戊二烯基)合锆,二氯·环戊二烯基(1,2,4-二甲基丙基环戊二烯基)合锆,二氯·(四甲基环戊二烯基)·(甲基环戊二烯基)合锆,二氯·(四甲基环戊二烯基)·(1,3-二甲基环戊二烯基)合锆,二氯·(四甲基环戊二烯基)·(1,2,4-三甲基环戊二烯基)合锆,二氯·(四甲基环戊二烯基)·(丙基环戊二烯基)合锆,二氯·(四甲基环戊二烯基)·(环戊基环戊二烯基)合锆,二氯·(五甲基环戊二烯基)·(甲基环戊二烯基)合锆,二氯·(五甲基环戊二烯基)·(1,3-二甲基环戊二烯基)合锆,二氯·(五甲基环戊二烯基)·(1,2,4-三甲基环戊二烯基)合锆,二氯·(五甲基环戊二烯基)·(丙基环戊二烯基)合锆,二氯·(五甲基环戊二烯基)·(环戊基环戊二烯基)合锆,二氯·环戊二烯基(乙基四基(mentyl)环戊二烯基)合锆,二氯·环戊二烯基(丙基四基环戊二烯基)合锆,二氯·(甲基环戊二烯基)·(丙基四基环戊二烯基)合锆,
二氯·(1,3-二甲基环戊二烯基)·(丙基四基环戊二烯基)合锆,二氯·(1,2,4-三甲基环戊二烯基)(丙基四基环戊二烯基)合锆,二氯·(丙基环戊二烯基)·(丙基四基环戊二烯基)合锆,二氯·环戊二烯基(茚基)合锆,二氯·(甲基环戊二烯基)·(茚基)合锆,二氯·(1,3-二甲基环戊二烯基)·(茚基)合锆,二氯·(1,2,4-三甲基环戊二烯基)·(茚基)合锆,二氯·(四甲基环戊二烯基)·(茚基)合锆,二氯·(五甲基环戊二烯基)·(茚基)合锆,二氯·环戊二烯基(1-甲基茚基)合锆,二氯·环戊二烯基(1,3-二甲基茚基)合锆,二氯·环戊二烯基(1,2,3-三甲基茚基)合锆,二氯·环戊二烯基(4,7-二甲基茚基)合锆,二氯·(四甲基环戊二烯基)·(4,7-二甲基茚基)合锆,二氯·(五甲基环戊二烯基)·(4,7-二甲基茚基)合锆,二氯·环戊二烯基(5,6-二甲基茚基)合锆,二氯·(五甲基环戊二烯基)·(5,6-二甲基茚基)合锆,和二氯·(四甲基环戊二烯基)·(5,6-二甲基茚基)合锆。
当VLDPE的长链支化减少时,和更优选当没有长链支化时,获得了根据本发明的薄膜性能的优选平衡。所以,对于以上所述的催化剂结构,双Cp结构比单Cp结构更优选,未桥接的结构比桥接的结构更优选,和未桥接的双Cp结构是最优选的。
生产本发明的催化剂的优选方法在下面进行描述并能够在美国专利申请序列号No.265,533(1994年6月24日申请,现已放弃),和265,532(1994年6月24日申请,现已放弃)中找到,两者以全部内容被充分引入本文供参考。在优选的实施方案中,金属茂催化剂组分典型地在液体中制成淤浆以形成金属茂溶液并且形成了含有活化剂和液体的单独溶液。该液体可以是能够与至少一种金属茂催化剂组分和/或至少一种活化剂形成溶液或类似物的任何相容性溶剂或其它液体。在优选的实施方案中,该液体是环状脂肪族或芳族烃,最优选甲苯。该金属茂和活化剂溶液优选被混合在一起并被加入到多孔性载体中,以使得金属茂溶液和活化剂溶液或金属茂和活化剂溶液的总体积是低于多孔性载体的孔隙容积的四倍,更优选低于三倍,甚至更优选低于两倍,和更优选在1-1.5倍至2.5-4倍范围内和最优选在1.5-3倍范围内。同时,在优选的实施方案中,抗静电剂被加入到该催化剂制剂中。
在一个实施方案中,该金属茂催化剂是从在600℃下水合的硅石制备的。该催化剂是在有搅拌器的混合容器中制得的工业规模用催化剂。将1156磅(462kg)甲苯的初始投料加入到该混合器中。接着混合925磅(421千克)的甲基铝氧烷在甲苯中浓度30wt%的溶液。接着添加100磅(46千克)的二氯·双(1,3-甲基-正丁基环戊二烯基)合锆在甲苯中浓度20wt%的溶液(20.4磅(9.3千克)的所含金属茂)。将附加的144磅(66千克)的甲苯加入到混合器中以漂洗金属茂进料圆筒体并让其在环境条件下混合30分钟。接着添加54.3磅(25千克)的AS-990在甲苯中的溶液,一种表面改性剂溶液,含有5.3磅(2.4千克)的所含AS-990。将另外100磅(46千克)的甲苯漂洗该表面改性剂容器并加入到该混合器中。所获得的淤浆在175°F(79℃)和3.2psia(70.6kPa)下真空干燥成自由流动的粉末。最终催化剂重量是1093磅(497千克)。该催化剂具有0.40%的最终锆含量和12.0%的铝含量。
在一个优选的实施方案中,大体上均质的催化剂体系是优选的。对于本说明书和所附权利要求,“大体上均质的催化剂”是催化剂组分(优选有活化剂)的过渡金属的摩尔比在整个多孔载体中均匀分布的一种催化剂。
测量多孔载体的总孔隙容积的程序是本领域中技术人员已知的。这些程序当中的一种的细节被描述在Experimental Methods inCatalytic Research,第一卷(Academic Press,1968)(特别参见67-96页)中。这一优选的程序包括传统的BET装置用于氮气吸附的应用。本领域中公知的另一种方法被描述在Innes,Total porosity and ParticleDensity of Fluid Catalysts By Liquid Titration,28卷,No.3,AnalyticalChemistry 332-334(1956年3月)中。
活化剂组分的金属与金属茂组分的过渡金属的摩尔比是在0.3∶1-1000∶1,优选20∶1-800∶1,和最优选50∶1-500∶1范围内。其中该活化剂是前面所述的离子化活化剂时,活化剂组分的金属与过渡金属组分的摩尔比优选是在比率0.3∶1-3∶1之间。活化剂组分与该过渡金属组分的摩尔比优选是在0.3∶1-3∶1之间的比率范围。
典型地在气相聚合工艺过程中使用连续循环,其中在反应器的该循环的一个部分中,循环气流(或另外已知为再循环物流或流化介质)在反应器中利用聚合热来加热。该热量是在循环的另一部分中通过反应器外部的冷却系统被除去。(参见例如美国专利No.4,543,399、4,588,790、5,028,670、5,352,749、5,405,922、5,436,304、5,453,471和5,462,999,它们全部被充分引入本文供参考。)通常在用于从单体生产聚合物的气体流化床工艺过程中,含有一种或多种单体的气流连续循环通过在反应条件下有催化剂存在的流化床。这一气流从流化床中排出并再循环回到反应器中。同时,聚合物产品可以从反应器中排出和添加新的或新鲜的单体以替代已聚合的单体。
在本发明的工艺过程的一个实施方案中,该工艺过程基本上没有清除剂。对于本专利说明书和所附权利要求,该术语“基本上没有”是指在本发明的工艺过程中,在本发明的工艺过程中的任何给定时间点存在着不超过10PPm的清除剂,基于再循环物流的总重量。
在本发明的工艺过程的另一个实例中,该工艺过程大体上没有清除剂。对于本专利说明书和所附权利要求,该术语“大体上没有”被定义为在本发明的工艺过程中,在本发明的工艺过程中的任何给定时间点存在着不超过50ppm的清除剂,基于流化床的总重量。
在一个实施方案中,在反应器被启动以除去杂质和确保聚合被引发的过程中,清除剂是以低于300ppm,优选低于250ppm,更优选低于200ppm,甚至更优选低于150ppm,再更优选低于100ppm,和最优选低于50ppm的量存在,基于与催化剂投入反应器中的时间相距首先的12小时、优选至多6小时、更优选低于3小时、甚至更优选低于2小时和最优选低于1小时的过程中流化床的总床重量;然后清除剂的引入被停止。
在本发明的工艺过程的另一实施方案中,清除剂以足够的量存在,直至本发明的催化剂获得了如下的催化剂生产能力为止基于大于1000克聚合物/每克催化剂,优选大于约1500,更优选大于2000,甚至更优选大于2500,和最优选大于3000的重量比。
在本发明的工艺过程的另一个实施方案中,在起始阶段中清除剂是以足够的量存在,直至本发明的催化剂达到了稳态的40%,优选低于30%,甚至更优选低于20%和最优选低于10%的催化剂生产能力为止。对于本专利说明书和所附权利要求,“稳态”是生产速率,每小时生产的聚合物的重量。
催化剂或催化剂体系的生产能力受到主要单体(即乙烯或丙烯)分压的影响。该单体(乙烯或丙烯)的优选摩尔百分比是约25-90mol%和单体分压是在大约75psia(517kPa)-大约300psia(2069kPa)范围内,这些是气相聚合工艺过程中典型的条件。
当清除剂用于本发明的工艺过程时,该清除剂能够通过直接或间接地引入再循环物流或加入到能够将清除剂引入反应器中的任何外部装置中而典型地引入反应器中。优选该清除剂直接进入该反应器中,和最优选地在典型的气相过程中直接地进入反应器床中或在分配板之下,优选在该床处于流化态下之后。在一个实施方案中,该清除剂能够一次性、间歇或连续地引入到该反应器系统中。
在本发明的工艺过程中使用的清除剂以等于10ppm-100ppm的比率被引入到反应器中,基于稳态生产速率,然后清除剂引入被停止。
在另一实施方案中,特别在起始阶段,当使用时清除剂以足以使催化剂生产能力提高的速率被引入,基于200克聚合物/每克催化剂/每分钟的比率的一种重量比,优选在300的比率下,甚至更优选在400的比率下和最优选在500的比率下。
在另一个实施方案中,清除剂的金属与金属茂催化剂组分的过渡金属的摩尔比大约等于大约0.2乘以清除剂的ppm(基于生产速率)乘以催化剂生产能力(千克聚合物/每克催化剂)。摩尔比的范围是大约300-10。在优选的实施方案中,当烷基铝用作该清除剂时,该摩尔比被表示为铝(Al)与过渡金属(例如,锆),其中Al的摩尔数是基于所使用的清除剂的总量。
也优选的是,没有与清除剂同时地将氢气加入到系统中。也在本发明范围内的是,清除剂能够引入到载体上,后者与当负载的金属茂催化剂体系用于本发明的工艺过程中时所使用的载体保持独立。
对于本专利说明书和所附权利要求,细粒物(fines)是尺寸低于125mμ的聚合物颗粒。这一尺寸的细粒物通过使用标准120目单元筛网来测量。在优选的实施方案中,在本发明的工艺过程中的任何给定时间点于反应器中存在的清除剂的量,尺寸低于125mμ的细粒物的水平是低于10%,优选低于1%,更优选低于0.85%-低于0.05%。
在本发明的范围内的是,可以使用用于从再循环物流中除去在本发明的工艺过程中所引入的清除剂的在反应器之外的系统。这会防止清除剂再循环回到反应器中和防止清除剂在反应器系统中积聚。优选的是,此类系统被放置在再循环物流管线中的热交换器或压缩机之前的位置。可以考虑,此类系统将在再循环物流管线中使清除剂从流化介质中冷凝出来。也优选的是,对流化介质进行处理以除去清除剂,参见例如美国专利No.4,460,755,被引入本文供参考。
对于本发明的工艺过程还可考虑,在该过程中清除剂能够间歇地引入,其中所引入的全部清除剂当中大于90%,优选大于95%,需要从该再循环物流中除去。本发明也可考虑,本发明的催化剂或催化剂体系或它们的组分能够在启动之时用作清除剂,然后这是昂贵的程序。
在本发明的最优选的实施方案中,该工艺过程是按冷凝模式操作的气相聚合工艺过程。对于本专利说明书和所附权利要求,有目的地将具有液相和气相的再循环物流引入到反应器中以使得基于再循环物流的总重量而言的液体的重量百分数大于约2.0wt%的该工艺过程被确定按“冷凝模式”来操作气相聚合工艺过程。
在本发明的工艺过程的一个实施方案中,在再循环物流中的液体基于再循环物流的总重量而言的重量百分数是在约2-约50wt%范围内,优选大于10wt%和更优选大于15wt%和甚至更优选大于20wt%和最优选在约20-约40wt%之间。然而,取决于所需的生产速率,能够使用任何水平的冷凝。
在本发明的工艺过程的另一个实施方案中,如果使用的话,清除剂的用量按摩尔比应该是低于100,优选低于50,更优选低于约25,基于过渡金属清除剂的金属与金属茂的过渡金属的摩尔比,在此当清除剂是含铝的有机金属化合物和金属茂的过渡金属是4族金属时,则以上摩尔比是基于铝的摩尔数与催化剂的4族金属的摩尔数。
结垢是用于描述在反应器的表面上聚合物沉积物的聚集的术语。结垢有害于聚合过程的所有部分,包括反应器和相关的系统、硬件,等等。结垢尤其在限制气流或液流的区域中造成破裂。最需要考虑的两个主要区域是热交换器和分配板结垢。热交换器由管束形式排列的一系列的小直径管组成。分配板是含有许多小直径孔的固体板,在再循环物流中所含有的气体可以在进入反应区中之前穿过这些孔或可以经由这些孔被分配到流化床反应器内的固态聚合物床中,如在美国专利No.4,933,149中所述,该文献被引入供参考。
结垢本身表现为在跨越该分配板、冷却器或两者的压降上的升高。一旦压降变得太高,气体或液体不再有效地通过该压缩机进行循环,并且常常需要关停反应器。清洗反应器常常花费几天,并且是非常费时和花费大的。结垢也发生在再循环气体管路和压缩机中,但通常伴随(分配)板和冷却器结垢。
为了定量该结垢速率,需要定义结垢系数F。F是已结垢的孔的面积的分数。如果F=0(0%),则没有结垢。相反地,如果F=1(100%)则孔被完全堵塞。有可能将该结垢与在给定时间的压降ΔP相关联,相对于干净系统的压降ΔP0而言。随着结垢增加,ΔP升高,并且大于初压降ΔP0。F是由下列表达式给出[参见最初的方程式](I)CoolerFouling[参见最初有关Chemical Structure Diagram的专利](II),通常,当F大于约0.3-约0.4(30-40%)时,反应器关停是不可避免的。优选,F是低于40%,优选低于30%,更优选低于20%,再更优选低于15%和最优选低于10%-0%。结垢速率,F随时间的变化,用于定量结垢。如果不发生结垢,则结垢速率是零。对于工业操作而言最低可允许的结垢速率是大约12%/月或0.4%/天,优选低于0.3%/天,更优选低于0.2%/天和最优选低于0.1%/天。
粒度被测定如下;粒度是通过测定在一系列U.S.标准筛上聚集的物质的重量和测定重均粒度来测量的。
细粒物被定义为穿过120目标准筛的总分配的百分比。
在一个实施方案中,在该实例中描述了使用以二氯·双(1,3-甲基-正丁基环戊二烯基)合锆为基础的金属茂催化剂来操作该工艺过程。它显示了使用TEAL操作工业反应器的结垢效果。该实例包括在金属茂催化剂上启动工业反应器的信息。
气相聚合过程和附加催化剂制备的可能的优化已公开于美国专利No.5,763,543,6,087,291,和5,712,352,和PCT出版的申请WO 00/02930和WO 00/02931。
虽然本发明的VLDPE/HDPE共混物的VLDPE聚合物组分已经作为单种聚合物进行了讨论,但是具有这里所述性质的两种或多种此类VLDPE聚合物的共混物也可考虑。
4.2HDPE组分该聚合物共混物还包括高密度聚乙烯(HDPE)聚合物。这里使用的术语“高密度聚乙烯”聚合物和“HDPE”聚合物是指具有大于0.940g/cm3的密度的乙烯均聚物或共聚物。具有两种类型以上的单体的聚合物,如三元共聚物,也包括在这里使用的术语“共聚物”中。一般用于制造HDPE共聚物的共聚单体包括α-烯烃,如C3-C20的α-烯烃和优选C3-C12的α-烯烃。该α-烯烃共聚单体能够是线性或支化的,和如果需要的话,使用两种或多种共聚单体。合适的共聚单体的例子包括线性C3-C12的α-烯烃,和具有一个或多个C1-C3烷基分支或芳基的α-烯烃。特定的例子包括丙烯;3-甲基-1-丁烯;3,3-二甲基-1-丁烯;1-戊烯;具有一个或多个甲基、乙基或丙基取代基的1-戊烯;具有一个或多个甲基、乙基或丙基取代基的1-己烯;具有一个或多个甲基、乙基或丙基取代基的1-庚烯;具有一个或多个甲基、乙基或丙基取代基的1-辛烯;具有一个或多个甲基、乙基或丙基取代基的1-壬烯;乙基、甲基或二甲基取代的1-癸烯;1-十二碳烯;和苯乙烯。应该认识到,以上共聚单体的列举仅仅是举例而已,不认为是限制性的。优选的共聚单体包括丙烯,1-丁烯,1-戊烯,4-甲基-1-戊烯,1-己烯,1-辛烯和苯乙烯。
其它有用的共聚单体包括极性乙烯基,共轭的和非共轭的二烯烃,乙炔和醛单体,它们能够以少量包括在三元共聚物组成中。用作共聚单体的非共轭二烯烃优选是具有6-15个碳原子的直链、烃二烯烃或环链烯基取代的烯烃。合适的非共轭二烯烃包括,例如(a)直链无环二烯烃,如1,4-己二烯和1,6-辛二烯;(b)支链无环的二烯烃,如5-甲基-1,4-己二烯;3,7-二甲基-1,6-辛二烯;和3,7-二甲基-1,7-辛二烯;(c)单环脂环族二烯烃,如1,4-环己二烯;1,5-环辛二烯和1,7-环十二碳二烯;(d)多环脂环族稠合和桥接的环二烯烃,如四氢茚;降冰片二烯;甲基-四氢茚;双环戊二烯(DCPD);双环(2.2.1)-庚-2,5-二烯;链烯基,烷叉基,环链烯基和环烷叉基降冰片烯,如5-亚甲基-2-降冰片烯(MNB),5-丙烯基-2-降冰片烯,5-异丙叉基-2-降冰片烯,5-(4-环戊烯基)-2-降冰片烯,5-亚环己基-2-降冰片烯,和5-乙烯基-2-降冰片烯(VNB);和(e)环链烯基取代的烯烃,如乙烯基环己烯,烯丙基环己烯,乙烯基环辛烯,4-乙烯基环己烯,烯丙基环癸烯,和乙烯基环十二烯。在典型使用的非共轭二烯烃中,优选的二烯烃是双环戊二烯,1,4-己二烯,5-亚甲基-2-降冰片烯,5-乙叉基-2-降冰片烯,和四环-(Δ-11,12)-5,8-十二碳烯。特别优选的二烯烃是5-乙叉基-2-降冰片烯(ENB),1,4-己二烯,双环戊二烯(DCPD),降冰片二烯,和5-乙烯基-2-降冰片烯(VNB)。
共聚单体的用量将取决于HDPE聚合物的所需密度和所选择的特定的共聚单体。本领域的技术人员能够容易地确定适合于生产具有所需密度的HDPE聚合物的合适共聚单体含量。
在一个实施方案中,该HDPE聚合物具有大于0.940g/cm3,优选0.940g/cm3-0.970g/cm3,更优选0.940g/cm3-0.960g/cm3的密度。在一个实施方案中,该HDPE聚合物具有0.01-45g/10min的熔体指数,按照ASTM-1238条件E来测量。
该HDPE聚合物可通过使用任何常规的聚合工艺过程,如溶液、淤浆或气相聚合过程,和合适的催化剂,如齐格勒-纳塔催化剂或金属茂催化剂来生产。
合适的HDPE的例子包括从ExxonMobil Chemical Co.,Houston,Texas以HD,HAD,HMA,HRA,HRP或HYA系列或以商标PAXON商购的HDPE。
虽然本发明的VLDPE/HDPE共混物的HPDE聚合物组分已经作为单种聚合物进行了讨论,但是具有这里所述性质的两种或多种此类HDPE聚合物的共混物也可考虑。
4.3VLDPE-HDPE其混物在一个实施方案中,本发明提供了聚合物共混物,该共混物包括VLDPE聚合物和HDPE聚合物。该共混物能够包括这里所述的VLDPE聚合物中的任何一种,优选金属茂催化的VLDPE聚合物,和更优选气相生产的金属茂催化的VLDPE聚合物。该共混物能够包括这里所述的HDPE聚合物中的任何一种。
该共混物能够使用常规的设备和方法来形成,如通过干混各组分和随后在混合器中熔融混合,或通过直接在混合器中,如在聚合过程的下游直接使用的Banbury混合机,Haake混合机,Brabender密炼机,或单或双螺杆挤出机(包括配混挤出机和侧分支挤出机)中将各组分混合在一起。另外,添加剂可包括在共混物中,在共混物的一个或多个组分中,和/或在从共混物形成的产品如薄膜中,根据需要来定。此类添加剂是本技术领域中为大家所熟知的,并包括例如填料;抗氧化剂(例如,位阻酚如可从Ciba-Geigy获得的IRGANOXTM1010或IRGANOXTM1076);亚磷酸酯(例如,可从Ciba-Geigy获得的IRGAFOSTM168);抗粘着添加剂;增粘剂,如聚丁烯类,萜烯树脂,脂肪族和芳族烃树脂,碱金属和甘油硬脂酸酯和氢化松香;UV稳定剂;热稳定剂;防粘连剂;脱模剂;抗静电剂;颜料;着色剂;染料;蜡;硅石;填料;滑石等。
该共混物包括至少2wt%和至多98wt%的VLDPE聚合物,和至少2wt%和至多98wt%的HDPE聚合物,这些重量百分比是基于共混物的VLDPE和HDPE聚合物的总合并重量。VLDPE聚合物的供选择的下限能够是基于共混物的VLDPE和HDPE聚合物的总合并重量而言的15wt%,30wt%,45wt%或60wt%。VLDPE聚合物的供选择的上限能够是基于共混物的VLDPE和HDPE聚合物的总合并重量而言的95wt%,90wt%,85wt%。从任何下限到任何上限的范围是在本发明的范围内。共混物的一个实施方案包括60-95wt%的VLDPE聚合物和40-5wt%的HDPE聚合物,基于共混物的VLDPE和HDPE聚合物的总合并重量。共混物的另一个实施方案包括70-85wt%的VLDPE聚合物和30-15wt%的HDPE聚合物,基于共混物的VLDPE和HDPE聚合物的总合并重量。
在一个优选的实施方案中,该聚合物共混物包括具有低于0.916g/cm3的密度的金属茂催化的VLDPE聚合物,和具有高于0.940g/cm3的密度的HDPE聚合物。
在另一个优选的实施方案中,该聚合物共混物包括气相金属茂生产的VLDPE聚合物,该VLDPE聚合物是乙烯和至少一种C3-C12的α-烯烃的共聚物并具有0.900-0.915g/cm3的密度和0.5-20g/10min的熔体指数;和HDPE聚合物,该HDPE聚合物是乙烯均聚物或乙烯和至少一种C3-C12的α-烯烃的共聚物并具有大于0.940g/cm3的密度,其中该共混物包括2-98wt%的VLDPE聚合物和98-2wt%的HDPE聚合物,优选60-95wt%的VLDPE聚合物和40-5wt%的HDPE聚合物,基于VLDPE和HDPE聚合物的总合并重量。
在这些实施方案的任何一个中,该VLDPE聚合物,该HDPE聚合物,或两者,能够是此类聚合物的共混物,即共混物的VLDPE聚合物组分本身能够是具有这里所述特性的两种或多种VLDPE聚合物的共混物,此外或另外,共混物的HDPE聚合物组分本身是具有这里所述特性的两种或多种HDPE聚合物的共混物。
4.4薄膜和涂料本发明的聚合物共混物特别适合用于薄膜应用。已经惊人地发现,从本发明的聚合物共混物形成的薄膜显示改进的性能。本发明的VDLPE/HDPE聚合物共混物能够用于形成具有单层(单层薄膜)或多层(多层薄膜)的流延或吹塑薄膜。当薄用于多层薄膜时,VLDPE/HDPE聚合物共混物能够用于该膜的任何层中,或用于该膜的一个以上的层中,根据需要来定。当薄膜的一个以上的层是由本发明的VLDPE/HDPE聚合物共混物形成的,每一个这样的层能够单独配方设计;即由VLDPE/HDPE聚合物形成的各层能够具有相同或不同的化学组成,密度,熔体指数,厚度等,这取决于膜的所需性能。
本发明的一个方面涉及从本发明的VLDPE/HDPE聚合物共混物制备单层薄膜的方法。这些薄膜可以通过下面讨论的许多众所周知的挤出或共挤出技术来形成。本发明的薄膜可以是未取向的,单轴取向的或双轴取向的。薄膜的物理性能能够根据所使用的制膜技术来变化。
本发明的另一个方面涉及从本发明的VLDPE/HDPE聚合物共混物制备多层薄膜的方法。多层薄膜可以通过本技术领域中众所周知的方法来形成。多层薄膜的总厚度可根据所需的应用来变化。约5-100μm,更典型地约10-50μm的总膜厚适合于大多数应用。本技术领域中的那些技术人员会认识到,多层薄膜的各层的厚度可以根据所需的最终使用性能,所使用的树脂或共聚物,设备能力和其它因素来调节。构成了各层的原料可以共挤出穿过一个共挤出进料模块和口模组件,得到具有粘附在一起但组成不同的两个或多个层的薄膜。
当用于多层薄膜时,VLDPE/HDPE聚合物共混物可用于该膜的任何层中,或用于该膜的一个以上的层中,根据需要来定。当膜的一个以上的层是由本发明的VLDPE/HDPE聚合物共混物形成的,每一个这样的层能够单独配方设计;即由VLDPE/HDPE聚合物共混物形成的各层能够具有相同或不同的化学组成,密度,熔体指数,厚度等,这取决于薄膜的所需性能。
为了有利于本发明的不同薄膜结构的讨论,使用下面的标注。薄膜的每一层表示为“A”或“B”,其中“A”表示如下所定义的普通膜层,和“B”表示由本发明的VLDPE聚合物中任何一种形成的膜层。当薄膜包括一个以上的A层或一个以上的B层时,一个或多个撇号符号(′,″,等)附加到A或B符号上表示相同类型的各层(普通的或本发明的),这些层能够在一个或多个性能上相同或不同,如化学组成,密度,熔体指数,厚度等。最后,相邻层的符号被斜线(/)分开。通过使用这一标注,在两个外部的、普通的膜层之间设置了本发明的VLDPE/HDPE聚合物共混物的内层的一种三层膜被表示为A/B/A′。类似地,交替的普通/本发明层的五层膜被表示为A/B/A′/B′/A″。除非另有说明,对于本发明来说,这些层的左-到-右或右-到-左顺序无关紧要,撇号符号的顺序也无关紧要;例如,A/B膜等同于B/A膜,A/A′/B/A″膜等同于A/B/A′/A″膜。各膜层的相对厚度也类似地表示,其中各层的厚度相对于100(无量纲)的总膜厚度是以数字表示和被斜线分开;例如,具有各10μm厚的A和A′层和具有30μm厚的B层的A/B/A′膜的相对厚度被表示为20/60/20。
对于这里所述的各种薄膜,该“A”能够由用于多层薄膜或用于膜涂层制品中的本技术领域中已知的任何材料形成。因此,例如,A层能够由聚乙烯均聚物或共聚物形成,和聚乙烯能够是例如VLDPE,低密度聚乙烯(LDPE),LLDPE,中密度聚乙烯(MDPE),或高密度聚乙烯(HDPE),以及在现有技术中已知的其它聚乙烯。聚乙烯能够通过任何合适的方法生产,其中包括金属茂催化的工艺过程和齐格勒-纳塔催化的工艺过程。此外,A层能够是两种或多种此类聚乙烯的共混物,并且能够包括现有技术中已知的添加剂。此外,本领域中的技术人员会理解,多层薄膜的各层必须具有合适的粘度匹配。
在多层结构中,一个或多个A层也可以是粘合促进性的连接层(tielayer),如可从The Dow Chemical Co.获得的PRIMACORTM乙烯-丙烯酸共聚物,和/或乙烯-醋酸乙烯共聚物。A层的其它材料是,例如,箔,尼龙,乙烯-乙烯醇共聚物,聚偏氯乙烯,聚对苯二甲酸乙二醇酯,取向聚丙烯,乙烯-醋酸乙烯共聚物,乙烯-丙烯酸共聚物,乙烯-甲基丙烯酸共聚物,接枝改性的聚合物,其它聚乙烯,如HDPE,LDPE,LMDPE和MDPE,和纸。
该“B”层是由本发明的VLDPE/HDPE聚合物共混物组成,并且可是这里所述的共混物中的任何一种。在一个实施方案中,B层是由具有低于0.916g/cm3的密度的金属茂催化的VLDPE聚合物和具有大于0.940g/cm3的密度的HDPE聚合物的共混物形成的。在另一个实施方案,该B层是由共混物形成,它包括(a)乙烯和至少一种C3-C12的α-烯烃的气相金属茂生产的VLDPE共聚物,它具有0.900-0.915g/cm3的密度和0.5-10g/10min的熔体指数;和(b)HDPE均聚物或共聚物,它具有0.940-0.970g/cm3的密度和0.01-45g/10min的熔体指数。在一个实施方案中,该B层是由包括气相金属茂生产的VLDPE的共混物形成,该VLDPE具有下限为0.5g/10min或更高,0.7g/10min或更高,1g/10min或更高以及上限为5g/10min或更低,3g/10min或更低,或2g/10min或更低的熔体指数,其中从任何下限到任何上限的熔体指数是在本发明的范围内。在一个优选的实施方案中,该B层是由这里所述的共混物形成的,其中共混物的VLDPE组分除了具有这里所述的密度、熔体指数和其它参数外还具有一个或多个下列特性(a)50-85%,另外60-80%或55-75%,或55%或55%以上到70%或70%以下的组成分布CDBI;(b)2-3,另外2.2-2.8的分子量分布Mw/Mn;(c)低于2的分子量分布Mz/Mw;和(d)在TREF测量中两个峰的存在。
该薄膜的各层和总体膜的厚度没有特别限制,但根据薄膜的所需性能来确定。典型的薄膜层具有约1-1000μm,更典型地约5-100μm的厚度,和典型的薄膜具有10-100μm的总体厚度。
在一个实施方案中,本发明提供了由本发明的VLDPE/HDPE聚合物共混物中任何一种形成的单层薄膜;即具有属于以上所述的B层的单层的薄膜。
在其它实施方案中,和通过使用上面描述的命名法,本发明提供了具有以下举例性质的结构中任何一种的多层薄膜(a)两层薄膜,如A/B和B/B′;(b)三层薄膜,如A/B/A′,A/A′/B,B/A/B′和B/B′/B″;(c)四层薄膜,如A/A′/A″/B,A/A′/B/A″,A/A′/B/B′,A/B/A′/B′,A/B/B′/A′,B/A/A′/B′,A/B/B′/B″,B/A/B′/B″和B/B′/B″/B;(d)五层薄膜,如A/A′/A″/A/B,A/A′/A″/B/A,A/A′/B/A″/A,A/A′/A″/B/B′,A/A′/B/A″/B′,A/A′/B/B′/A″,A/B/A′/B′/A″,A/B/A′/A″/B,B/A/A′/A″/B′,A/A′/B/B′/B″,A/B/A′/B′/B″,A/B/B′/B″/A′,B/A/A′/B′/B″,B/A/B′/A′/B″,B/A/B′/B″/A′,A/B/B′/B″/B,B/A/B′/B″/B,B/B′/B″/B,和B/B′/B″/B/B″″;和具有六,七,八,九或更多层的薄膜的类似结构。应该认识到的是,具有再更多层的薄膜能够使用本发明的VLDPE/HDPE聚合物共混物来形成,并且这样的薄膜是在本发明的范围内。
在以上实施方案中的任何一个中,一个或多个A层可以被基材层,如玻璃,塑料,纸,金属等代替,或整个薄膜可以涂敷或层压到基材上。因此,虽然这里的讨论都集中在多层薄膜,但是本发明的VLDPE/HDPE聚合物共混物的薄膜也能够用作涂层;例如,由本发明聚合物形成的薄膜,或包括由本发明聚合物形成的一层或多层的多层薄膜都能够涂敷到基材上,如纸,金属,玻璃,塑料和能够接受涂层的其它材料。这样的涂层结构也是在本发明的范围内。
如下所述,该薄膜能够是流延薄膜或吹塑薄膜。该薄膜能够根据其它已知的薄膜加工工艺进一步压花,或生产或加工。通过调节各层的厚度,材料和顺序,以及在各层中的添加剂,使薄膜能够适用于特定的应用。
在一方面,含有VLDPE/HDPE聚合物共混物(单层或多层)的薄膜可以使用铸塑技术,如冷却辊铸塑技术来形成。例如,组合物能够在熔融状态下被挤出穿过平模,然后经冷却而形成薄膜。作为特定的例子,通过使用如下的中试规模的工业流延薄膜生产线来制备流延薄膜。聚合物的粒料是在约250℃-约300℃的温度范围内熔化,该特定的熔化温度经选择后应与具体树脂的熔体粘度匹配。对于多层流延薄膜而言,两种或多种不同的熔体被输送到共挤接头中,后者将两种或更多种熔体流动合并成多层的、共挤出的结构。这一层状流通过单个集料管式薄膜挤出模头而分布成所需宽度。模头隙孔典型地是大约0.025英寸(约600μm)。该材料然后拉伸至最终计示厚度(gauge)。该材料拉伸比对于0.8mil(20μm)薄膜而言典型地是约21∶1。真空箱或气刀可用于销住(pin)已离开模头开孔的熔体到保持于大约90°F(32℃)下的初级冷却辊上。所获得的聚合物薄膜被收集在卷绕器上。薄膜厚度通过厚度检测仪来监测,该薄膜能够通过修边机来裁边。如果需要,一个或多个非必要的处理机可用于处理该薄膜。此类冷却辊铸塑工艺和装置是本技术领域中熟知的,并且描述在例如The Wiley Encyclopedia ofPackaging Technology,第二版,A.L.Brody和K.S.Marsh,Ed.,JohnWiley and Sons,Inc.,New York(1997)。虽然冷却辊铸塑是一个实例,但是其它形式的铸塑也可使用。
在另一个方面,含有VLDPE/HDPE聚合物共混物(单层或多层)的薄膜可通过使用吹塑技术来形成,即形成吹塑薄膜。例如,该组合物能够在熔融状态经由环形模口挤出和然后吹塑和冷却而形成管状吹塑薄膜,它然后沿轴向切开并展开而形成平膜。作为特定的例子,吹塑薄膜能够制备如下。VLDPE/HDPE聚合物共混物组合物被引入到挤出机的进料斗中,如水冷的、电阻加热的并具有24∶1的L/D比率的63.5mmEgan挤出机。薄膜能够通过使用具有2.24mm模口间隙的15.24cmSano模头,连同Sano双孔型非转动、非可调的风环来生产。薄膜被挤出穿过模头而形成薄膜,通过将空气吹到薄膜表面上而冷却。薄膜从模头中牵引出来,典型地形成了柱形膜,它被冷却、扁瘪和非必要地接受所需辅助加工如切开、处理、密封或印刷。产品薄膜能够卷绕到卷筒上以作后续处理,或能够输送到制袋机并转化成袋子。适合形成根据本发明的实施方案的薄膜的特殊吹塑薄膜加工工艺和装置被描述在美国专利No.5,569,693。当然,也能够使用其它吹塑薄膜成型方法。
而且,本发明的另一个方面涉及由挤出涂覆所形成的制品。例如,在聚合物离开模头时,基底材料能够接触热熔化的聚合物。例如,已经形成的聚丙烯薄膜可以挤出涂敷乙烯共聚物膜,当该共聚物被挤出通过模头时。挤出涂覆通常在比流延薄膜更高的温度下(典型大约600°F)进行加工,以促进挤出材料与基材的粘附。其它挤出涂覆工艺过程是本技术领域中已知的,包括在例如美国专利No5,268,230,5,178,960和5,387,630中描述的那些。在一个实施方案中,本发明涉及在柔性基材如纸张、金属箔或类似物上的VLDPE/HDPE薄膜或涂层,其中薄膜或涂层是由VLDPE/HDPE聚合物共混物形成的。该涂层可以是单层薄膜或多层薄膜。该基材也可以是牛奶用纸盒,果汁容器,膜等的原料。
在一个实施方案中,该涂层是由包括气相金属茂生产的VLDPE的共混物形成的,该VLDPE具有下限为5g/10min或更高,7g/10min或更高,9g/10min或更高,13g/10min或更高,14g/10min或更高,15g/10min以及上限为20g/10min或更低的熔体指数,其中从任何下限到任何上限的熔体指数是在本发明的范围内。
本发明的薄膜和涂层也适合用于层压结构;即在两个基材之间设置这里所述的薄膜或涂层。这些薄膜和涂层也适合在单层或多层结构中用作热封或防潮层。
应该强调的是,本发明的VLDPE/HDPE共混物,单层和多层薄膜,涂层,层压体,和其它结构能够通过这里所述的方法来生产,或通过现有技术领域中已知的其它方法来生产,并且能够使用由这里所述的方法生产的VLDPE和/或HDPE聚合物,或由现有技术中已知的其它方法生产的VLDPE和/或HDPE聚合物。
本发明的另一个方面涉及含有VLDPE/HDPE聚合物共混物中任何一种的聚合物产品。此类产品包括许多薄膜型产品,如从VLDPE/HDPE聚合物共混物制得的薄膜,流延薄膜,熔化吹塑薄膜,共挤出薄膜,由VLDPE/HDPE聚合物共混物制得的薄膜,层压薄膜,挤出涂层,具有高的氧透过速率的薄膜,含有VLDPE/HDPE聚合物共混物的多层薄膜,含有VLDPE/HDPE聚合物共混物的密封层和粘着层,以及包括该密封层和粘着层的产品。本发明的多层薄膜包括与金属茂催化的LLDPE,齐格勒-纳塔催化的LLDPE,LDPE,MDPE,HDPE,EVA,EMA,聚丙烯或其它聚合物共挤出的VLDPE/HDPE共混物层。本发明的共混物具有,VLDPE/HDPE聚合物,连同其它聚合物一起,如金属茂催化的LLDPE,齐格勒-纳塔催化的LLDPE,LDPE,MDPE,EVA,EMA,聚丙烯和共聚物如乙烯/丙烯共聚物。本发明的另一种产品包括赋予透气性并且单独(作为单层薄膜)或与一种或多种其它层或薄膜或织物(包括机织或无纺的薄膜或织物)相结合使用的VLDPE/HDPE聚合物共混物。该产品也包括含有VLDPE/HDPE聚合物共混物的挤出涂覆组合物。这些薄膜能够通过许多众所周知的裁切、切开和/或重绕技术被制成其它形式,如带材。它们可以用作拉伸,密封,或取向膜。本发明的薄膜的表面能够通过已知和普通的后成形技术来改性,如电晕放电,化学处理,火焰处理,等等。
本发明还包括具有特定最终用途的产品,尤其需要韧性的膜型产品,如粘着膜,生产袋子,层压膜,拉伸薄膜,袋子(即装货袋,垃圾袋子和衬层,工业衬层,和生产袋子),柔性和食品包装(例如,新裁切的生产包装袋,冷冻食品包装袋),个人护理膜小袋,医用膜产品(如IV袋),尿布膜,和家用包装膜袋。产品也可包括包装材,用于捆扎、封装和组装各种产品,后者包括各种副食品、地毯卷材、液体容器和正常被装箱和/或码垛堆积以用于运输、贮存和/或陈列展示的各种类似物品。产品也可包括表面保护应用,有或没有拉伸,如用于在制作、运输等过程中各种表面的临时防护。从这里所述的聚合物共混物生产的薄膜有许多潜在应用,这些对于本技术领域中那些技术人员而言是显而易见的。
5.实施例根据如以上对于未桥接的双-Cp结构(如二氯·双(1,3-甲基正丁基环戊二烯基)合锆)所述的方法制备用于本发明VLDPE的聚合的金属茂催化剂。
在某些实施例中,聚合物的各种性能根据以下试验工序来测量,并且应该理解的是,这些性能无论何时在本说明书和权利要求书中论述,它们都是根据这些工序来测定。
拉伸强度值根据ASTM D882-97测定(MD和TD),只是薄膜计示厚度(film gauge)使用ASTM D374-94方法C来测量,以及每年用商购块规(Starret Webber9,JCV1&2)进行测微计校准。如在表IV中所反映的那样,拉伸值在屈服MD和TD,200%MD和TD以及极限拉伸MD和TD下测定。熔体指数根据ASTM D-1238-95测定。熔体指数以g/10min的单位,或dg/min的数值等同单位来报导。
ACD程序是用于表征组成分布(CD)的半结晶共聚物的分析规模TREF(温度上升洗脱分级)试验。将样品溶解在良好溶剂中,缓慢冷却,使其在载体上结晶,然后再溶解和通过在洗脱过程中加热从载体上洗去。聚合物链通过它们在溶液中的结晶温度差来分级,它随组成(和缺陷结构)的变化而变化。质量检测器提供了浓度/洗脱温度数据;CD表征通过应用用窄CD标准建立的校准曲线(即mol%共聚单体/温度)来获得。两个in-house Visual Basic程序用于数据获取和分析。
实际上由ACD试验提供了两个分布·溶解度分布(重量分数/溶解度温度)-直接测量。
·组成分布(重量分数/共聚单体含量)-通过将校准曲线应用于溶解度分布来获得。
通常强调CD的表征。然而,当出现以下情况时,溶解度分布能够具有同等或更高的重要性·没有建立所研究的聚合物的校准曲线。
·样品的MW低,或者MWD足够宽,使得样品的大部分具有低MW(M<20k)。在这些情形下,所报导的CD受溶解度的MW依赖性的影响。校准曲线必须对MW的效果进行校准,以便获得真正的CD,这需要MW和组成对给定样品的溶解度的相对影响的现有知识。相反,溶解度分布正确地说明了来自两种效果的贡献,无需试图分开它们。
请注意,溶解度分布应该取决于溶剂类型和结晶/溶解条件。如果正确校准的话,CD应该与在这些实验参数中的变化无关。
组成分布宽度指数(CDBI)使用以下测试仪器来测定ACD供TREF(温度上升洗脱分级)分析用的改良Waters 150-C(包括结晶柱,旁路管道设备,定时和温度控制器);柱子75微米玻璃珠填充(高压液相色谱法)HPLC-型柱子;冷却剂液氮;软件“A-TREF”Visual Basic程序;和检测器Polymer Laboratories ELS-1000。CDBI测量的实验条件如下所示GPC设置移动相TCE(四氯乙烯)温度柱室循环5-115℃,注射室115℃试验时间1小时30分钟平衡时间10分钟(在各实验之前)流速2.5mL/min注射容积300μL压力设置当没有流动时转换器调节到0,高压截止设定到30巴温度控制器设置初始温度115℃斜坡1温度5℃ 斜坡时间=45分钟 停延时间=3分钟斜坡2温度115℃ 斜坡时间=30分钟 停延时间=0分钟如果在TREF测量中未显示两个峰,供选择的温度控制器设置初始温度115℃斜坡1温度5℃ 斜坡时间=12小时 停延时间=3分钟斜坡2温度115℃,斜坡时间=12小时,停延时间=0分钟在一些情况下,可以需要较长的斜坡时间,以便在TREF测量中显示两个峰。
ELS设置雾化器温度120℃蒸发器温度135℃气体流速1.0slm(标准升/分钟)加热输送线温度120℃熔体指数根据ASTM D-1238-95测定。熔体指数以g/10min的单位,或dg/min的数值等同单位来报导。
密度(g/cm3)使用由根据ASTM D-1928-96工序C压塑,根据ASTM D618工序A老化,和根据ASTM D1505-96测量的板材获得的切片来测定。
在测量1%正割中,按照在ASTM D882-97中的工序,只是薄膜厚度根据ASTM D374-94方法C测量,每年用商购块规(StarretWebber 9,JCV1&2)进行测微计校准。
在测量埃尔曼多夫扯裂中,使用在ASTM D1922-94a中的工序,只是薄膜厚度根据ASTM D374-94方法C测量,每年用商购块规(Starret Webber 9,JCV1&2)进行测微计校准。
落镖值使用在ASTM D1709-98方法A中的工序测量,只是薄膜厚度根据ASTM D374-94方法C测量,每年用商购块规(StarretWebber 9,JCV1&2)进行测微计校准。
雾度值根据ASTM D1003-97测量。
光泽根据ASTM D2457-97测量。
总能量根据ASTM D4272-90测量。
探针穿刺能量试验使用记录力(应力)和穿透(应变)曲线的连续读数的英斯特朗万能试验机进行。将6英寸×6英寸(15cm×15cm)薄膜样品牢固地固定到压缩载荷孔中,暴露直径4英寸(10cm)的试验区域。将各2英寸×2英寸(5cm×5cm)和各大约0.25mil(6.35μm)厚的两件HDPE防粘垫片松散地放置在试验表面上。以10英寸/分钟(25cm/min)的恒定速度行进的3/4英寸(1.9cm)直径伸长的消光加工的不锈钢探针下降到薄膜中,以及记录和描绘应力/应变曲线。“穿刺力”是所遇到的最大力(lb或N)。该机器用于求得在应力/应变曲线下的面积的积分,它是在薄膜的破坏测试的穿刺过程中消耗的能量的指示,以及作为“穿刺能”或“破裂能”(in.lb或J)来报导。在本试验中不记录探针穿刺距离。
多分散性或分子量指数(Mw/Mn)根据由尺寸筛析色谱法获得的重均分子量(Mw)和数均分子量(Mn)的比率来计算。
组成分布宽度指数(CBDI)的定义,以及测定CDBI的方法能够在U.S.专利No.5,206,075中发现,该专利以与本发明一致的程度全面引入供参考。
热粘性强度根据以下工序来测量。热粘性样品是来自初始薄膜的15mm宽样品。样品用2密尔PET背面粘贴(层叠),以避免在密封的转变处破裂和伸长或对密封棒的粘着。使用J&B的热粘性测试仪3000来进行密封,使用0.5MPa的密封棒压力和0.5秒钟的密封时间。然后按照在0.4秒钟的冷却时间和200mm/min的剥离速度,测定热粘性强度。
薄膜厚度根据ASTM D374-94方法C测量,只是每年用商购块规(Starret Webber 9,JCV1&2)进行测微计校准。
收缩率(%)如以下在纵向(MD)和横向(TD)中测定。由薄膜切取100mm圆片。标记纵向,然后用滑石粉处理样品和加热。收缩率的大小在MD和TD两个方向中测量,并且作为MD收缩率%和TD收缩率%报导。
熔化信息通过差示扫描量热法来测定和作为二次熔化数据来报导。样品以10℃/分钟的程控速度加热到其熔化范围以上的温度。样品然后以10℃/分钟的程控速度冷却到其结晶范围以下的温度。样品然后在10℃/分钟的程控速度预热(2次熔化)。
在以下实施例中,由各供应商生产的树脂用于证明本发明的聚合物共混物组合物和薄膜的独特而有利的性能。应该理解的是,下述的这些树脂的各种参数的特定数值是标称值。
EXACT3132是具有0.9031g/cm3的标称密度的在高压本体聚合工艺过程中使用金属茂催化剂制备的塑性体,购自ExxonMobilChemical Co.,Houston,TX。
EXCEEDTMECD-320是具有0.9178g/cm3的标称密度的使用金属茂催化剂在气相聚合工艺过程中制备的线性低密度聚乙烯,购自ExxonMobil Chemical Co.,Houston,TX。
EXCEEDTMECD-321是具有1.0dg/min的标称熔体指数,0.912g/cm3的标称密度,116.5℃的标称熔点,大约60-80%的CDBI,大约2.5-2.6的MWD(Mw/Mn),和大约16-18的熔体流速(I21/I2)的气相金属茂制备的VLDPE乙烯/己烯共聚物,购自ExxonMobil ChemicalCo.,Houston,TX。
EXCEEDTM350D60是具有0.918g/cm3的标称密度的使用金属茂催化剂在气相聚合工艺过程中制备的线性低密度聚乙烯,购自ExxonMobil Chemical Co.,Houston,TX。
ExxonMobil HDZ-198是具有2.0dg/min的标称熔体指数和0.965g/cm3的标称密度的实验级HDPE,购自ExxonMobil ChemicalCo.,Houston,TX。
ExxonMobil LL-300l是具有0.917g/cm3的标称密度和1.0dg/min的熔体指数的在气相聚合工艺过程中使用齐格勒-纳塔催化剂制备的线性低密度聚乙烯,购自ExxonMobil Chemical Co.,Houston,TX。
Dow Affinity1840是具有0.9104g/cm3的标称密度的使用金属茂催化剂在溶液聚合工艺过程中制备的极低密度聚乙烯,购自DowChemical Co.。
Dow Attane 4201是具有0.9132g/cm3的标称密度的使用齐格勒-纳塔催化剂在溶液聚合工艺过程中制备的极低密度聚乙烯,购自DowChemical Co.。
NDA 111是由NDA 101的基础产物经过氧化物处理成具有0.55dg/min的熔体指数的己烯低密度聚乙烯。
在以下数据表中,几种工业EXCEEDTM树脂的名称被缩写。缩写名称的每一次出现应该被解释为识别特定的EXCEEDTM树脂。EXCEEDTM和EXACT是ExxonMobil Chemical Co.,Houston,TX的商标。
实施例1本发明的某些VLDPE聚合物树脂使用在别处公开的金属茂催化剂体系用气相聚合制备。本发明树脂在以下表1中标识为样品A、G、H(EXCEEDTM321,0.9129g/cm3)和I。用于制备样品A、G、H和I的共聚单体是乙烯和己烯。使用流化气相反应器来生产最终共聚物。
聚合在连续气相流化床反应器中进行。那些反应器的流化床由聚合物颗粒组成。乙烯和氢的气体原料物流在各反应器床之下引入到再循环气体管线中。己烯共聚单体在反应器床之下引入。惰性烃(异戊烷)也引入到再循环气体管线中的各反应器中,以提供反应器再循环气体以另外的热容。控制乙烯、氢和己烯共聚单体的各自流速,以保持固定组成目标。气体浓度通过在线气相色谱仪测量,以确保在再循环气流中的组成相对恒定。
固体催化剂使用纯化氮直接注射到流化床中。调节催化剂速度,以确保恒定的生产速度。生长聚合物粒子的反应床通过补充原料和再循环气体连续流经各反应区来保持在流化状态。为了保持恒定的反应器温度,连续上调或下调再循环气体的温度,以补偿由于聚合带来的产热速度的任何变化。
流化床通过以等于颗粒产物形成的速度排出床的一部分来保持在恒定的高度。将产物转移到吹扫容器,以除去夹带的烃类。
特别地,某些“本发明”聚合物,即使用金属茂催化剂根据对应于本发明的气体聚合工艺过程制备的那些的性能与某些“对比”聚合物,即根据非本发明方法制备的聚合物的性能进行比较。
现在提及对比实施例,样品B使用对比聚合物,具体地说,用金属茂催化剂在气相聚合工艺过程中制备的线性低密度聚乙烯(EXCEEDTM350D60,0.9189g/cm3)来制备。样品C使用用齐格勒-纳塔催化剂在气相聚合工艺过程中制备的线性低密度聚乙烯(ExxonMobilLL-3001,0.9199g/cm3)来制备。样品D使用用金属茂催化剂在高压本体聚合工艺过程中制备的塑性体(EXACT3132,0.9031g/cm3)制备。样品E使用用齐格勒-纳塔催化剂在溶液聚合工艺过程中制备的极低密度聚乙烯(Dow Attane 4201,0.9132g/cm3)制备。样品F使用用金属茂催化剂在溶液聚合工艺过程中制备的极低密度聚乙烯(Dow Affinity1840,0.9104g/cm3)来制备。样品J使用用金属茂催化剂在气相聚合工艺过程中制备的线性低密度聚乙烯(EXCEEDTMECD-320,0.9178g/cm3)制备。样品K使用金属茂催化剂在气相聚合工艺过程中制备的线性低密度聚乙烯(EXCEEDTM350D60,0.9183g/cm3)来制备。
在以下表1中给出了树脂密度、熔体指数试验结果和表征数据。样品B-F和J-K的对比实施例在表中通过星号(*)来标识。
表1树脂性能
实施例2通过共挤出形成三层薄膜。表2显示了加工条件。样品1(对比)包括由具有0.965g/cm3的标称密度的HDPE树脂(ExxonMobil HDZ198)形成的内层和由具有0.912g/cm3的标称密度的m-VLDPE树脂(EXCEEDTM321)形成的外层。样品1的三层薄膜的目标厚度比率是20/60/20结构。样品2(本发明)包括由包括80wt%的具有0.912g/cm3的标称密度的m-VLDPE(EXCEEDTM321)和20wt%的具有0.965g/cm3的标称密度的HDPE(ExxonMobil HDZ198)的共混物形成的内层和外层。样品2的三层薄膜的目标厚度比率是33/33/33结构。
“A挤出机”是2.0英寸挤出机。“B挤出机”是2.5英寸挤出机。“C”挤出机是2.5英寸挤出机。所有挤出机是具有30∶1 L/D的光滑筒体。另外,“B挤出机”和“C挤出机”在螺杆顶端具有用于充分混合的凤梨形混合机。冷却空气用于双唇风环和内冷却系统用于膜泡(bubble)。模头是具有45密尔模口隙距的7英寸直径模头。
表2
表3显示了样品1和样品2的薄膜性能。比较样品1和样品2,本发明的包括VLDPE/HDPE共混物的样品2的薄膜显示了更高的埃尔曼多夫扯裂和落镖冲击强度,同时还保持了高光泽和低雾度性能。
表3
实施例2生产单层吹制薄膜。挤出机温度是380°F(193℃)-390°F(199℃)。模头温度是400°F(204℃)。样品3(对比)包括由具有0.918g/cm3的密度和0.55g/10min的熔体指数的LLDPE聚合物(NDA111)形成的单层。为了生产LLDPE聚合物(NDA111),需要由NDA101的基础产物进行过氧化物交联,这将熔体指数从大约0.8降低到0.55dg/min。样品4(本发明)包括由含有80wt%的具有0.912g/cm3的标称密度和1.0g/10min的熔体指数的m-VLDPE(EXCEEDTM321)和20wt%的具有0.952g/cm3的标称密度和0.07g/10min的熔体指数的HDPE(ExxonMobil HD7660)的共混物形成的单层薄膜。该共混物具有0.921g/cm3的计算密度和0.57g/10min的计算熔体指数(它大约与LLDPE聚合物(NDA111)的相同)。表4显示了样品3和样品4的薄膜性能。
比较样品3与样品4,包括本发明的VLDPE/HDPE共混物的样品4的薄膜比包括LLDPE聚合物的样品3的薄膜显示了更好的拉伸强度和厚度差异,其中VLDPE/HDPE共混物和LLDPE聚合物具有类似的密度和熔体指数。
另外,工业标准要求用于地膜应用的树脂具有超过100分钟的氧化诱导时间(OIT),通过在200℃的氧化抑制试验来测定。因为过氧化物交联用于形成所需熔体指数和熔体强度的LLDPE聚合物(NDA111),过氧化物减少了会引起低OIT值的活性抗氧化剂。因此,LLDPE(NDA111)不能满足该工业标准。因为VLDPE/HDPE共混物的形成不需要使用过氧化物交联,该共混物能够具有足够的抗氧化剂来满足该工业标准。
表4
这里引用的所有专利、试验工序和其它文件(包括优先权文件)在这些公开物与本发明一致并且有允许这种引入的所有权限的程度上充分引入供参考。
虽然以上论述涉及本发明的某些实施例,变型和优选实施方案,但在不偏离其基本范畴的情况下可以设计出本发明的其它和进一步的实施方案,以及这里公开的各发明的范围通过以下权利要求书(包括它们的等同物)来决定。
权利要求
1.聚合物共混物组合物,包括(i)从乙烯和一种或多种C3-C20的α-烯烃共聚单体形成的共聚物,该共聚物具有a)5-15wt%的共聚单体含量,b)低于0.916g/cm3的密度,c)在55%-70%范围内的组成分布宽度指数,d)2-3的分子量分布Mw/Mn,e)低于2的分子量分布Mz/Mw,和f)双模态组成分布;和(ii)具有大于0.940g/cm3的密度的高密度聚乙烯聚合物。
2.包括聚合物共混物组合物的单层薄膜,该聚合物共混物组合物包括(i)从乙烯和一种或多种C3-C20的α-烯烃共聚单体形成的共聚物,该共聚物具有a)5-15wt%的共聚单体含量,b)低于0.916g/cm3的密度,c)在55%-70%范围内的组成分布宽度指数,d)2-3的分子量分布Mw/Mn,e)低于2的分子量分布Mz/Mw,和f)双模态组成分布;和(ii)具有大于0.940g/cm3的密度的高密度聚乙烯聚合物。
3.多层薄膜,它包括第一层和第二层,这些层中的至少一层包括聚合物共混物组合物,该聚合物共混物组合物包括(i)从乙烯和一种或多种C3-C20的α-烯烃共聚单体形成的共聚物,该共聚物具有a)5-15wt%的共聚单体含量,b)低于0.916g/cm3的密度,c)在55%-70%范围内的组成分布宽度指数,d)2-3的分子量分布Mw/Mn,e)低于2的分子量分布Mz/Mw,和f)双模态组成分布;和(ii)具有大于0.940g/cm3的密度的高密度聚乙烯聚合物。
4.聚合物共混物组合物,包括(i)从乙烯和一种或多种C3-C20的α-烯烃共聚单体形成的共聚物,该共聚物具有a)5-15wt%的共聚单体含量,b)低于0.916g/cm3的密度,c)在55%-70%范围内的组成分布宽度指数,d)2-3的分子量分布Mw/Mn,和e)低于2的分子量分布Mz/Mw;和(ii)具有大于0.940g/cm3的密度的高密度聚乙烯聚合物。
5.一种制品,它包括基材和设置在基材上的薄膜,该薄膜包括聚合物共混物组合物,该聚合物共混物组合物包括(i)从乙烯和一种或多种C3-C20的α-烯烃共聚单体形成的共聚物,该共聚物具有a)5-15wt%的共聚单体含量,b)低于0.916g/cm3的密度,c)在55%-70%范围内的组成分布宽度指数,d)2-3的分子量分布Mw/Mn,和e)低于2的分子量分布Mz/Mw;和(ii)具有大于0.940g/cm3的密度的高密度聚乙烯聚合物。
6.权利要求1、2、3、4或5的聚合物共混物组合物,单层薄膜,多层薄膜,或制品,其中该共聚物是通过使用未桥接的双-Cp金属茂催化剂体系来生产的。
7.权利要求1、2、3、4或5的聚合物共混物组合物,单层薄膜,多层薄膜,或制品,其中该共聚物是在气相聚合工艺过程中生产的。
8.权利要求1、2、3、4或5的聚合物共混物组合物,单层薄膜,多层薄膜,或制品,其中该共聚物是在气相聚合工艺过程中在100-1000psig范围内的压力下生产的。
9.权利要求1、2、3、4或5的聚合物共混物组合物,单层薄膜,多层薄膜,或制品,其中该共聚物是在气相聚合工艺过程中在100-1000psig范围内的压力下通过使用未桥接的双-Cp金属茂催化剂体系生产的。
10.权利要求1、2或3的聚合物共混物组合物,单层薄膜或多层薄膜,其中该共聚物具有5g/10min或更低的熔体指数。
11.权利要求4或5的聚合物共混物组合物或制品,其中该共聚物具有5g/10min或更高的熔体指数。
12.聚合物共混物组合物,包括(a)金属茂催化的线性极低密度聚乙烯聚合物,具有(i)低于0.916g/cm3的密度,(ii)50-85wt%的组成分布宽度指数,(iii)2.0-3.0的分子量分布Mw/Mn,(iv)低于2.0的分子量分布Mz/Mw,和(v)在TREF测量中的两个峰;和(b)高密度聚乙烯聚合物。
13.包括聚合物共混物组合物的单层薄膜,该聚合物共混物组合物包括(a)金属茂催化的线性极低密度聚乙烯聚合物,具有(i)低于0.916g/cm3的密度,(ii)50-85wt%的组成分布宽度指数,(iii)2.0-3.0的分子量分布Mw/Mn,(iv)低于2.0的分子量分布Mz/Mw,和(v)在TREF测量中的两个峰;和(b)高密度聚乙烯聚合物。
14.多层薄膜,它包括第一层和第二层,这些层中的至少一层包括聚合物共混物组合物,该聚合物共混物组合物包括(a)金属茂催化的线性极低密度聚乙烯聚合物,具有(i)低于0.916g/cm3的密度,(ii)50-85wt%的组成分布宽度指数,(iii)2.0-3.0的分子量分布Mw/Mn,(iv)低于2.0的分子量分布Mz/Mw,和(v)在TREF测量中的两个峰;和(b)高密度聚乙烯聚合物。
15.聚合物共混物组合物,包括(a)金属茂催化的线性极低密度聚乙烯聚合物,具有(i)低于0.916g/cm3的密度,(ii)50-85wt%的组成分布宽度指数,(iii)2.0-3.0的分子量分布Mw/Mn,和(iv)低于2.0的分子量分布Mz/Mw,和(b)高密度聚乙烯聚合物。
16.一种制品,它包括基材和设置在基材上的薄膜,该薄膜包括聚合物共混物组合物,该聚合物共混物组合物包括(a)金属茂催化的线性极低密度聚乙烯聚合物,具有(i)低于0.916g/cm3的密度,(ii)50-85wt%的组成分布宽度指数,(iii)2.0-3.0的分子量分布Mw/Mn,(iv)低于2.0的分子量分布Mz/Mw,和(b)高密度聚乙烯聚合物。
17.权利要求12、13、14、15或16的聚合物共混物组合物,单层薄膜,多层薄膜,或制品,其中该极低密度聚乙烯聚合物是气相金属茂生产的极低密度聚乙烯聚合物。
18.权利要求12、13、14、15或16的聚合物共混物组合物,单层薄膜,多层薄膜,或制品,其中该极低密度聚乙烯聚合物具有0.900-0.915g/cm3的密度。
19.权利要求12、13、14、15或16的聚合物共混物组合物,单层薄膜,多层薄膜,或制品,其中该极低密度聚乙烯聚合物是乙烯和至少一种选自C3-C12的α-烯烃中的共聚单体的共聚物。
20.权利要求12、13、14、15或16的聚合物共混物组合物,单层薄膜,多层薄膜,或制品,其中高密度聚乙烯聚合物具有大于0.940g/cm3的密度。
21.权利要求12、13、14、15或16的聚合物共混物组合物,单层薄膜,多层薄膜,或制品,其中高密度聚乙烯聚合物具有0.940g/cm3-0.970g/cm3的密度。
22.权利要求12、13、14、15或16的聚合物共混物组合物,单层薄膜,多层薄膜,或制品,其中高密度聚乙烯聚合物具有0.01g/10min-45g/10min的熔体指数。
23.权利要求12、13、14、15或16的聚合物共混物组合物,单层薄膜,多层薄膜,或制品,其中高密度聚乙烯聚合物是乙烯的均聚物。
24.权利要求12、13、14、15或16的聚合物共混物组合物,单层薄膜,多层薄膜,或制品,其中高密度聚乙烯聚合物是乙烯和至少一种选自C3-C12的α-烯烃中的共聚单体的共聚物。
25.权利要求12、13、14、15或16的聚合物共混物组合物,单层薄膜,多层薄膜,或制品,其中该共混物包括2%-98%的极低密度聚乙烯聚合物和98%-2%的高密度聚乙烯聚合物,基于高密度聚乙烯聚合物和极低密度聚乙烯聚合物的总合并重量。
26.权利要求12、13、14、15或16的聚合物共混物组合物,单层薄膜,多层薄膜,或制品,其中该共混物包括60%-95%的极低密度聚乙烯聚合物和40%-5%的高密度聚乙烯聚合物,基于高密度聚乙烯聚合物和极低密度聚乙烯聚合物的总合并重量。
27.权利要求12、13、14、15或16的聚合物共混物组合物,单层薄膜,多层薄膜,或制品,其中聚合物共混物组合物进一步包括至少一种其它聚合物。
28.权利要求12、13或14的聚合物共混物组合物,单层薄膜或多层薄膜,其中极低密度聚乙烯聚合物具有5g/10min或更低的熔体指数。
29.权利要求13的单层薄膜,其中该单层薄膜是流延薄膜。
30.权利要求13的单层薄膜,其中该单层薄膜是吹塑薄膜。
31.权利要求14的多层薄膜,其中该多层薄膜是流延薄膜。
32.权利要求14的多层薄膜,其中该多层薄膜是吹塑薄膜。
33.权利要求14的多层薄膜,其中该多层薄膜具有150g/mil(5.9g/μm)或更高的落镖冲击强度。
34.权利要求14的多层薄膜,其中该多层薄膜具有600g/mil(24g/μm)或更高的落镖冲击强度。
35.权利要求14的多层薄膜,其中该多层薄膜在纵向上具有50g/mil(2.0g/μm)或更高的埃尔曼多夫抗撕强度。
36.权利要求14的多层薄膜,其中该多层薄膜在纵向上具有250g/mil(9.8g/μm)或更高的埃尔曼多夫抗撕强度。
37.权利要求14的多层薄膜,其中该多层薄膜在横向上具有200g/mil(7.9g/μm)或更高的埃尔曼多夫抗撕强度。
38.权利要求14的多层薄膜,其中该多层薄膜在横向上具有450g/mil(18g/μm)或更高的埃尔曼多夫抗撕强度。
39.权利要求15或16的聚合物共混物组合物或制品,其中该极低密度聚乙烯聚合物具有5g/10min或更高的熔体指数。
40.权利要求16的制品,其中该薄膜包括单层薄膜。
41.权利要求16的制品,其中该薄膜包括多层薄膜。
42.权利要求16的制品,其中该薄膜被挤出涂敷在基材上。
43.权利要求16的制品,其中该薄膜被层压到基材上。
44.权利要求16的制品,其中该基材是选自玻璃,塑料,金属箔,和纸。
全文摘要
公开了通过使用金属茂催化剂生产的极低密度聚乙烯(mVLDPE)和高密度聚乙烯(HDPE)的共混物。该聚合物共混物包括具有低于0.916g/cm
文档编号B32B15/085GK1443217SQ01813201
公开日2003年9月17日 申请日期2001年6月22日 优先权日2000年6月22日
发明者J·M·法利, R·H·哈利, G·帕纳戈珀洛斯, J·M·约翰森 申请人:埃克森美孚化学专利公司