基于地下水位控制的黄土台塬滑坡综合治理方法
【专利摘要】一种基于地下水位控制的黄土台塬滑坡综合治理方法,其特征在于,采取长期和中短期相结合的方法,长期治理方法是:通过基于节水灌溉的主动防控措施,遏制地下水位不断升高的不利局面,从而控制滑坡风险;中短期的治理方法是:通过有效的疏排水工程措施,快速降低已有的超高地下水位,实现减少滑坡灾害的目的。本发明的优点是:本发明技术方案可以实现滑坡的标本兼治,从长远时间尺度上,通过基于节水灌溉的主动防控技术,遏制地下水位不断升高的不利局面,从而控制滑坡风险;从中短期尺度上,通过有效的疏排水工程措施,快速降低已有的超高地下水位,实现减少灾害的目的。
【专利说明】
基于地下水位控制的黄±台爾滑坡综合治理方法
技术领域
[0001 ]本发明设及一种基于地下水位控制的黄±台源滑坡综合治理方法。
【背景技术】
[0002] 由于长期的大水漫灌导致黄±台源区地下水位过高,从而诱发大量滑坡,现有技 术有W下几种治理黄±台源滑坡的方法:
[0003] 1、削坡方案:即采用开挖多级边坡的手段,放缓坡度,实现治理滑坡的目的。其存 在的缺点是:(1)边坡坡脚黄±饱水呈流塑状,无法按照设计图放坡施工;(2)属于应急治理 方案,没有降低边坡稳定至关重要的地下水位,治标不治本。
[0004] 2、竖向混合井排水:该方法适用于特定的地层结构的边坡排水。W甘肃黑方台为 例,从上之下的地层分别为低渗透性黄±、隔水粉质粘±、透水砂碱石,因此,通过实施竖向 混合井,将上述=个地层穿透,利用黄±和砂碱石层间的天然重力水头差即可实现将黄± 层中地下水排泄至砂碱石层中,实现降水目的,控制滑坡灾害。其存在的缺点是:(1)孔壁周 边滤料需要采用细砂。若粒度过大,易造成渺孔,影响长期使用;(2)黄±的渗透性小,造成 混合井的排水影响半径也小,降水效果不显著,工程应用成本高。
[0005] 因此必须从控制地下水位的角度来有效控制滑坡的继续发生。
【发明内容】
[0006] 本发明为了克服传统的应急削坡治理和竖向混合井排水方案的缺点,提供一种基 于地下水位控制的黄±台源区滑坡综合治理方法,实现彻底遏制滑坡灾害的防灾减灾目 的。
[0007] 本发明的技术方案是:一种基于地下水位控制的黄±台源滑坡综合治理方法,其 特征在于,采取长期和中短期相结合的方法,长期治理方法是:通过基于节水灌概的主动防 控措施,遏制地下水位不断升高的不利局面,从而控制滑坡风险;中短期的治理方法是:通 过有效的疏排水工程措施,快速降低已有的超高地下水位,实现减少滑坡灾害的目的。
[000引所述的基于节水灌概的主动防控措施的确定方法包括W下步骤:
[0009] (1)掌握区域和斜坡地下水位实时动态:在台源的多个钻孔中开展分层地下水位 动态监测,获取台源和典型斜坡两个尺度的地下水位变动情况;
[0010] (2)确定灌概量控制阔值:开展渗流-应力的流-固禪合分析,对灌概前及灌概至今 的斜坡稳定性进行恢复,同时预测在维持现有灌概量下,未来斜坡的稳定性及屈服破坏方 式;
[0011] (3)确定具体的主动防控措施:主动防控措施包括节水灌概措施和地表防渗措施。 [0012 ]所述的步骤(2)中灌概量控制阔值的确定方法包括:
[0013] (1)潜水渗流场数值模型;(2)斜坡稳定性分析模型;(3)潜水渗流场与斜坡稳定性 禪合分析;潜水渗流场数值模型的计算结果为斜坡稳定性模拟提供地下水位条件,将计算 得到的地下水位数据进行差值处理后导入稳定性计算模型中,构建形成空间地下水面,综 合考虑渗流场及水岩作用导致岩±参数变化的双重作用,计算台源危险区体积和斜坡稳定 性,将台源危险区体积显著降低时对应的年灌概量作为灌概量调控的一个临界值,该临界 值作为灌概量控制阔值,维持此值及W下的年灌概量,通过灌概量的控制能够实现灌区地 下水位的调节,从而提高台源斜坡稳定性。
[0014] 所述的步骤(3)中的节水灌概措施主要分为高效节水和常规节水两种,其中高效 节水包括滴灌、喷灌、膜下滴灌和微喷灌,可节水约35-75%;常规节水包括畦灌、垄膜沟灌 和管灌。
[0015] 所述的疏排水工程措施包括:虹吸排水方法、软式透水管排水方法和福射井排水 方法。
[0016] 所述的虹吸排水方法是:采用斜孔钻机施工朝斜坡内倾斜的孔,随着钻孔跟进套 管;成孔后,拔出套管前,立即安装带孔底储水管的透水管,该孔底储水管底部密封、顶部开 口;该透水管为打孔的波纹管,在波纹管外织±工布,防止泥沙进入透水管内,透水管的一 端深入孔底储水管内,透水管与孔底储水管连接处固定;孔口外保留透水管的长度大于Im; 在该透水管内插入虹吸排水管,在虹吸排水管的靠近底端处的管壁上设有进水孔。
[0017] 所述的虹吸排水管采用S根PA管,每间隔l-2m绑扎固定。
[0018] 所述的软式透水管排水方法包括W下步骤:
[0019] (1)钻出引水孔:斜孔钻机成孔,必须采用跟管钻进,完成具有一定上倾角的引水 钻孔,孔径不小于?90mm,仰角10-15%然后清孔,采用空气压缩机高压风冲排泥渣和清洗 引水孔;
[0020] (3)透水管安装:选用合适管径的软式透水管,选用人工或机械顶入法透将水管插 入引水孔,按设计长度切割好软式透水管后,顶端封口后外罩锥形管帽W利于顶入,末端W IOOmm厚度木板柔性衬垫后,采用50或IOOT千斤顶顶托O 50mm钢顶管顶入;
[0021] (4)软式透水管的连接:应在两段透水管接头处剪去相应的钢丝圈,W强力PVC接 着剂牢固相接后外套管髓,上下管髓W尼龙绳绑扎牢固即可;
[0022] (5)软式透水管末端采用扎结式封闭,出口直接接入既有排水系统;
[0023] (6)封孔:拔出钢顶管,用硬质塑料管套入孔口。
[0024] 所述的福射井排水方法中的福射井包括竖井和水平集水管,在竖井的下部的井壁 上连接多个水平集水管;其施工方法包括:
[0025] (1)采用反循环回转钻机或人工挖孔成孔,竖井井壁可由预制钢筋混凝±井管或 钢筋混凝±现诱构成;采用漂浮下管法成井,将井座吊装到井孔中漂浮起来,再将井管吊装 到井座上,一节接一节地对接焊接之后,漂浮下管,直到井座下到预定深度,下管过程中应 确保井管直立,井管接头封闭接口,最后在井管周围填±密实;
[0026] (2)水平福射孔施工:在对应于含水层的深度设有至少一层福射孔,长度30-50m, 两层W上的福射孔在竖井内应交错布置,每层布设6-8个福射孔,为便于排水,福射孔应向 上仰斜约5-10° ;
[0027] (3)滤水管安装:在每一福射孔内装入滤水管,滤水管采用钢质卷皮钢管加工而 成,盲沟材或±工布包裹,管径应不小于?50mm,壁厚不小于3.5mm;滤水管每节长Im,采用 锥型扣联接。
[0028] 所述的滤水管的安装方法采用套管法、顶进法或键击法,顶进法是用水平钻机或 千斤顶将滤水管直接顶进含水层;键击法是用油键或撞键把滤水管击入含水层;该顶进法 采用液压水平钻机,一根接一根,边转动边推进的方法打孔,顶力小进尺快;顶进过程中滤 水管内的细颗粒物随水流进入竖井中排走,同时将较粗的颗粒挤到滤水管周围,形成一条 天然的环形自然反滤层。
[0029] 本发明的优点是:本发明技术方案可W实现滑坡的标本兼治,从长远时间尺度上, 通过基于节水灌概的主动防控技术,遏制地下水位不断升高的不利局面,从而控制滑坡风 险;从中短期尺度上,通过有效的疏排水工程措施,快速降低已有的超高地下水位,实现减 少灾害的目的。
【附图说明】
[0030] 图1是本发明技术方案的总体构成示意图;
[0031 ]图2是本发明实施的黑方台地下水监测孔布置图;
[0032] 图3是黑台黄±潜水水文地质结构模型图;
[0033] 图4是黑台地下水渗流模拟S维网络剖分图;
[0034] 图5是地下水位数值模拟拟合结果图;
[0035] 图6是黑台区域斜坡稳定性模型剖分图;
[0036] 图7是不同灌概量条件下地下水位响应及台缘危险区体积变化图;
[0037] 图8是切坡后的焦家崖头斜坡稳定性分析模型示意图;
[0038] 图9是边坡虹吸排水系统原理示意图;
[0039] 图10是黑方台地区边坡倾斜虹吸排水孔实施方案;
[0040] 图11是排水管、透水管和孔底储水管组合(虹吸排水管组件)构造示意图;
[0041 ]图12是图11的A-A剖视图;
[0042] 图13是虹吸排水集水槽的俯视结构示意图;
[0043] 图14是图13的B-B剖视图;
[0044] 图15是图14的C-C剖视图;
[0045] 图16是软式透水管引水孔及截水沟剖视结构示意图;
[0046] 图17是图16的D-D剖视图;
[0047] 图18是本发明福射井的立体结构示意图。
[004引附图标记说明:1、黄±层,2、粉质粘±层,3、砂卵碱石层,4、白聖系砂泥岩,5、排水 管,51、贯穿孔,6、透水管(波纹管),61、透水管管壁的孔,7、±工布,8、储水管,9、地下水渗 流方向,10、虹吸排水孔,11、虹吸排水管,12、黄±层(坡),13、原地下水位线,14、虹吸排水 后的地下水位线,15、流量检测装置,16、粉质黏±层;17、砂卵石层;18、基岩,19、引水孔(填 筑砂碱滤层),20、软式透水管,21、截水沟,131、S角堪,132、集水槽,133、排水管道,134、水 表,135、基础,136、水位测量管,137、=角堪上的V形=角口,138、虹吸排水管,31、地面,32、 竖井,33、水面,34、水平集水管(福射管)。
【具体实施方式】
[0049]参见图1~图18,本发明一种基于地下水位控制的黄±台源滑坡综合治理方法,采 取长期和中短期相结合的方法,长期治理方法是:通过基于节水灌概的主动防控措施,遏制 地下水位不断升高的不利局面,从而控制滑坡风险;中短期的治理方法是:通过有效的疏排 水工程措施,快速降低已有的超高地下水位,实现减少滑坡灾害的目的。
[0050] 所述的基于节水灌概的主动防控措施的确定方法包括W下步骤:
[0051] ( - )掌握区域和斜坡地下水位实时动态:
[0052] 在台源的14个钻孔中开展分层地下水位动态监测,获取台源和典型斜坡两个尺度 的地下水位变动情况。14个钻孔分别是:6个黄±层钻孔,5个砂卵石钻孔和3个混合孔,分布 在不同区域(如图2所示)。混合孔指的是自上而下将黄±层、粉质粘±层、砂卵石层打穿,从 而将黄±和砂卵石两个含水层联系起来的钻孔。
[0053] (二)确定灌概量控制阔值:
[0054] 开展渗流-应力的流-固禪合分析,对灌概前及灌概至今的斜坡稳定性进行了恢 复,同时预测了在维持现有灌概量下,未来斜坡的稳定性及屈服破坏方式。
[0055] 1.潜水渗流场数值模型:
[0化6] 1)模型建立:
[0057] 模型W黑台为计算区,区内含水系统由上至下分别为黄±孔桐裂隙潜水含水系 统、砂卵石孔隙层间水含水系统及基岩裂隙水含水系统。区内^黄±滑坡最为发育,且人类 活动对黄±层潜水扰动最大,故模型计算W与黄±斜坡稳定性关系最为密切的黄±层潜水 为对象。
[0058] 边界条件概化:模型计算区面积为10. Skm2,其北侧为磨石沟,西侧为虎狼沟,南侧 和东侧分别为黄河、撞水河,底部为相对隔水的粉质粘±层。模型四周被沟谷深切,使得黄 ±含水层即得不到周围黄河及撞水河等地表水的补给,也得不到区外地下水的侧向径流补 给,仅在顶部接收大气降水及灌概水入渗补给。受地形及隔水底板高程等因素控制,黄±层 潜水总体由西北向东南径流,其中一部分在台源周边W泉的形式排泄,另一部分通过粉质 粘±弱透水层渗透至下部的砂卵石层。因此,模型底部及侧向均为排泄边界,采用排水沟模 块(drain模块)将其处理为第S类边界。使得底部边界满足黄±层中的地下水沿整个粉质 粘±层向砂卵石层排泄,而侧向边界当满足边界水头值高于其所在位置处排水底板高程值 时,地下水W泉的形式向外排泄,当边界水头值低于侧向边界排水底板高程值时,则不发生 水量交换。
[0059] 地质结构概化:根据野外调查数据、水文钻孔资料、台面=维激光扫描结果W及黄 上层、粉质粘上层露头精细测量数据,构建=维地质结构数字模型(如图3所示),实现各地 层空间几何特征的定量描述。数字模型垂向上包括两层,顶层A为黄±含水层,底层B为粉质 粘±弱透水层。黄±层潜水主要赋存于上更新统黄±下部孔隙孔桐中,由于垂直节理、裂隙 的存在,使得黄±的垂向渗透系数远大于水平渗透系数,可将模型概化为均质各向异性介 质中的=维非稳定流模拟问题。
[0060] 计算参数选取:依据区内钻孔抽水试验及原位渗水试验,计算得黄±潜水含水层 水平和垂向渗透系数分别为2.32Xl(T2m/d和0.12m/d,结合已有资料,取孔隙率为0.45,给 水度为0.1;依据室内实验测试结果,得到粉质粘上层水平及垂向渗透系数分别为2.OXlCT V/d和2.0 X l(T2m/d,孔隙率为0.35,给水度取经验值0.04。综合区内的有效年降雨强度阔 值、灌概量、泉水流量及钻孔水位的年变幅,计算得到区内降水入渗系数及灌概入渗系数分 别为0.04和0.1。
[0061 ] 2)模型计算与验证
[0062] 模型包括147行(磨石沟至黄河方向),221列(虎狼沟至撞水河方向),2层,共64974 个单元(参见图4),图4中的两个水平坐标为距离模型边界的相对距离,竖向坐标为模型的 绝对高程值。其中34648个为有效活动单元,边界W外的区域作为无效单元处理。网格大小 为25mX 25m。当模型顶部补给源仅为大气降水时,取补给量为多年平均降雨量287.6mm/a, 开展稳定流计算得到灌概前潜水渗流场分布,作为后续=维非稳定流计算的初始条件。
[0063] 模型的验证期选择为2010年至2011年近一个水文年内。据验证期内各月降雨量及 灌概量的不同,在时间上将验证期划分为11个应力期(表1)。
[0064] 表1各应力期内的降水量及灌概量统计表
[00 化]
[0066]
[0067] 注:定义灌概强度为月灌概量与灌区面积的比值
[0068] 开展=维非稳定流数值模拟计算。图5为模型计算数据与验证期内地下水位监测 数据的拟合结果,可W看出,模型验证期内计算结果与观测水位拟合较好。表2为得到较好 拟合结果时所采用的模型计算参数,其中Kx、Ky、Kz、Us与上述定义相同,ne为有效孔隙度(无 量纲),m为孔隙度巧量纲)。
[0069] 表2地下水流数值模型计算参数表
[0070]
[0071] 运用此模型可反演和预测不同时期、不同灌概量下的潜水渗流场变化,为不同水 位下台源斜坡的稳定性计算提供基础数据。
[0072] 2.斜坡稳定性分析模型:
[007引对区内DEM数据进行立维信息可视化提取,应用化AC3D(Fast Lagrangian Analysis of Continua in 3 Dimensions)内置的FISH语言构建黄±区域S维稳定性分析 模型(图6)。模型计算区范围与潜水渗流场数值模型范围一致,用W禪合分析渗流场场演化 条件下的台源斜坡稳定性。模型垂向(Z方向)上由上至下依次为黄±层、粉质粘±层、砂卵 碱石层及下部的白聖系砂泥岩。据钻孔和野外调查资料,将模型中黄±层平均厚度概化为 11.5m,粉质粘±层平均厚度概化为3.4m,砂卵碱石层平均厚度概化为2. Im,白聖系砂泥岩 层平均厚度概化为124m。
[0074] 模型有限元网格节点共52479个,单元95232个,单元尺寸为IOOmX 100m。结合地质 环境条件调查资料,将模型底部设为固定边界,模型四周为单向边界,斜坡坡面为自由边 界。
[0075] 假定各地层为均质各向同性±层,根据原位直接剪切试验及实内常规物理、力学 实验测试结果,对模型范围内的天然黄±、饱和黄±、粉质粘±、砂卵碱石、砂泥岩的物理力 学参数进行赋值,各参数取值列于表4-3中。
[0076] 3.潜水渗流场与斜坡稳定性禪合分析:
[0077] 潜水渗流场数值模型的计算结果为斜坡稳定性模拟提供地下水位条件。将计算得 到的地下水位数据进行差值处理后导入稳定性计算模型中,构建形成空间地下水面,综合 考虑渗流场及水岩作用导致岩±参数变化的双重作用,在FLAC3D软件中采用摩尔-库伦本 构模型进行计算。
[0078] 表3区域斜坡稳定性模型计算参数表
[0079]
[0080] 基于前述渗流-应力的流固禪合分析,预测了现有灌概量和不同灌概模式不同灌 概量下等工况条件下未来十年地下水动力场的发展趋势,W及地下水动力场演化条件下对 应的台源斜坡危险区体积的变化(表4、图7),表明地下水位变化均值为正值代表地下水位 上升,负值代表地下水位下降。黑方台地区现今的灌概量约为590.91 X IO4HiVa,若保持现有 灌概量,未来十年仍处地下水正均衡,地下水位升幅均值为〇.27m/a,危险区体积占台源总 体积的20.34%。当灌概量调节至500 X lOVVa和400 X lOVVa时,地下水位仍呈现上升趋 势,但上升幅度明显降低,均值分别为〇.19m/a和0.06m/a,危险区体积也相应的有所降低。 当灌概量调节至350 X lOV/a及W下时,地下水位开始下降,台源危险区体积显著降低。
[0081] 表4未来十年内不同灌概量下地下水位及台源斜坡危险区变化情况表
[0082]
[0083] 由图7可W看出,随着灌概量的减少地下水位上升速率降低甚至开始出现水位下 降,台源周边不稳定区域的体积明显降低。而年灌概量350X IOV3可作为灌概量调控的一个 临界值,维持此值及W下的年灌概量,未来十年内能够实现地下水均衡场由正向负的逆转。 说明通过灌概量控制能够实现灌区地下水位的调节,从而提高台源斜坡稳定性。
[0084] (S)提出基于节水灌概的主动防控技术:
[0085] 近年来,黑方台地区已经成为兰州市重要的蔬菜水果种植基地。区内除继续种植 传统的小麦、玉米等粮食作物外,还大幅增加了经济作物种植面积,如需水量更大的草替、 蔬菜、果树等,农业灌概量需求较W前有了较大提高。据《黄±高原地区农业气候资源图 集》,查得该地区农田最大蒸散量为880mm(含地面和叶面蒸发),扣减农田最大蒸散量后,维 持区内现有作物结构正常生长需要的补充灌概量为657.6mm,折算成年灌概量为498 X lOV3。换句话说,黑方台地区590.91 X IOV3的年现状灌概量超灌正常需水量达20%左右。 而理论上可实现地下水上升趋势扭转的年临界灌概量阔值350 X IOV3是不能满足当地现有 果树、草替、蔬菜等经济作物占比较大的现有农业种植结构的农业用水需求,若要满足当地 最低限度的农业用水需求,就必须调整高耗水农业种植结构,发展高效现代生态农业,还应 因地制宜推行节水灌概W减少地下水入渗补给量,扭转长期正均衡造成的黄±含水系统地 下水位上升,W达到彻底根治黑方台地质灾害的目标。
[0086] 农业节水灌概技术主要分为高效节水和常规节水两种,其中高效节水包括滴灌、 喷灌、膜下滴灌和微喷灌,可节水约35-75 % ;常规节水包括畦灌、垄膜沟灌和管灌。根据不 同作物耕作特点和生长习性,选择适宜的常规节水与高效节水相结合节水的灌概方式,如 灌区内的粮食作物主要为玉米,可采用喷灌和垄膜沟灌;灌区内经济作物主要有蔬菜和林 果,蔬菜可在大棚、露地、溫室内耕种,可采用滴灌、微喷灌、膜下滴灌和常规灌概的垄膜沟 灌、畦灌等;林果可采用滴灌和畦灌,具体作物结构与节水灌概方式参见表5。
[0087] 选取喷灌、滴灌、微喷灌、膜下滴灌等高效节水灌概技术较传统漫灌模式节水40% 进行分析(引自《喷灌工程技术》,中国水利水电出版社,1999),高效节水灌概条件下,灌概 量为350 X 104时,相当于漫灌600 X 104m3的用水量,即可满足现有种植结构下作物的最低 用水需求,对高效节水灌概技术经济性的成本投资做W下概算:
[0088] 表5作物种植结构与节水灌概方式表
[0089]
[0090] 参照《喷灌工程技术规范KGB/T50085-2007),喷灌、滴灌工程投资包括喷、滴灌材 料设备费、运输费、工程勘测设计费、施工费等。灌概水源可直接利用现有的提灌工程,可不 增加水源工程投资,故不计入投资费用。经工程成本核算,固定式喷、滴灌、微喷灌工程设备 一次性投资折合1200元/亩。
[0091] 喷、滴灌技术年运行费指维持工程设施正常运行所需用的年费用,包括动力费、维 修费、设备更新费及管理费等。设加压水累四台,维修费包括加压水累、枢纽部分、管道部分 和滴头部分的年修、大修和日常养护等费用。按照《喷灌工程技术经济规范》,加压累及枢纽 部分年维修率取5% ;地埋管道部分维修率取1%,综合核算其年维修费。管理费指工程管理 人员工资及灌水用工费等日常开支。W上各项综合合计年运行费为200元/年?亩。
[0092] 黑方台地区总面积为13.44km2,总计约为2X IO4亩耕地,则喷、滴灌设备一次性投 入约2400万,年运行费用约400万元。
[0093] (四)基于其他地表防渗的主动防控技术
[0094] 从改变当前粗放的大水灌概模式为节水灌概,降低灌概入渗量扭转地下水位长期 上升趋势,并采取混合井、集水廊道、砂井、虹吸排水、福射井等多种形式疏排与滑坡形成攸 关的黄±含水层地下水,增大地下水排泄量有效降低黄±含水系统地下水位是黑方台滑坡 风险控制的关键。除节水灌概及工程措施疏排地下水之外,因灌渠跑水所具有强大的水动 力常在台缘地带冲蚀形成巨大落水桐,灌概水沿裂缝、落水桐的通道快速入渗后引起滑坡 区地下水位的快速波动不仅增大滑坡区动水压力,而且潜蚀掏空坡体,从而引发斜坡失稳, 故还应采取裂缝、落水桐等快速入渗通道填埋及灌渠防渗等地表防渗措施。
[00巧]1.快速入渗通道填埋:
[0096]黄±是具有大孔结构的特殊类±,垂直节理发育是其典型特性,且水敏性强,抗水 蚀能力差,受降水、灌概水或地表水常产生地表开裂、湿陷下沉、潜蚀落水桐、边坡失稳等现 象。野外调查中发现,黑方台地区黄±垂直节理、卸荷裂缝密集发育,特别在台源周边沟缘 线附近表现尤为明显,裂缝、卸荷裂隙通常向下贯穿较深,多见灌渠跑水沿垂直裂缝冲蚀潜 蚀形成的桐径l-3m的落水桐,灌概水易沿落水桐、裂缝等优势入渗通道快速补给地下水,造 成地下水位睹升睹降。同时,落水桐潜蚀掏空坡体,上覆±体在自重作用下产生地表塌陷, 斜坡地带产生失稳。因此,若要对地下水位进行控制,首要的措施是避免灌概水的快速入 渗,可W采用3:7灰±进行裂缝填埋并逐层巧实的措施减少灌概水的入渗,巧填时应分层巧 实,控制每层厚度W 20cm为宜,回填灰±与原±接触部位应开挖成台阶状,每级台阶接缝处 应错开不少于Im。
[0097] 2.灌渠防渗:
[0098] 台面上仍然沿用的部分未衬搁渠道及一些年久失修的渠道渗漏严重,因台面渠系 网络密布,已不仅是单纯的线状入渗,更是随着渠系分布W面源入渗成为地下水的重要补 给渠道,有必要对渠系进行衬搁和修护,减少渠系入渗环节增加地下水的补给量。
[0099] 为减少渠道渗漏,防止冬季季节性冻结作用产生的冻胀作用造成渠道衬搁破坏, 提高渠道水利用系数和保证渠床稳定,黑方台干支渠修建过程中渠线所经原始地形曾进行 挖高填低的平整,根据黑方台灌区渠系多年运行状况,结合渠基工程地质条件分析可知,填 方段渠道由于黄上湿陷性强,填方渠基早期未作严格防渗处理,后经多年灌概回归水的下 渗,引起填方段渠基普遍下沉,使渠道形成反坡,而挖方段渠基相对运行较好。依据《渠道防 渗工程技术规范》(化18-2004),经渠道横断面衬搁方案比较,选取经济合理的防渗技术措 施,设计防渗渠道断面形式设计为管道和U形断面相结合,填方段采用管道输水,挖方段采 用U形明渠渠槽衬搁两种节水防渗改造方案。
[0100] 填方段渠道采用管道(预制抢管或钢管)输水,管道输水基本上避免了输水过程中 的渗漏和蒸发水量,防渗效果十分显著。
[0101] 填方段管道输水后接挖方段U形明渠,明渠渠基黄±应进行翻巧处理,处理深度不 小于l.Om,处理后控制丫 d>1.6g/cm3。渠道断面采用预制C15混凝±U形槽,其特点是:①水 力条件好,近似水力最佳断面,可减少衬搁工程量,输沙能力强;②抗冻胀性和湿陷性地基 上适应地基变形的能力强;③渠口窄,占地面积少,节省±地,减少挖填方量;④整体性强, 防渗效果好;⑤施工简单,便于机械化施工等优点;⑥节省投资,降低成本。据使用对比,在 同样条件下,可比一般混凝±渠道节省水泥20%,砂石30%,综合造价可降低10-20% X15 混凝±U形预制件之间采用细石混凝±勾缝,为适应渠道纵向应变,U形槽每IOm设横向伸缩 缝一道,伸缩缝采用聚氯乙締胶泥填筑。该种衬搁结构形式,在地下水埋深大,过水流量小 于1. OmVs的渠道断面中,具有良好的防渗效果,经静水试验得每公里水头损失率0.7-1.2%,加膜料后只有0.3-0.5%。
[0102] 渠道纵断面改建设计本着减少水头损失,降低能耗,充分利用旧渠经过多年运行 基础沉陷稳定的特点,尽量减少挖、填方W及节省工程投资的原则,在尽可能利用原渠线现 状较好的渠系建筑物的基础上进行改建,设计纵坡为1 = 1/500-1/2500。为适应渠道纵向应 变,U形渠每IOm设横向伸缩缝一道。
[0103] 总之,黑方台滑坡群因水而发,治理也受困于水,黄±含水系统地下水赋存介质水 平渗透性差,加之地下水位之下饱和黄±具结构性高灵敏性的工程特性,虽众多学者提出 各种疏排地下水建议,但在区内数次滑坡应急治理中应用效果不佳,其地下水可疏排性困 扰滑坡综合整治数十年,故可能单一疏排水措施难W奏效,建议在下一阶段的刘盐八库区 地质灾害综合整治项目实施过程中,切勿为完成工作量而匆忙上马,在治理工程全面铺开 之前,应在黄±含水系统特征,把握地下水运动规律的前提下,论证不同疏排水模式的可行 性,在条件较为有利的JH13滑坡或JH9滑坡先行开展各疏排水模式或组合的疏排水效果对 比研究。
[0104] (五)确定地下水位控制目标:
[0105] 地下水位控制应从黑方台区域水均衡场源汇项的源头上入手,通过控制灌概量减 少地下水入渗补给量来控制黑方台的地下水位,实现滑坡灾害风险控制。但原位渗水试验、 钻孔抽水试验、室内水理测试均表明黄±底部地下水位之下的饱和黄±渗透性能极为微 弱,即使灌概量得到有效控制的前提下,由于饱和黄±自然排水速率慢,已转化为静储量地 下水难W依靠自身渗透性快速排泄出斜坡体,坡体内部较长时期内仍具有可能引发斜坡失 稳的超高地下水位。因此,需采取有效的疏排水工程措施,将诱发滑坡的黄±含水系统地下 水位人为被动地快速降至可实现斜坡稳定的临界水位W下,从而实现斜坡稳定的目标。
[0106] 因岩±材料具各向异性和不确定性,其物理力学参数是一个随机变量,相应地因 岩±工程性质劣化造成的斜坡失稳也是个概率问题。因此,基于传统确定性分析得到的斜 坡安全系数并不意味着"绝对安全",反之亦然。需根据安全系数计算中各参数的变异性来 确定安全系数的变异性,也就是引入失稳概率的概念来描述不同地下水位条件下的斜坡稳 定性。将计算结果与实测水位、稳定状况对比,确定可实现斜坡稳定目标的临界地下水位阔 值,作为疏排地下水位控制目标。
[0107] 按照黑方台四周台缘坡体结构、水文地质条件差异和地下水渗流场模拟结果,将 整个台缘划分为焦家-扶河桥头、焦家崖头、党川W西及方台、磨石沟共四个区段,进行分区 段的基于地下水位的斜坡可靠度分析,W黑方台地区滑坡发生频次最高的焦家崖头段斜坡 为例,采用切坡后的最新纵断面建立斜坡稳定性分析模型(图8),模型左边界为焦家崖头黄 ±钻孔位置。与之前模型相比,切坡后斜坡平均坡度降至30°。对于地下水位上下的±体分 别统一赋参,即黄±层分为天然和饱和两种状态,分别统计重度、粘聚力、内摩擦角的概率 分布及特征值(表6)。经过K-S检验,上述±性参数均符合正态分布。需要说明的是,饱和状 态情况下黄上上体结构的变异性已基本消除,含水量和重度分别为33%和18. IkN/m3,均按 定值对待,视为无变异性。本次分析采用定值法确定粉质粘±和砂卵石参数,其中粉质粘± 重度16kN/m 3,粘聚力45kPa,内摩擦角26%砂卵石重度22kN/m3,粘聚力1.化化,内摩擦角 36°。白聖系河口群砂泥岩为"基岩",强度无限大。
[0108] 表6基于可靠度的斜坡稳定性分析模型黄±计算参数表
[0109]
[0110]
[0111]
[0112] 结合前述地下水位现状及地下水动力场演化过程与发展趋势,分别设定1667.2m、 1672.2m、1677.2m、1678.2m、1679.2m、1680.2m、1681.2m、1682.2m、1687.2m和1692.2m共10 个地下水位高程进行分析,其中1667.2m对应灌概前黄±层无区域统一地下水位、1679.2m 对应反演的1980年时地下水位、1687.2m为现状地下水位。黄±层底部与粉质粘±层接触面 处有泉水出露。根据水文地质无入渗均质潜水含水层地下水向河渠二维稳定流公式计算获 取地下水位面。对每个地下水位工况采用四种极限平衡分析法,进行抽样10000次的Monte-化rlo失稳概率可靠度分析。
[0113] 由结算结果可知(表7),四种算法所得斜坡稳定系数和失稳概率略有差异。
[0114] 亲7隹家崖头斜地失稳概率A析亲
[0115]
[0116]
[0117
[011 引
[0119]
[0120]
[0121]
[0122] 为此,选用滑裂面形状、静力平衡等方面均不作任何假定的Mo巧enstern-Price法 作为对比依据,该法也是国际上通行的极限平衡条分法。W表8中边坡失稳概率分级方案为 准,可见在上世纪八十年代初之前的黄±层地下水位工况下,焦家崖头斜坡的失稳概率均 处于可接受的稳定范围,尤其是当黄±层没有连续分布的区域性统一地下水位,也就是理 想情况下的未灌概时期,斜坡失稳概率接近为零;当黄上层地下水上升至1980年的水位 1979.2m时,斜坡失稳概率达12.225%,处于低危险时期;现在斜坡失稳概率已增至 87.23%,属于高危险;若地下水位再上升5m达到1692.2m,则斜坡失稳概率达到99.47 %,属 于必然破坏区段。
[0123] 根据黑方台地区滑坡工程防治效果调查,焦家崖头地段的"2012.2.7"滑坡发生 后,甘肃省国±资源厅采取W切坡减载为主的应急工程治理后目前滑坡变形迹象依然显 著,东西两侧切沟处已发生两处小规模局部滑坡,目前第一级切坡平台前缘已发育一条环 状贯通的拉张裂缝,表明治理工程不能结合滑坡诱因有效疏排地下水就不能降低滑坡风 险。建议W地下水流数值模型反演所得的上世纪八十年代地下水位1678.2m做为临界值,采 取有效地工程疏排水措施将目前的地下水位降低至少9m,即由当前的1687.2m降低至 1678.2m,斜坡失稳概率才有可能降至可接受的稳定状态。
[0124] 同理,焦家-抚河桥头、磨石沟、党川-方台等=个区段的斜坡可靠度分析中地下水 位值因缺少地下水位实测数据,经采用地下水渗流场模拟结果进行测算,结果表明使得斜 坡失稳概率在可接受的稳定状态范围的地下水位对应分别为1676.2m、1683m、1688m。
[0125] 大水漫灌导致地下水位上升是黑方台地区滑坡频发的主要诱因,但不是唯一因 素。譬如,在研究区及其周边孕灾地质环境类似的黄±台源区调查后发现,即使采取了喷 灌、滴灌等节水灌概技术,在降雨、人工切坡等条件下也不同程度的引发了滑坡灾害,只是 灾点密度和发生频度远不及黑方台地区大水漫灌型黄±滑坡。因此,基于可靠度的临界地 下水位分析也只是针对大水灌概导致地下水位上升运一滑坡主要诱因,不设及研究区其它 因素诱发的滑坡风险控制措施讨论。
[0126] (六)虹吸排水技术:
[0127] 1.虹吸排水系统应用现状:
[0128] 虹吸现象是液态分子间引力与位差能形成的,利用水柱压力差,使水面上升再自 流到低处的物理现象。如果管中抽成真空,由于管口的水面承受大气压力,水由压力高的一 端流向压力低的一端,一个标准大气压下,理论上虹吸所能达到的最高水头约为10.24m。边 坡虹吸排水即是利用虹吸现象的一种新型边坡排水技术,它的排水流量和流动过程由坡体 内部地下水位变化自动控制,其物理特性非常适合边坡排水的需要。虹吸排水具有利于地 下水汇集,免动力实现水体的高效跨越输送的特征,能够适应坡体地下水位变化,并及时排 出斜坡体内部的地下水。因此,通过合理的布置与设计边坡虹吸排水系统,可W排出斜坡深 部地下水,实现坡体内部地下水位快速下降,且可保持长期稳定的有效排水。
[0129] 虹吸排水最早应用于沟渠排水、屋面降水等小规模排水工程。20世纪80年代末才 见将虹吸技术应用于边坡排水的报道。1987年在意大利北部的Zandila山体滑坡治理中,利 用虹吸排水与抽水累共同作用取得了良好的效果。我国虹吸排水首次用于边坡治理,是 1996年对湘駭线K93路壁滑坡治理时的浅表部虹吸排水。至今边坡虹吸排水孔均为垂直孔, 尚未有斜孔虹吸案例报道。边坡虹吸排水技术目前仍处于探索性应用阶段,许多问题(如对 渗流场的干扰作用等)尚缺乏必要的研究,制约了边坡虹吸排水技术的合理应用。倾斜式虹 吸排水主要存在=大问题:(1)地下水在重力作用下沿排水孔流出,通常会夹带泥沙一起涌 入排水孔,容易导致排水孔堵塞失效,即无法保障虹吸过程的持续有效性;(2)无法排出地 下水位埋深超过IOm的地下水;(3)孔底地下水在沿排水孔外流过程中,进入地下水位线W 上孔段后,会重新回渗到坡体而失去排水效果。
[0130] 由于存在运=大障碍问题,虽经30余年的探索,虹吸排水方法在边坡工程领域未 能得到大规模的推广应用。近年来,通过实验及理论研究,已经解决了边坡虹吸排水的运些 关键技术问题:如采用4-5mm直径虹吸管,使管内形成弹状流而不会出现空气积累,保障虹 吸过程长期持续有效;通过调节倾斜钻孔的倾角及深度,保持孔口与孔底的控制水位相对 高差小于10m,突破了虹吸排水进水口距地表的垂直高差不能超过IOm的物理限制,当坡体 内部地下水位上升时,汇集到钻孔的地下水就会通过虹吸管实时排出(图9)。
[0131] 总之,当前的研究成果已经解决了虹吸排水的基础理论问题,为边坡虹吸排水系 统的工程应用提供了条件。在工程应用实践中,提高虹吸排水的应用水平、完善虹吸排水系 统建设方案,应该是今后研究及应用的重点。
[0132] 2.黑方台滑坡群虹吸排水系统设计:
[0133] 根据黑方台滑坡群地下水疏排降深目标的要求,利用向下倾斜的钻孔进入坡体深 部,通过调节倾斜钻孔的倾角及深度,虹吸排水可实现的降深与孔口高差约IOm(图10)。考 虑到干旱季节,可能出现长时间无地下水,虹吸排水过程会有长时间停止流动期,在此期 间,虹吸管中会出现一定长度的气泡积累,重新启动虹吸时,孔内水位需要上升到一定的高 度才能克服气泡的影响,需要的上升余量一般小于3m。因此,从斜坡安全考虑,设计上可考 虑将与孔口高差6m作为斜坡的控制地下水位。
[0134] 结合黑方台地区水文地质条件,考虑到滑坡前缘地形条件的限制,虹吸排水孔拟 布设于地下水溢出带或浸润线上方约5m的位置,水平方向上设置一排,仅在焦家崖头JH13 号滑坡应急治理平台上可按照两排布设,排水孔间距6m为宜,区内滑坡宽度一般多在150m 之内,每个滑坡最多布设25孔。虹吸排水孔深60m,倾角12°。
[0135] 为保证虹吸管中始终有水,要求:当孔口与孔底相对高差大于1 Im时,保持虹吸排 水的出水口与孔口高差大于1 Im;当孔口与孔底相对高差小于1 Im时,虹吸排水的出水口应 设置平衡储水管,其出水口的高程高于钻孔底部高程、管底高程低于钻孔的底部高程。
[0136] 3.虹吸排水孔施工与透水管安装:
[0137] 采用斜孔钻机成孔,钻孔直径大于90mm,跟管钻进。倾斜角12° (钻杆与水平线夹 角),钻孔深度60m。确保孔底与孔口高差12m ± Im。
[0138] 成孔后,拔出套管前,立即安装带储水管8的透水管6(图11和图12)。储水管8采用 长度800mm,内径50mm底部密封、顶部开口的皿PE管。透水管6采用外径50mm的高密度聚乙締 化DPE)打孔61的波纹管。波纹管外织±工布7,防止泥沙进入透水管6内。透水管6的一端深 入孔底储水管8内,透水管6与储水管8连接处固定。孔口外保留透水管6的长度大于Im。
[0139] 完成透水管6安装后,拔出套管。在拔出套管过程中,注意防止把透水管6带出。
[0140] 4.排水管5的制作及安装:
[0141] 排水管5采用尼龙管(PA管),每个钻孔安装討良单独PA管,每间隔2m绑扎固定,横截 面示意如图12。排水管5长度根据实际情况取值,不得连接,确保虹吸管的密封性。为保障排 水管5底端的进水口不被堵塞,各虹吸管在距排水管5的端头5-8cm处打两个直径4-6mm的正 交贯穿孔51。
[0142] 将3根单独PA管绑扎后一起插入透水管6,把排水管5送入孔底储水管8的底部,图 11中是组装后的虹吸排水管组件。
[0143] 钻孔W外坡面上的虹吸排水管布设:在坡面开挖沟槽,将虹吸排水管组件埋入地 表50cmW下,将排水管引向集水槽。保持虹吸排水管出水口高程低于钻孔的孔底高程(参见 图巧P图10)。
[0144] 5.引导初始虹吸:
[0145] 将排水管5的出水口连接到高压喷雾器的喷头,利用高压喷雾器的压力把水反向 注入钻孔内。当估计清水充满孔底储水管时停止注水。
[0146] 反向孔内注水停止后,将坡面排水管的注水口(出水口)高度降低,此时通过虹吸 作用,孔内的水会流出。
[0147] 6.虹吸排水效果监测:
[0148] 所有孔内虹吸系统布设完成并启动虹吸后,将PA管引至集水池中。在接入集水池 的末端部分,为了防止出水处结冰,将排水管分成两组,套WPVC管后再外包防冻层,最后连 接更大尺寸的管道138将水排入池内。
[0149] 修建集水槽用于收集虹吸管排出的水,进行排水流量监测,用于评价虹吸排水效 果。
[0150] 集水槽修建点由现场施工人员确定。选点原则是集水槽顶面要低于任何一个虹吸 排水孔的孔底高程,地表±质坚硬,要方便检视易于保护。集水槽的结构见图13-图15。流过 =角堪131的水再进入另一集水槽132,通过接有水表134的管道133流到下游沟谷中,利用 =角堪131和水位计(水位计连接在槽底预埋的水位测量管136上,未图示)的实时监测排水 流量,利用水表134读数可随时掌握累计排水流量。
[0151] 集水槽首先修筑基础135,将地表浮±挖走,用C15混凝±诱注一个90cmX200cm的 基础135,厚度不小于10cm。基础135的顶面呈=级台阶,台阶高度30cm,各台阶宽度为60cm。
[0152] 诱注集水槽132:集水槽内部尺寸为50cmX 50cm X 50cm,槽底与四壁厚度均为 IOcm,需制作模板,采用C30混凝±现场诱注。在集水槽的一侧,依次安装=角堪131、带水表 134的排水管133;在=角堪131的上游集水槽底部预埋水位测量管136。
[0153] 埋设水位测量管136:为了方便水位测量及防盗,需另外埋设一根水位测量管136, 通过连通管W及预埋钢管与集水槽132相连通。预埋锻锋钢管的水平段,长度W方便连接为 宜。水位测量管136为内径为IOOmm长度为800mm的HDPE管,其管底密封,并通过连通管及预 埋钢管与集水槽相连通;上部留有通气孔;顶部加上方便拆装的顶盖。通过调整测量管的高 度,使管内水深为40cm左右。仪器安装好后,将测量管掩埋或利用植被将其隐蔽。
[0154]虹吸排水系统施工只需小型钻机就能完成排水孔的施工作业。使用±工布、塑料 管、水泥、砖和少量钢筋等建筑材料,具有施工工艺简单、造价低并且有破坏坡面范围小和 维修养护方便等特点。通过实际工程实践得出,虹吸排水与降雨密切相关,在雨季可W有效 提高排水流量,满足雨季较高的排水要求,可W有效实现坡内深部地下水的及时排出,是一 种稳定可靠的边坡排水新方法。
[0K5](屯)软式透水管排水技术:
[0156] 软式透水管由高强度钢丝圈作为支撑体,与具有透水、过滤、保护作用的管壁包裹 材料共两大部分构成,是一种具有倒滤透(排)水作用的新型管材,利用"毛细"现象和"虹 吸"原理,集吸水、透水、排水为一体,不会对环境造成二次污染,属于新型环保排水材料。该 材料已广泛应用于公路、铁路、电力、水利、机场、港口、环保、园林等工程领域,排水效果显 著,如鹰厦铁路K516+087~+120左侧路壁滑坡(2006年)、潭龙线K288巧00左侧壁坡滑坡 (2000年)、潭龙线K368+250右侧路壁挡±墙加固(2000年)、京九线K2073+800右侧路堤滑坡 (2000年)等边坡病害工程整治中起到了疏排地下水、降低浸润线和强化±体、预防滑坡的 作用。
[0157] 1.软式透水管特点及主要性能参数
[0158] 软式透水管排水工艺的主要特点:①孔隙直径小,全方位透水,渗透性好;②抗压 耐拉强度高,使用寿命长;③耐腐蚀和抗微生物侵蚀性好;④整体连续性好;接头少;衔接方 便;⑤重量轻;施工方便;⑥质地柔软,与所加固边坡±体结合性好。
[0159] 软式透水管主要性能参数:
[0160] 1)抗拉强度和透水性
[0161] 软式透水管在地层滑动时可承受足够的拉力,而且全方位渗水,透水性能优良,不 同管体耐压参数及渗透层性能参数见表9。
[0162] 表9软式透水排水管性能参数表
[0163]
[0164]
[01 化]
[0166] 2)耐酸顺1生
[0167] 黑方台地区虽历经四十余年大水漫灌,但区内地下水为化-Cl型,矿化度高达50g/ IW上,±壤易溶盐含量高,水±具有强烈的腐蚀性,一般排水材料易遭受腐蚀。软式透水管 采用高强度聚醋纤维及钢丝外覆PVC,具有很强的耐酸碱性,对水±介质中的有机及无机化 学成份具耐腐蚀作用。室内72小时酸碱试验结果:10 %浓度的HCl溶液无外观异状;10 %浓 度的NaO田容液无外观异状。
[016引 3)耐压扁平率:
[0169] 软式透水管采用高强力弹黃钢丝之螺旋状补强体构造,把外压荷载均布于管的四 周,变形小。
[0170] 4)复原性能试验:
[0171] 软式透水管在压缩量达70%,压缩50次时,其复原性大于90%。
[0172] 2.软式透水管安装与布设(参见图16和图17):
[0173] 1)选择施工条件较好的J朋号、JH13号、FHl号等典型滑坡进行试点,对既有吊沟范 围坡面清挖地下水溢出带之上的小规模次级滑坡体、刷坡、挖台阶巧填±方,增设3道浆搁 片石截水沟和引水孔,坡面之上种植草皮。截水沟沟帮两侧各顺坡面搁筑1. Om与坡面顺接, 厚度0.4m,截水沟与吊沟连接。
[0174] 2)软式透水管的引水孔采用错杆钻机钻孔,孔内插入3-8m长度的透水管,一般应 伸入干硬±体内不少于0.3m,并伸出坡面之外0.1 m(图16)。
[0175] 3)透水管排水坡度为7%,即仰角为10°,管与管间距不小于1.5m。
[0176] 4)透水管周围采用砂碱填筑密实,厚度不小于0.1m(图17)。
[0177] 3.软式透水管施工方法及注意要点:
[0178] 1)应选择施工条件有利部位上应施工引水孔,清孔完成之后再安放软式透水管, 四周均匀填筑砂碱滤层,并充分压实。
[0179] 2)引水孔施工要点:
[0180] ①成孔:斜孔钻机成孔,必须采用跟管钻进,完成具有一定上倾角的引水钻孔,孔 径不小于巫90mm,仰角10-15°。
[0181] ②清孔:采用空气压缩机高压风冲排泥渣和清洗引水孔。
[0182] 3)透水管安装:结合黑方台滑坡工程地质结构及水文地质条件,经比选成孔施工 条件和经济适用性,建议选用O 80mm或O IOOmm管径的软式透水管,可选用人工或机械顶入 法插入透水管,按设计长度切割好软式透水管后,顶端封口后外罩锥形管帽W利于顶入,末 端W IOcm厚度木板柔性衬垫后,采用50或IOOT千斤顶顶托O 50mm钢顶管顶入。
[0183] 4)软式透水管的连接,应在两段透水管接头处剪去相应的钢丝圈,W强力PVC接着 剂牢固相接后外套管髓,上下管髓W尼龙绳绑扎牢固即可。
[0184] 5)软式透水管末端采用扎结式封闭,出口直接接入既有排水系统。
[0185] 6)封孔:拔出钢顶管,用长度2m的〇85mm或OllOmm硬质塑料管套入孔口。
[0186] 7)对软式透水管外层的强力特多龙纱应尽量减少紫外线的照射,在阳光下直接曝 晒时间不宜超过96小时。
[0187] 加筋软式透水管是一种优良的工程排水材料,有着广泛的适用范围和良好的排水 性能,尤其在我国南方地区的渺泥质软±之中有着成功的应用,加之其施工对既有边坡扰 动较小,有利边坡的稳定,而且施工工艺简单,巧工数量少,工程造价较低,建议在黑方台地 区滑坡综合整治之中进行试用。
[018引(八)福射井排水技术:
[0189] 1.福射井降水的适用性:
[0190] 福射井是由一个大口径的钢筋混凝±竖井和自竖井向周围含水层任一高程和方 向打进具有一定长度的多层、数根至数十根水平福射管所组成,使地下水沿水平福射管汇 集至竖井内排出井外的取水构筑物(图18)。因为福射井的福射管呈福射状,近似水平地放 置于含水层中,能在极薄的含水层或释水缓慢的低水平渗透性含水层中打进众多具有一定 长度的福射管,通过增大进水断面扩大汇水面积W最大限度的激发含水层地下水开发量, 据陕西省地矿局第一水文队和908水文地质大队在陕西渭北黄±台源及陕北黄±丘陵沟壑 区的福射井取水工程实践,与相同深度的管井相比,1个福射井单井涌水量大致相当于8-10 眼管井取水量。福射井作为取水构筑物广泛应用于供水工程领域,近年来在工程降水领域 得到推广,尤其是对于在一定条件下的"疏不干含水层"用常规的井点或深井不能达到"降 目的的工程中。
[0191] 2.福射井施工技术和工艺:
[0192] 对于黑方台地区地下水位之下的低水平渗透性饱和黄±,因其独特的结构性高灵 敏性,建议在距离JH9号滑坡后壁IOOm处施工1眼福射井疏排水试验孔。
[0193] 1)竖井的施工控制要点:
[0194] 竖井是福射井的主体部分,也是后期福射孔的施工平台,孔深应进入隔水的粉质 粘±层顶面之下不小于2m,孔深约47m。可采用反循环回转钻机或人工挖孔成孔。竖井井壁 可由预制钢筋混凝±井管或钢筋混凝±现诱构成,井筒的外径为3.4m,内径为3.Om,壁厚 20-40cm,底厚20cm。人工挖孔成孔时,应现诱钢筋混凝±井壁管,挖孔时依靠井筒自重下 沉。若采用反循环回转钻机成孔,开孔孔径宜为?3500mm,一径到底。钻进时应选用低固相 优质泥浆护壁,泥浆护壁材料建议采用纳基膨润±,要求孔内泥浆密度1.04-1.08;中速回 转钻进,钻头旋转速度保持在30~40r/min,每小时进尺W1. Om为宜。成孔后,钻头提离孔底 50cm,保持冲洗液循环IO-ISmin进行清孔。清孔完成之后,可采用漂浮下管法成井,将井座 吊装到井孔中漂浮起来,再将井管吊装到井座上,一节接一节地对接焊接之后,漂浮下管, 直到井座下到预定深度,下管过程中应确保井管直立,井管接头采用"立油两拉"封闭接口, 最后在井管周围填±密实。
[01M] 2)水平福射孔施工控制要点:
[0196] 黑方台地区黄±底部埋深45m,地下水位埋深约22m,含水层厚度约23m,可设置2层 福射孔,分别布设于孔深44m和38m处,水平福射孔长度30-50m,在竖井内应交错布置,每层 布设6-8个福射孔,为便于排水,福射孔应向上仰斜约5-10°。
[0197] ①施工机械:
[0198] 施工机械可选用水平钻机或千斤顶。水平钻机采用回转钻进及液压跟进,并有推 拉起拔套管的作用,钻机推力不小于40t,拔力不小于30t,扭矩不小于HOkN ? m。
[0199] ②福射管34:
[0200] 福射管34(福射孔滤水管)采用钢质卷皮钢管加工而成,盲沟材或±工布包裹,管 径应不小于巫50mm,壁厚不小于3.5mm。
[0201] ③福射管34的安装:
[0202] 安装方法有套管法、顶进法和键击法等。顶进法是用水平钻机或千斤顶将滤水管 直接顶进含水层;键击法是用油键或撞键把滤水管击入含水层。考虑到黑方台地区地层结 构及水文地质条件,建议采用顶进法施工。滤水钢管每节长Im,采用锥型扣联接。采用液压 水平钻机,一根接一根,边转动边推进的方法打孔,顶力小进尺快。顶进过程中滤水管内的 细颗粒物随水流进入竖井中排走,同时将较粗的颗粒挤到滤水管周围,形成一条天然的环 形自然反滤层。
[0203] 福射管34从竖井应自下向上施工。
[0204] 结合人力、机械及材料价格,福射井疏排水构筑物单井造价约65万元。福射孔疏排 水在黄±地区取水效果好,也是较为经济的工程排水方法。
【主权项】
1. 一种基于地下水位控制的黄土台塬滑坡综合治理方法,其特征在于,采取长期和中 短期相结合的方法,长期治理方法是:通过基于节水灌溉的主动防控措施,遏制地下水位不 断升高的不利局面,从而控制滑坡风险;中短期的治理方法是:通过有效的疏排水工程措 施,快速降低已有的超高地下水位,实现减少滑坡灾害的目的。2. 根据权利要求1所述的基于地下水位控制的黄土台塬滑坡综合治理方法,其特征在 于,所述的基于节水灌溉的主动防控措施的确定方法包括以下步骤: (1) 掌握区域和斜坡地下水位实时动态:在台塬的多个钻孔中开展分层地下水位动态 监测,获取台塬和典型斜坡两个尺度的地下水位变动情况; (2) 确定灌溉量控制阈值:开展渗流-应力的流-固耦合分析,对灌溉前及灌溉至今的斜 坡稳定性进行恢复,同时预测在维持现有灌溉量下,未来斜坡的稳定性及屈服破坏方式; (3) 确定具体的主动防控措施:主动防控措施包括节水灌溉措施和地表防渗措施。3. 根据权利要求2所述的基于地下水位控制的黄土台塬滑坡综合治理方法,其特征在 于,所述的步骤(2)中灌溉量控制阈值的确定方法包括: (1)潜水渗流场数值模型;(2)斜坡稳定性分析模型;(3)潜水渗流场与斜坡稳定性耦合 分析;潜水渗流场数值模型的计算结果为斜坡稳定性模拟提供地下水位条件,将计算得到 的地下水位数据进行差值处理后导入稳定性计算模型中,构建形成空间地下水面,综合考 虑渗流场及水岩作用导致岩土参数变化的双重作用,计算台塬危险区体积和斜坡稳定性, 将台塬危险区体积显著降低时对应的年灌溉量作为灌溉量调控的一个临界值,该临界值作 为灌溉量控制阈值,维持此值及以下的年灌溉量,通过灌溉量的控制能够实现灌区地下水 位的调节,从而提尚台源斜坡稳定性。4. 根据权利要求2所述的基于地下水位控制的黄土台塬滑坡综合治理方法,其特征在 于,所述的步骤(3)中的节水灌溉措施主要分为高效节水和常规节水两种,其中高效节水包 括滴灌、喷灌、膜下滴灌和微喷灌,可节水约35-75% ;常规节水包括畦灌、垄膜沟灌和管灌。5. 根据权利要求1所述的基于地下水位控制的黄土台塬滑坡综合治理方法,其特征在 于,所述的疏排水工程措施包括:虹吸排水方法、软式透水管排水方法和辐射井排水方法。6. 根据权利要求5所述的基于地下水位控制的黄土台塬滑坡综合治理方法,其特征在 于,所述的虹吸排水方法是:采用斜孔钻机施工朝斜坡内倾斜的孔,随着钻孔跟进套管;成 孔后,拔出套管前,立即安装带孔底储水管的透水管,该孔底储水管底部密封、顶部开口;该 透水管为打孔的波纹管,在波纹管外织土工布,防止泥沙进入透水管内,透水管的一端深入 孔底储水管内,透水管与孔底储水管连接处固定;孔口外保留透水管的长度大于lm;在该透 水管内插入虹吸排水管,在虹吸排水管的靠近底端处的管壁上设有进水孔。7. 根据权利要求6所述的基于地下水位控制的黄土台塬滑坡综合治理方法,其特征在 于,所述的虹吸排水管采用三根PA管,每间隔l-2m绑扎固定。8. 根据权利要求5所述的基于地下水位控制的黄土台塬滑坡综合治理方法,其特征在 于,所述的软式透水管排水方法包括以下步骤: (1)钻出引水孔:斜孔钻机成孔,必须采用跟管钻进,完成具有一定上倾角的引水钻孔, 孔径不小于Φ90πιπι,仰角10-15°;然后清孔,采用空气压缩机高压风冲排泥渣和清洗引水 孔; (3)透水管安装:选用合适管径的软式透水管,选用人工或机械顶入法透将水管插入引 水孔,按设计长度切割好软式透水管后,顶端封口后外罩锥形管帽以利于顶入,末端以 100mm厚度木板柔性衬垫后,采用50或100T千斤顶顶托Φ 50mm钢顶管顶入; (4) 软式透水管的连接:应在两段透水管接头处剪去相应的钢丝圈,以强力PVC接着剂 牢固相接后外套管箍,上下管箍以尼龙绳绑扎牢固即可; (5) 软式透水管末端采用扎结式封闭,出口直接接入既有排水系统; (6) 封孔:拔出钢顶管,用硬质塑料管套入孔口。9. 根据权利要求5所述的基于地下水位控制的黄土台塬滑坡综合治理方法,其特征在 于,所述的辐射井排水方法中的辐射井包括竖井和水平集水管,在竖井的下部的井壁上连 接多个水平集水管;其施工方法包括: (1) 采用反循环回转钻机或人工挖孔成孔,竖井井壁可由预制钢筋混凝土井管或钢筋 混凝土现浇构成;采用漂浮下管法成井,将井座吊装到井孔中漂浮起来,再将井管吊装到井 座上,一节接一节地对接焊接之后,漂浮下管,直到井座下到预定深度,下管过程中应确保 井管直立,井管接头封闭接口,最后在井管周围填土密实; (2) 水平福射孔施工:在对应于含水层的深度设有至少一层福射孔,长度30-50m,两层 以上的辐射孔在竖井内应交错布置,每层布设6-8个辐射孔,为便于排水,辐射孔应向上仰 斜约5-10° ; (3) 滤水管安装:在每一辐射孔内装入滤水管,滤水管采用钢质卷皮钢管加工而成,盲 沟材或土工布包裹,管径应不小于Φ 50mm,壁厚不小于3.5mm;滤水管每节长lm,米用锥型扣 联接。10. 根据权利要求9所述的基于地下水位控制的黄土台塬滑坡综合治理方法,其特征在 于,所述的滤水管的安装方法采用套管法、顶进法或锤击法,顶进法是用水平钻机或千斤顶 将滤水管直接顶进含水层;锤击法是用油锤或撞锤把滤水管击入含水层;该顶进法采用液 压水平钻机,一根接一根,边转动边推进的方法打孔,顶力小进尺快;顶进过程中滤水管内 的细颗粒物随水流进入竖井中排走,同时将较粗的颗粒挤到滤水管周围,形成一条天然的 环形自然反滤层。
【文档编号】E02D3/10GK105821889SQ201610207012
【公开日】2016年8月3日
【申请日】2016年4月5日
【发明人】朱立峰, 张茂省, 胡炜, 孙巧银
【申请人】中国地质调查局西安地质调查中心