专利名称:带有被覆层的光纤维及其制造方法
技术领域:
本发明涉及一种用双层树脂层被覆的光纤维及其制造方法。
背景技术:
作为远距离传输用的光纤维,从降低传输损失的观点来看,使用石英类玻璃纤维,为了保持传输特性和强度特性,使用这样一种带有被覆层的光纤维,它是在玻璃纤维的表面上设置由比较软质的树脂构成的第一被覆和由比较硬质的树脂构成的第二被覆而形成。
过去,一直使用这样一种带有被覆层的光纤维,它是在把光纤维母材拉丝成玻璃纤维的同时,涂布第一被覆树脂并使其固化,形成第一被覆,接着,在第一被覆的外周涂布第二被覆树脂并使其固化,形成第二被覆。然而,近年来,从提高生产率的观点来看,目前正在研究将第一被覆树脂和第二被覆树脂同时涂布到玻璃纤维的外周,接着使其固化的方法。
这种方法中,曾提出这样一种方法,例如,添加一种可以在第二被覆和第一被覆之间迁移的增塑剂,以使从第二被覆迁移到第一被覆中的迁移量与向其相反方向的迁移量相等或更多,从而抑制玻璃纤维与第一被覆之间的剥离(特开昭62-129805号公报)。另外,还曾提出这样一种方法,使第一被覆树脂的固化温度高于第二被覆树脂的固化温度,由此使第一被覆树脂在第二被覆树脂开始固化之前固化,从而抑制玻璃纤维与第一被覆之间的剥离(特开昭63-315542号公报)。
但是,上述现有方法中的前一个方法中,第二被覆中优先添加的增塑剂渗出,容易使带有被覆层的光纤维的第二被覆与着色层之间的界面密合力降低。其结果,特别是带有带形被覆层的光纤维中难以一完整地从玻璃纤维上除去被覆,而且作业性显著降低。另外,在后一个方法中,由于使树脂在高温状态下固化,因此终止反应占优势,未交联的低分子量成分增加。如果交联密度不提高,则招致弹性模量降低或断裂伸长降低,容易使用于作为长期稳定的保护层的被覆层功能劣化。
本发明的目的在于,提供这样一种带有被覆层的光纤维及其制造方法,它是在玻璃纤维的外周同时形成第一被覆和第二被覆的带有被覆层的光纤维,优先将增塑剂添加到第二被覆中,或者使第一被覆树脂的固化温度不高于第二被覆树脂的固化温度,就可以充分防止第一被覆树脂和第二被覆树脂之间的界面处发生剥离。
发明的公开本发明的带有被覆层的光纤维是这样一种纤维,它具有拉成丝的玻璃纤维和使同时涂布在上述玻璃纤维外周的第一被覆树脂(内层树脂)和第二被覆树脂(外层树脂)光固化而形成的第一被覆(内层被覆层)和第二被覆(外层被覆层),其特征在于,固化后的上述第一被覆树脂和上述玻璃纤维之间的界面密合力S(g/cm)相对于固化后的上述第二被覆树脂的玻璃化转变温度Tg(℃)之比,为1/13((g/cm)/℃)以上。
本发明者们发现,对在玻璃纤维的外周设置第一被覆和第二被覆而构成的光纤维而言,为了抑制玻璃纤维与第一被覆之间的界面处产生的剥离,必须满足下述关系。
即,产生的聚合热通常使被覆树脂的温度高于被覆树脂的玻璃化转变温度。使这种被覆树脂冷却,在
图1所示的玻璃化转变温度附近转变成玻璃态,并进一步从玻璃化转变温度冷却到室温时,第一被覆树脂与第二被覆树脂的线膨胀系数之差使第一被覆在拉离玻璃纤维的方向上产生应力。该残留热应力是将第一被覆拉离玻璃纤维的原因。
本发明的要件是,第一被覆与玻璃纤维之间的界面密合力S相对于第二被覆树脂的玻璃化转变温度Tg之比为1/13以上{(S/Tg)≥(1/13)}。即,在第二被覆树脂的玻璃化转变温度低的场合下,第一被覆与玻璃纤维之间的密合力优选较小,如果第二被覆树脂的玻璃化转变温度提高,则必须相应地增大第一被覆与玻璃纤维之间的密合力。本发明者们发现,通过这样选择与第二被覆树脂的玻璃化转变温度相对应的第一被覆对玻璃纤维的密合力,可以充分地防止第一被覆与玻璃纤维之间的界面处产生剥离。因此,本发明的带有被覆层的光纤维中,使用密合力大于玻璃纤维与第一被覆之间的界面处所产生的剥离力的第一被覆,可以充分地抑制剥离的发生。
更详细地说,聚合中的高温状态的树脂被冷却到玻璃化转变温度时,树脂中的一部分出现玻璃态,分子链的运动受到抑制。因此,玻璃化转变温度越低,从玻璃化转变温度冷却至室温的过程中尺寸变化越小,由残留热应力引起的剥离被比较小的密合力充分地抑制。另一方面,玻璃化转变温度越高,则从玻璃化转变温度冷却至室温的过程中尺寸变化越大,为了充分地抑制由残留热应力引起的剥离,必须有较大的密合力。
本发明的带有被覆层的光纤维的制造方法,其特征在于,它包括以下几个工序加热玻璃母材使其熔融,拉丝,制得玻璃纤维的第一工序;准备第一被覆树脂和第二被覆树脂的第二工序,其中,固化后的第一被覆树脂与上述玻璃纤维之间的界面密合力S(g/cm)相对于固化后的第二被覆树脂的玻璃化转变温度Tg(℃)之比为1/13((g/cm)/℃)以上;在上述玻璃纤维的外周同时涂布上述第一被覆树脂和上述第二被覆树脂的第三工序;和使上述第一被覆树脂和上述第二被覆树脂光固化而得到带有被覆层的光纤维的第四工序。
在拉成丝的玻璃纤维的外周完整地涂布第一被覆树脂和第二被覆树脂,接着使其固化,在这种场合下,固化后的第一被覆中,在拉离玻璃纤维的方向上残留着剥离应力。根据本发明,如上述那样,使玻璃纤维与第一被覆之间的界面密合力大于上述生成的残留热应力,由此可以充分地抑制剥离的产生。
应予说明,此处所说的“密合力S”是指第一被覆树脂固化并与石英玻璃固着之后,将第一被覆从上述石英玻璃上剥离所必须的力,是采用以下方法测定的数值。即,在硫酸水溶液中浸渍并洗净的石英玻璃板上涂布树脂,使其固化后的厚度为200μm,使用金属卤化物灯,以100mJ/cm2的光量向上述树脂照射紫外线,使其固化,获得试验片。将获得的试验片在温度25℃、相对湿度50%的环境气氛中放置6小时,然后在与石英玻璃板的粘接面成180度的方向上,以200mm/分的拉伸速度将树脂被覆拉长50mm,撕下。密合力S为将此时的最大拉伸力以树脂被覆的每单位横宽度表示的剥离强度(peelingstrength)(g/cm)。
另外,此处所说的“玻璃化转变温度Tg”为采用以下方法测定的数值。即,测定样品使用0.1mm厚、5mm宽、22mm长的片状样品,该样品是使用金属卤化物灯,在氮气气氛下,照射光量为100mJ/cm2的紫外线固化而成。使用Orientec公司生产的Rheovibron DDV-II-EP,按以下的测定条件测定该样品的玻璃化转变温度Tg。(测定条件)力学的振动频率数11Hz振动位移0.016mm升温速度3℃/min另外,树脂具有多个玻璃化转变温度的场合下,将其中最高的玻璃化转变温度作为该树脂的玻璃化转变温度Tg。
对附图的简单说明图1为概略地示出树脂温度与弛豫弹性模量之关系的曲线图。
图2为示出本发明带有被覆层的光纤维的一个实施方案的截面图。
图3为示出本发明带有被覆层的光纤维制造装置的一个实施方案的概略图。
图4A为示出适于制造本发明带有被覆层的光纤维的完整双层被覆装置的一个实施方案的简略截面图。
图4B为用图4A所示装置将2层树脂层同时被覆而成的未固化带有被覆层的光纤维的Y-Y截面图。
图5为示出第二被覆树脂的玻璃化转变温度Tg与第一被覆/玻璃界面的密合力S之关系的曲线图。
实施发明的最佳方案以下,参照附图详细地说明本发明的带有被覆层的光纤维及其制造方法的实用的实施方案。
图2为示出本发明的带有被覆层的光纤维的一个实施方案的截面图,带有被覆层的光纤维1具有被拉丝的石英玻璃纤维2和使石英玻璃纤维2外周同时涂布的比较软质的第一被覆树脂(内层树脂)和比较硬质的第二被覆树脂(外层树脂)光固化而形成的第一被覆(内层被覆层)3和第二被覆(外层被覆层)4。
本发明中使用的树脂可以是光(紫外线)固化性树脂,可以举出自由基聚合型的丙烯酸类树脂、光加成聚合型的多硫醇·多烯类树脂、利用光照产生路易斯酸的光敏剂的阳离子聚合型树脂,其中,在聚合速度快的方面,优选自由基聚合型树脂。作为这种树脂,可以举出尿烷丙烯酸酯类、酯丙烯酸酯类、醚丙烯酸酯类、环氧丙烯酸酯类、丁二烯丙烯酸酯类、氨基树脂丙烯酸酯类、丙烯酸树脂丙烯酸酯类、不饱和聚酯类、硅酮类的紫外线固化性树脂,从改变构成化学种类的结构来获得比较硬的树脂直至比较软的树脂的宽范围性质的树脂的观点考虑,而且从强韧的观点考虑,优选尿烷丙烯酸酯类树脂。应予说明,第一被覆树脂和第二被覆树脂可以是不同种类的光固化性树脂,从能够更确实地防止它们之间发生界面剥离的观点考虑,优选相同种类的光固化性树脂。
这种光固化性树脂,一般地,含有作为基本构成成分的含不饱和基团(例如丙烯酰基)的低聚物(聚合性预聚物)、作为反应性稀释剂的单体(聚合性稀释剂)、吸收光能产生自由基等活性种子的光聚合引发剂,还可以含有光敏剂、填充剂、颜料等。
作为上述的低聚物,可以举出氨基甲酸酯丙烯酸酯(例如TDI/βHPA/聚酯或聚醚)、酯丙烯酸酯(例如苯二甲酸/1,6-己二醇/丙烯酸)、醚丙烯酸酯、环氧丙烯酸酯、丁二烯丙烯酸酯、氨基树脂丙烯酸酯(例如密胺丙烯酸酯)、丙烯酸树脂丙烯酸酯(例如MMA/BA/GMA+AA)、不饱和聚酯、硅酮。这种低聚物的原料范围广,可以根据所用原料,从软质到硬质自由地设计固化物的物性。例如,将具有羟基末端的酯类低聚物(聚酯多元醇)或醚类低聚物(聚醚多元醇)和具有羟基的丙烯酸酯用二异氰酸酯结合而成的氨基甲酸酯丙烯酸酯中,可以根据被选择低聚物的构成化学种类(酯类低聚物或醚类低聚物等)之组合,宽范围地获得具有各种物性的材料。
作为上述的单体,可以举出丙烯酸2-乙基己酯、丙烯酸环氧二乙二醇酯、丙烯酸苯氧乙酯、丙烯酸2-羟基丙酯、丙烯酸四氢糠酯、二环戊二烯丙烯酸酯等单官能性单体;二丙烯酸新戊二醇酯、二丙烯酸1,6-己二醇酯、羟基新戊酸新戊二醇二丙烯酸酯、聚二丙烯酸乙二醇酯、二(丙烯酰氧乙基)双酚A等双官能性单体;三甲氧基丙烷三丙烯酸酯、季戊四醇三丙烯酸酯、二季戊四醇六丙烯酸酯等多官能性单体。
进一步地,作为上述的光聚合引发剂,可以举出Lucirin TPO(商品名,BASF公司)、Irgacure 184(商品名,Ciba Geigy公司)、Irgacure 651(商品名,Ciba Geigy公司)、Darocure 1173(商品名,Ciba Geigy公司)等。
本发明中的这种光固化性树脂100重量%(低聚物、单体、光聚合引发剂及其他添加剂(偶合剂等)的合计量为100重量%)中,上述低聚物的含量优选为20~90重量%,更优选为20~80重量%;上述单体的含量优选为5~60重量%,更优选为10~45重量%;上述光聚合引发剂的含量优选为0.2~10重量%,更优选为0.5~5重量%。
本发明的带有被覆层的光纤维1中,固化后的第一被覆树脂3与玻璃纤维2之间的界面密合力S(g/cm),相对于第二被覆树脂4固化后的玻璃化转变温度Tg(℃)之比必须为1/13((g/cm)/℃)以上,优选为1/13~1/6。上述的比率不足1/13时,第一被覆3与玻璃纤维2之间的界面处发生剥离,使该界面处存在空隙,带有被覆层的光纤维1作为传输介质的长期可靠性降低。
第一被覆树脂3与玻璃纤维2之间的界面密合力S,大致上由所使用的第一被覆树脂来决定,但通过向第一被覆树脂中添加例如偶合剂,可以提高密合力。作为这种偶合剂,可以举出乙烯基类硅烷偶合剂、巯基类硅烷偶合剂、环氧类硅烷偶合剂、丙烯酸类硅烷偶合剂,其在第一被覆树脂中的添加量优选为约3重量%以下,更优选为约0.5~约2重量%。
这种密合力S优选为约2~约20g/cm,更优选为约5~约15g/cm。密合力S不足上述下限时,防止剥离所必须的玻璃化转变温度Tg过低,难以得到所希望的耐侧压特性,另一方面,超过上述上限时,难以完整地从玻璃纤维2上除去第一被覆3和第二被覆4。
第二被覆树脂4的玻璃化转变温度Tg,大致上由选择的低聚物所构成的化学种类的组合(低聚物的骨架)来决定,可以根据用作为反应性稀释剂的单体的种类和配合量来调节。具体地说,作为单体成分,通过追加或增量作为单体成分的多官能性单体,由此可以增加树脂中的交联点,提高玻璃化转变温度Tg。
这种玻璃化转变温度Tg优选为约30~约250℃,更优选约50~约150℃。玻璃化转变温度Tg不足上述下限时,在室温下呈橡胶状,难以得到所希望的耐侧压特性,另一方面,超过上述上限时,必须进一步提高防止剥离所必须的密合力S,其结果,难以完整地从玻璃纤维2上除去第一被覆3和第二被覆4。
本发明的带有被覆层的光纤维1中,第一被覆3和第二被覆4的厚度(固化后)没有特别的限制,优选分别为约10~约50μm。因此,在使用例如直径约125μm玻璃纤维2的场合下,一般使第二被覆4的外径为240~250μm左右。另外,从获得的带有被覆层的光纤维的耐侧压特性的观点来看,第一被覆3和第二被覆4的杨氏模量(固化后),优选分别为约0.05~约0.15kg/mm2和约50~约150kg/mm2。
以下说明本发明的带有被覆层的光纤维的制造方法的一个实用的实施方案。
图3为制造本发明带有被覆层的光纤维的装置的一个实施方案的简略图。图3所示的装置中,配置这样一种拉丝装置7,其中,具有保持光纤维用玻璃母材8并使其可上下移动的母材送料装置5以及将送料装置5导入的母材8的尖端部加热并使其熔融、经拉丝而获得玻璃纤维2的拉丝炉6,在拉丝装置7的下方,依次配置将第一被覆树脂3′和第二被覆树脂4′同时涂布到玻璃纤维2外周的整体双层被覆装置(双层同时涂布装置)9、向涂布好的双层树脂层照射紫外线而形成带有被覆层的光纤维1的紫外线固化装置10、以一定的速度牵引带有被覆层的光纤维1的牵引辊11和把被牵引的带有被覆层的光纤维1卷绕到转鼓12a上的卷绕装置12。
该制造装置中,母材8经拉丝炉6拉丝而成的玻璃纤维2,用整体双层被覆装置9同时涂布形成第一被覆3和第二被覆4的树脂3′和4′,这些树脂3′和4′受紫外线固化装置10照射紫外线,形成双层带有被覆层的光纤维1。其间,母材8被送料装置5缓缓送入拉丝炉6中。
图4A为示出整体双层被覆装置9的一个实施方案的纵向截面图。图4A所示的装置中,在圆筒状机身9a的中心部位设置使玻璃纤维2穿过的通孔9b,相互独立地设置通路9c和9d,用于从机身9a的外部分别向玻璃纤维2的外周导入被加压的第一被覆树脂3′和第二被覆树脂4′,在这些通路的周围配置加热器13和14,用于分别调节第一被覆树脂3′和第二被覆树脂4′的温度。
因此,在制造本发明的带有被覆层的光纤维1时,准备这样的第一被覆树脂3′和第二被覆树脂4′,以使固化后的第一被覆3和玻璃纤维2之间的界面密合力S(g/cm)相对于第二被覆4固化后的玻璃化转变温度Tg(℃)之比为1/13((g/cm)/℃)以上,在该整体双层被覆装置9中,分别用加热器13和14进行温度调节,整体地涂布到玻璃纤维2的外周。由于第一被覆树脂3′和第二被覆树脂4′分别以所规定的压力从被覆装置9中挤出,而且玻璃纤维2以一定的速度牵引,因此被覆树脂的厚度由挤出的树脂量和玻璃纤维的线速度决定。
如图4B所示,玻璃纤维2外周上被覆的第一被覆树脂3′和第二被覆树脂4′,在紫外线固化装置10的中心部位移动,在此期间照射紫外线,从第二被覆树脂4′向着内层部位进行固化。将这样形成的带有被覆层的光纤维1牵引到牵引辊11上,卷绕到卷绕装置12的转鼓12a上。
本发明的方法中,由于第一被覆3和玻璃纤维2之间的界面密合力S相对于第二被覆4的玻璃化温度Tg之比为1/13以上,因此,密合力被维持在大于从玻璃化转变温度冷却至室温时所产生的残留热应力的状态。因此,采用本发明的方法,可以充分地抑制上述界面处产生的剥离,而且可以高效率地且确实地制造带有被覆层的光纤维。实施例1~11和比较例1~9作为第一被覆树脂,准备这样一种软质氨基甲酸酯丙烯酸酯类光固化性树脂,向其中添加乙烯基类硅烷偶合剂(东芝シリコ-ン公司制,商品名TSL 8311),以使固化后的第一被覆与玻璃纤维之间的界面密合力S为表1所示的数值,作为第二被覆树脂,准备一种固化后具有表1所示玻璃化转变温度Tg的硬质氨基甲酸酯丙烯酸酯类光固化性树脂。应予说明,上述的密合力S和玻璃化转变温度Tg分别按上述的方法测定。
使用图3所示的装置,在外径125μm的石英玻璃纤维的外周涂布外径200μm(固化后)的第一被覆树脂,并在其外周同时涂布外径250μm(固化后)的第二被覆树脂,向这些树脂照射紫外线,使其同时固化,获得带有被覆层的光纤维。(制造条件)拉丝速度100m/分光源金属卤化物灯 120W/cm型对于这样获得的各带有被覆层的光纤维,用显微镜(50倍)观察1km中发生的剥离数,由此进行评价。获得的结果示于表1和图5中。应予说明,将1km中有1处以上剥离的场合表示为×,将完全没有剥离的场合表示为○。
表1<
1)○1km以内无剥离×1km以内发生剥离。
从表1和图5所示结果看出,如果使第一被覆和玻璃纤维之间的界面密合力S(g/cm)相对于第二被覆的玻璃化转变温度Tg(℃)之比为1/13以上{(S/Tg)≥(1/13)[(g/cm)/℃]},就可以制造第一被覆与玻璃纤维之间的界面处不发生剥离的带有被覆层的光纤维。即,通过满足上述条件,使2层被覆树脂固化,可以将第一被覆与玻璃纤维之间的密合力维持在大于冷却至室温后残留在第一被覆内部的热应力的状态,由此可以充分地抑制它们之间发生的剥离。
产业上的利用可能性如以上说明,根据本发明的带有被覆层的光纤维,既不需要向第二被覆中优先添加增塑剂,也不需要使第一被覆树脂的固化温度高于第二被覆树脂的固化温度,就可以充分防止第一被覆树脂与玻璃纤维之间的界面处发生的剥离。因此,本发明的带有被覆层的光纤维的生产率高,而且可靠性也高。
另外,采用本发明的方法,可以高效率且确实地制造上述本发明的带有被覆层的光纤维。
权利要求
1.一种带有被覆层的光纤维,它具有拉成丝的玻璃纤维和使同时涂布在上述玻璃纤维外周的第一被覆树脂和第二被覆树脂光固化而形成的第一被覆和第二被覆,其特征在于,固化后的上述第一被覆树脂和上述玻璃纤维之间的界面密合力S(g/cm)相对于固化后的上述第二被覆树脂的玻璃化转变温度Tg(℃)之比,为1/13((g/cm)/℃)以上。
2.权利要求1中所述的带有被覆层的光纤维,其中,上述密合力S为约2~约20(g/cm),上述玻璃化转变温度Tg为约30~约250(℃)。
3.权利要求1中所述的带有被覆层的光纤维,其中,固化后的上述第一被覆树脂和上述第二被覆树脂的杨氏模量分别为约0.05~约0.15kg/mm2和约50~约150kg/mm2。
4.权利要求1中所述的带有被覆层的光纤维,其中,上述第一被覆树脂中含有约3重量%以下的偶合剂。
5.权利要求1中所述的带有被覆层的光纤维的制造方法,其特征在于,它包括以下几个工序加热玻璃母材使其熔融,拉丝,制得玻璃纤维的第一工序;准备第一被覆树脂和第二被覆树脂的第二工序,其中,固化后的第一被覆树脂与上述玻璃纤维之间的界面密合力S(g/cm)相对于固化后的第二被覆树脂的玻璃化转变温度Tg(℃)之比为1/13((g/cm)/℃)以上;在上述玻璃纤维的外周同时涂布上述第一被覆树脂和上述第二被覆树脂的第三工序;和使上述第一被覆树脂和上述第二被覆树脂光固化而得到带有被覆层的光纤维的第四工序。
6.权利要求5中所述的方法,其中,上述密合力S为约2~约20(g/cm),上述玻璃化转变温度Tg为约30~约250(℃)。
7.权利要求5中所述的方法,其中,固化后的上述第一被覆树脂和上述第二被覆树脂的杨氏模量分别为约0.05~约0.15kg/mm2和约50~约150kg/mm2。
8.权利要求5中所述的方法,其中,上述第一被覆树脂中含有约3重量%以下的偶合剂。
全文摘要
一种带有被覆层的光纤维,它具有拉成丝的玻璃纤维和使同时涂布在上述玻璃纤维外周的第一被覆树脂和第二被覆树脂光固化而形成的第一被覆和第二被覆,其特征在于,固化后的上述第一被覆树脂和上述玻璃纤维之间的界面密合力S(g/cm)相对于固化后的上述第二被覆树脂的玻璃化转变温度Tg(℃)之比,为1/13((g/cm)/℃)以上。
文档编号C03C25/10GK1244183SQ98801915
公开日2000年2月9日 申请日期1998年1月19日 优先权日1997年1月20日
发明者铃木厚, 赤坂伸宏, 松田裕男 申请人:住友电气工业株式会社