高介电常数铌酸盐系无铅压电陶瓷-聚合物三相复合材料的利记博彩app

文档序号:1848015阅读:868来源:国知局
专利名称:高介电常数铌酸盐系无铅压电陶瓷-聚合物三相复合材料的利记博彩app
技术领域
本发明涉及一类无铅压电陶瓷-聚合物三相复合材料,特别涉及一类具有高介电常数的铌酸钠钾基无铅压电陶瓷与聚合物聚偏氟乙烯(PVDF)和多壁碳纳米管(MWNTs)的三相复合材料及其制备方法,属于高介电复合材料技术领域。
背景技术
高介电材料由于其优良的介电性能,在固态电容器、微波介质元件上均有着广泛的应用前景,如在动态随机存储器(DRAM)上的应用。而高介电陶瓷如CaCu3Ti4O12,由于其良好的介电性能得到了广泛的重视,但是,高介电陶瓷虽然拥有良好的介电性能,却有较大的脆性和需要很高的制备温度,因而限制了其应用,特别是在集成电路上的应用受到较大的限制。而高介电聚合物基体复合材料拥有一定的韧性和远低于陶瓷的制备温度,且拥有远高于普通聚合物复合材料的介电常数而得到越来越多的关注。2000年清华大学的南策文课题组报道了具有高介电常数的PVDF-Ni复合材料,其介电常数为400,远高于纯PVDF的小于10的介电常数。之后他们还报道了 Ni_BaTi03/PVDF三相复合材料,其介电常数高达 800。2005年,Lai Qi等人报道的银-环氧树脂复合材料也拥有达300的介电常数。而宾州州立Q. M. Zhang等人在近几年报道的多种全聚合物复合材料在IkHz下拥有> 1000的介电常数,并提出这类材料的一些新的应用前景。但是这些聚合物复合材料的介电常数依然远低于高介电陶瓷的介电常数。至今为止,在聚合物基体三相复合材料中,取得较高介电常数的复合材料通常都是采用的钛酸钡陶瓷,且报道的介电常数也不是很理想。以铌酸钠钾为陶瓷相的高介电常数聚合物基三相复合材料的研究尚未见报道。

发明内容
本发明的目的就是要提供一种制备工艺简单,原料易得,且具有极高介电常数的以铌酸盐系为陶瓷相的聚合物基三相复合材料及其制备方法;该方法是将铌酸钠钾基无铅压电陶瓷与聚合物聚偏氟乙烯(PVDF)和多壁碳纳米管(MWNTs)按设计比例配料,采用传统无铅压电陶瓷制备方法制成具有高介电常数的铌酸盐系无铅压电陶瓷-聚合物-多壁碳纳米管三相复合材料,该方法能够获得相对介电常数高达IO5 IO8的三相复合材料。为实现本发明的目的,本发明是采用以下技术措施构成的技术方案来实现的。本发明的一种具有高介电常数的铌酸盐系无铅压电陶瓷-聚合物-多壁碳纳米管三相复合材料的制备方法,包括以下工艺步骤(1)铌酸钠钾基无铅压电陶瓷粉末的制备以分析纯的无水碳酸盐或氧化物为原料,采用传统固相法,按照化学通式(1-x) (LiaNabKnb) (%_>。)03-χΑΒ03-ΥΜ组分配料,其中,a、b、c、x和y为各元素在配料组分中所占的原子百分比,且0 < a彡0. 15,0彡b彡1, 0彡 c<l,0彡 χ彡 0.1,0 彡y 彡0·02;Α 为 Ag+、Mg2+、Ca2+、Ba2+、Sr2+、Bi3+、La3+、Y3+、Yb3+ ;B 为 Ta5+、Ti4+、Zr4+、Mn3+、Sc3+、Fe3+、In3+、Al3+、Ga3+、Cr3+、Co3+ ;M 为至少选自下列一种金属的氧化物或者碳酸盐Na、K、Li、Ag、Ta、Sb、Al、Cu、Mn、Fe、Ca、Ba、Mg、Sr、La、Co、Y、Zn、Bi、 Ga、In、Yb ;将所配原料采用传统固相法制备工艺依次经过球磨混料和煅烧完成预合成;将预合成的陶瓷粉经研磨、造粒、高压成型为坯体;排胶后,常压烧结;再将烧结后的陶瓷片粉碎成细粉末;(2)将步骤(1)中的陶瓷粉与聚合物聚偏氟乙烯(PVDF)和多壁碳纳米管(MWNTs) 按照陶瓷粉聚偏氟乙烯多壁碳纳米管为(100-x) (x-y) y的体积比例配料,其中,0 < χ < 100,0 < y < χ ;(3)按照步骤O)中的体积比计算出所需用量,称量所需陶瓷粉、聚偏氟乙烯和 MWNTs,然后加入有机溶剂溶解PVDF得混合溶液,将混合溶液超声分散均勻;(4)搅拌步骤(3)的混合溶液的同时加入酒精于溶液中,使PVDF从溶剂中析出, PVDF并自动将陶瓷粉与MWNTs包裹起来,过滤即得复合材料粉末;(5)将步骤中得到的复合材料粉末用冷压法经5 20MI^压力压成直径为 10 20mm,厚度为0. 3 2mm的圆片;(6)将步骤(5)中得到的圆片置于马弗炉中,在80 250°C的温度下热处理2 8h,即制得铌酸钠钾基无铅压电陶瓷-聚合物-多壁碳纳米管三相复合材料样品;(7)将步骤(6)中得到的三相复合材料样品表面通过离子溅射仪溅射金属电极; 在空气中静置24h后,测试样品在IkHz下的介电性能。上述技术方案中,所述有机溶液为N,N- 二甲基甲酰胺(DMF)。上述技术方案中,所述离子溅射仪溅射的金属电极为金电极。上述技术方案中,所述离子溅射仪其溅射电流为3mA。上述技术方案中,所述离子溅射仪一次溅射时间为20s,一面15次。本发明上述任一制备方法制备的铌酸钠钾基无铅压电陶瓷-聚合物-多壁碳纳米管三相复合材料,其特征在于该三相复合材料在陶瓷含量为70,MWNTs含量为1. 0 1. 8, 其测试频率为IkHz时,该三相复合材料的相对介电常数高达IO5 108。本发明与现有技术相比具有以下特点及有益技术效果1.本发明的制备方法工艺简单,所用原料易得且成本低廉,无需特殊设备等要求, 便于大规模生产。2.本发明的制备方法所采用的冷干压法所需设备简单,工艺过程也简单易行。3.本发明的制备方法制备的高介电聚合物复合材料较普通的高介电陶瓷相比,它不但拥有高达IO5 IO8的极高的介电常数,还兼顾较好的柔韧性和极低的制备温度。


图1是本发明所述的制备方法制备的70KNNBS/ (30-χ) PVDF/xMWNTs三相复合材料 (KNNBS/PVDF/MWNTs)在IkHz下的介电常数和介电损耗随钾盐的体积分数变化的曲线图; 从图中可以看出,当MWNTs含量为1. 0 1. 8时,其相对介电常数高达IO5 108。
具体实施例方式下面用具体实施例对本发明作进一步的详细说明,但它仅用于说明本发明的一些具体实施方式
,而不应理解为对本发明保护范围的任何限定。以下实施例所用粉末压片机为天津市科器高新技术公司的769YP-24B型;所用离子溅射仪为北京中科科仪技术发展有限责任公司的SBC-12型小型离子溅射仪;所用PVDF从成都中氟化学品有限公司购得。本发明实施例的用料及制备工艺步骤以分析纯的无水碳酸钠(Na2CO3)、无水碳酸钾(K2CO3)、五氧化二铌(Nb2O5)、三氧化二铋(Bi2O3)、三氧化二钪(Sc2O3)和碳酸锰 (MnCO3)为原料,按照通式(1-x) (KzNa1JNbO3-XBiSc03-yMnC03(χ = 0. 02,y = 0. 008,ζ = 0. 45) [KNNBS]的化学计量比进行称量。用传统固相法将所配原料依次经过球磨混料和煅烧完成预合成;将预合成粉料经研磨、造粒、高压成型为坯体;排胶后,常压烧结;再将烧结后的陶瓷片粉碎成细粉末;将所得KNNBS压电陶瓷细粉末与PVDF和MWNTs按照体积分数 (100-x) (x-y) y配制成复合材料粉末,将复合材料粉末置于压片机中经5 20MPa 的压力压成直径为10 20mm,厚度为0. 3 2mm的圆片;将获得的圆片置于马弗炉中,在 80 250°C的温度下热处理2 8h,即制得KNNBS无铅压电陶瓷_PVDF_MWNTs三相复合材料样品。将得到的样品表面用小型离子溅射仪,其溅射电流为3mA,一次溅射时间为20s,一面15次;在空气中静置24h后,测试样品在IkHz下的介电性能。实施例1 按照上面所述用料及制备工艺步骤制得无铅压电陶瓷细粉末KNNBS,将制得的 KNNBS与PVDF和MWNTs按照体积分数70 29.8 0.2配制成复合材料粉末;将复合材料粉末置于压片机中经的压力压成直径为10mm,厚度为0. 5mm的圆片;将获得的圆片置于马弗炉中,在80°C的温度下热处理2h,即制得KNNBS-PVDF-MWNTs三相复合材料样品;将得到的样品表面用小型离子溅射仪溅射金电极;在空气中静置24h后,测试样品在IkHz下的相对介电常数、介电损耗;本实例所用配料体积百分比,及测得样品的相对介电常数及介电损耗如表1所示。表 1
KNNBS:PVDF: MWNTs相对介电常数损耗
体积百分比70:29.8:0.2111.19680.0226实施例2 同实施例1 一样,按照上面所述用料及制备工艺步骤制得无铅压电陶瓷细粉末 KNNBS,将制得的KNNBS与PVDF和MWNTs按照体积分数70 29 1配制成复合材料粉末; 将复合材料粉末置于压片机中经IOMPa的压力压成直径为10mm,厚度为0. 5mm的圆片;将获得的圆片置于马弗炉中,在150°C的温度下热处理4h,即制得KNNBS-PVDF-MWNTs三相复合材料样品;将得到的样品表面用小型离子溅射仪溅射金电极;在空气中静置24h后,测试该样品在IkHz下的相对介电常数、介电损耗;本实例所用配料体积百分比,及测得样品的相对介电常数及介电损耗如表2所示。表 权利要求
1.一种铌酸盐系无铅压电陶瓷-聚合物-多壁碳纳米管三相复合材料的制备方法,其特征在于包括以下工艺步骤(1)铌酸钠钾基无铅压电陶瓷粉末的制备以分析纯的无水碳酸盐或氧化物为原料, 采用传统固相法,按照化学通式(I-X) (LiaNabK1H) (%_。釙。)03-XAB03-yM组分配料,其中, a、b、c、χ禾Π y为各元素在配料组分中所占的原子百分比,且0 < a彡0. 15,0彡b彡1, 0彡 c<l,0彡 χ彡 0.1,0 彡y 彡0·02;Α 为 Ag+、Mg2+、Ca2+、Ba2+、Sr2+、Bi3+、La3+、Y3+、Yb3+ ; B 为 Ta5+、Ti4+、Zr4+、Mn3+、Sc3+、Fe3+、In3+、Al3+、Ga3+、Cr3+、Co3+ ;M 为至少选自下列一种金属的氧化物或者碳酸盐Na、K、Li、Ag、Ta、Sb、Al、Cu、Mn、Fe、Ca、Ba、Mg、Sr、La、Co、Y、Zn、Bi、 Ga、In、Yb ;将所配原料用传统固相法制备工艺依次经过球磨混料和煅烧完成预合成;将预合成的陶瓷粉经研磨、造粒、高压成型为坯体;排胶后,常压烧结;再将烧结后的陶瓷片粉碎成细粉末;(2)将步骤(1)中的陶瓷粉与聚合物聚偏氟乙烯(PVDF)和多壁碳纳米管(MWNTs)按陶瓷粉聚偏氟乙烯多壁碳纳米管为(100-x) (x-y) y的体积比例配料,其中,0<x < 100,0 < y < χ ;(3)按照步骤(2)中的体积比计算出所需用量,称量所需陶瓷粉、聚偏氟乙烯和MWNTs, 然后加入有机溶剂溶解PVDF得混合溶液,将混合溶液超声分散均勻;(4)搅拌步骤(3)的混合溶液的同时加入酒精于溶液中,使PVDF从溶剂中析出,PVDF 并自动将陶瓷粉与MWNTs包裹起来,过滤后即得复合材料粉末;(5)将步骤中得到的复合材料粉末用冷压法经5 20MI^压力压成直径为10 20mm,厚度为0. 3 2mm的圆片;(6)将步骤(5)中得到的圆片置于马弗炉中,在80 250°C的温度下热处理2 他,即制得铌酸钠钾基无铅压电陶瓷-聚合物-多壁碳纳米管三相复合材料样品;(7)将步骤(6)中得到的三相复合材料样品表面通过离子溅射仪溅射金属电极,在空气中静置24h后,测试样品在IkHz下的介电性能。
2.根据权利要求1所述的制备方法,其特征在于所述有机溶液为N,N-二甲基甲酰胺 (DMF)。
3.根据权利要求1或2所述的制备方法,其特征在于所述离子溅射仪溅射的金属电极为金电极。
4.根据权利要求1或2所述的制备方法,其特征在于所述离子溅射仪其溅射电流为3mA ο
5.根据权利要求4所述的制备方法,其特征在于离子溅射仪一次溅射时间为20s,一面 15次。
6.上述权利要求中任一所述的制备方法制备的铌酸钠钾基无铅压电陶瓷-聚合物-多壁碳纳米管三相复合材料,其特征在于该三相复合材料在陶瓷含量为70,MWNTs含量为 1. 0 1. 8,其测试频率为IkHz时,该三相复合材料的介电常数高达IO5 108。
全文摘要
本发明涉及一类具有高介电常数的铌酸盐系无铅压电陶瓷-聚合物三相复合材料及其制备方法。该方法按(1-x)(LiaNabK1-a-b)(Nb1-cSbc)O3-xABO3-yM组分配料,采用传统固相法制备好铌酸钠钾基无铅压电陶瓷粉末;将陶瓷粉末-聚合物-多壁碳纳米管按设计比例混合成复合材料粉末,加入有机溶剂溶解聚合物,超声分散后,加入酒精析出聚合物并过滤,接着将复合材料粉末经冷压成型后加温处理,并在其表面溅射金电极,即制得具有高介电常数的铌酸盐系无铅压电陶瓷-聚合物-多壁碳纳米管三相复合材料。其相对介电常数在1kHz下可高达105~108,该三相复合材料具有很好的应用前景。
文档编号C04B35/626GK102249596SQ20111007349
公开日2011年11月23日 申请日期2011年3月25日 优先权日2011年3月25日
发明者刘静, 朱基亮, 朱建国, 李绪海, 王明松, 肖定全 申请人:四川大学
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1