一种可生物降解的医用纳米复合多孔材料,制备方法及其应用

文档序号:10544195阅读:603来源:国知局
一种可生物降解的医用纳米复合多孔材料,制备方法及其应用
【专利摘要】本发明公开了一种可生物降解的医用纳米复合多孔材料及其制备方法。该材料由聚乳酸、聚甲基乙撑碳酸酯和纳米羟基磷灰石组成。制备方法是将蒸馏水喷入液氮中,在表面张力的作用下,骤冷的液滴冻结得到近球形的冰粒子待用;将聚乳酸和聚甲基乙撑碳酸酯溶于有机溶剂中,再加入纳米羟基磷灰石,超声波分散后预冷,把适量冰粒子加入上述溶液,混合均匀后倒入模具中,然后将模具置入液氮中深度冷冻,脱模干燥后制得聚乳酸/聚甲基乙撑碳酸酯/纳米羟基磷灰石医用纳米复合多孔材料。该材料采用同样可生物降解的PLA/PPC的复合聚合物基体,来代替纯的PLA,可以较好的提高材料的韧性,控制降解速率,增加材料的骨传导等生物活性。
【专利说明】
一种可生物降解的医用纳米复合多孔材料,制备方法及其 应用
技术领域
[0001] 本发明涉及生物材料领域的可生物降解的医用纳米复合多孔材料及其制备方法, 更具体指一种具有生物相容性和生物降解性以及骨传导等生物活性的医用纳米复合多孔 材料。
【背景技术】
[0002] 目前,研制可生物降解的医用纳米复合多孔材料,作为人工骨移植从而修复骨缺 损成为医学研究的重点。在许多情形下,人体骨并不能实现自身修复,例如骨组织坏死,骨 关节创伤,这时就需要人工骨的帮助,理想人工骨材料的研制是医学和生物材料科学领域 的一个重要课题。许多人工骨材料已被应用于骨重建,但其植入后的长期可靠性是一个问 题。人工骨材料须满足以下几个基本要求:
[0003] 具有良好的生物相容性。
[0004] 具有合适的力学性能。
[0005] 有微孔结构,使新生骨组织得以长入。
[0006] 其吸收速度与新骨生长速度大致保持同步。
[0007] 易于加工成所需的大小和形状。
[0008] 由于无机材料不易被吸收,植入后与周围组织的界面长期存在;而有机材料虽然 诱导成骨性能较好,但植入早期缺乏足够的力学强度,因而人工骨的研究趋向复合材料发 展,使材料含有有机和无机两种成分,使之兼具二者的优点。
[0009] 在生物材料领域尚未找到一种十分理想的复合材料能够应用在骨组织工程领域, 各种复合材料都存在各自的问题,如降解速率与成骨进度还不能达到完全一致;骨诱导性 和表面活性差;机械强度或弹性模量与天然骨组织不相符等。而本发明将有助于解决这些 问题。

【发明内容】

[0010] 本发明的目的在于解决目前各种人工骨材料存在的缺点,研制出一种综合性能良 好的可生物降解的纳米医用复合多孔材料,并提供其制备方法。
[0011] 由于可生物降解的聚乳酸(PLA)和可生物降解的聚甲基乙撑碳酸酯(PPC)二者化 学结构的不同,必然降解速率不同。因此,我们通过调整二者在复合材料中的比例,从而可 以控制材料在生物体内的降解速率,使得降解速率与成骨进度达到一致。本方法可以使纳 米羟基磷灰石(nHA)在聚合物基体中分散更均匀,在基体中的粘附性能更好,这样就可以提 高纳米羟基磷灰石(ηΗΑ)在材料中的含量,从而为材料提供更好的骨传导等生物活性。我们 采用溶液共混-粒子沥滤-冷冻干燥法,将纳米羟基磷灰石(ηΗΑ)与PLA/PPC聚合物基体进行 复合,制备出新型的PLA/PPC/nHA医用纳米复合多孔材料,极有可能取代现有的聚乳酸/纳 米羟基磷灰石复合材料,在生物医学材料领域将有更好的应用前景。其技术方案为:
[0012] 首先制备致孔剂冰粒子,把蒸馏水喷入液氮中,在表面张力的作用下,骤冷的液滴 冻结得到近球形的冰粒子,用分样筛筛分后,选取50~500μπι的冰粒子,储备待用。然后将总 质量为1~10份质量的聚合物基体(聚乳酸和聚甲基乙撑碳酸酯)溶于20份质量的的有机溶 剂中,配成溶液。待两种聚合物完全溶解后,按照聚合物基体与纳米羟基磷灰石的质量比为 1-20:1-15(优选为10-15:1-7)的范围加入纳米羟基磷灰石,超声波分散lmin~60min。把上 述混合液在低于冰点温度预冷,把冰粒子(有机溶剂与冰粒子的质量比为100:1~20)加入 上述溶液,混合均匀后倒入模具中,然后将模具置入液氮中深度冷冻以制备样品。样品完全 冻结后脱模,放入冷冻干燥装置,于-60~-50 °C下冷冻干燥5~48h,去除有机溶剂,再在室 温下真空干燥1~24h,以去除残余有机溶剂和水分,最后获得聚乳酸/聚甲基乙撑碳酸酯/ 纳米羟基磷灰石医用复合多孔材料。
[0013] 所述的聚乳酸的分子量为20000~100000,聚甲基乙撑碳酸酯的分子量为10000~ 80000ο
[0014] 所述的聚乳酸和聚甲基乙撑碳酸酯两者的质量比为1:0.1~9,优选为1:0.3-0.8。
[0015] 所述的有机溶剂为氯仿、四氢呋喃、丙酮、吡啶、甲醇、石油醚、乙醚、醋酸、二氯甲 烷、乙酸乙酯、乙醇、二氧六环、二甲基甲酰胺、二甲基乙酰胺中的一种或几种的混合物。
[0016] 所述的有机溶剂与聚合物基体的质量比为20:1~10。
[0017] 所述的纳米羟基磷灰石的粒径范围为50~500纳米。
[0018]所述的聚合物基体与纳米羟基磷灰石的质量比范围为5~20:1~15,优选为10-15:1-7〇
[0019] 本发明与现有技术相比,其优点为:所得到的聚乳酸/聚甲基乙撑碳酸酯/纳米羟 基磷灰石医用复合多孔材料,其孔隙率为50%~90%,其孔径大小为50~500微米。
[0020] 采用同样可生物降解的PLA/PPC的复合聚合物基体,来代替纯的PLA,可以较好的 提高材料的韧性,从而很好的改进了目前所用的聚乳酸较脆的缺点。
[0021] 通过调整PLA和PPC在复合材料中的比例,从而可以控制材料在生物体内的降解速 率,使得降解速率与成骨进度达到一致。
[0022]本法制备的多孔材料,组分ηΗΑ在聚合物基体中分散更均匀,在基体中的粘附性能 更好,在材料中的含量更高,从而为材料提供了更好的骨传导等生物活性。
【具体实施方式】 [0023] 实施例1
[0024]把蒸馏水喷入液氮中,在表面张力的作用下,骤冷的液滴冻结得到近球形的冰粒 子,用分样筛筛分后,选取lOOwn~200μηι的冰粒子,储备待用。然后将质量为0.7g聚乳酸和 〇.3g的聚甲基乙撑碳酸酯溶于20ml的氯仿中,配成溶液。待聚合物完全溶解后,加入O.lg的 纳米羟基磷灰石,用超声波分散30min。把上述混合液在低于冰点温度预冷,把lg质量的冰 粒子加入上述溶液,混合均匀后倒入模具中,然后将模具置入液氮中深度冷冻以制备样品。 样品完全冻结后脱模,放入冷冻干燥装置,于低温_60°C冷冻干燥24h,去除有机溶剂,再在 室温下真空干燥12h,以去除残余氯仿和水分,最后获得聚乳酸/聚甲基乙撑碳酸酯/纳米羟 基磷灰石医用复合多孔材料。
[0025] 实施例2
[0026]把蒸馏水喷入液氮中,在表面张力的作用下,骤冷的液滴冻结得到近球形的冰粒 子,用分样筛筛分后,选取50μηι~100μπι的冰粒子,储备待用。然后将质量为0.9g聚乳酸和 O.lg的聚甲基乙撑碳酸酯溶于25ml的丙酮中,配成溶液。待聚合物完全溶解后,加入0.3g的 纳米羟基磷灰石,用超声波分散60min。把上述混合液在低于冰点温度预冷,把3g质量的冰 粒子加入上述溶液,混合均匀后倒入模具中,然后将模具置入液氮中深度冷冻以制备样品。 样品完全冻结后脱模,放入冷冻干燥装置,于低温_50°C冷冻干燥48h,去除有机溶剂,再在 室温下真空干燥12h,以去除残余丙酮和水分,最后获得聚乳酸/聚甲基乙撑碳酸酯/纳米羟 基磷灰石医用复合多孔材料。
[0027] 实施例3
[0028]把蒸馏水喷入液氮中,在表面张力的作用下,骤冷的液滴冻结得到近球形的冰粒 子,用分样筛筛分后,选取200μηι~300μηι的冰粒子,储备待用。然后将质量为lg聚乳酸和 〇.2g的聚甲基乙撑碳酸酯溶于28ml的四氢呋喃中,配成溶液。待聚合物完全溶解后,加入 〇. 5g的纳米羟基磷灰石,用超声波分散60min。把上述混合液在低于冰点温度预冷,把2.5g 质量的冰粒子加入上述溶液,混合均匀后倒入模具中,然后将模具置入液氮中深度冷冻以 制备样品。样品完全冻结后脱模,放入冷冻干燥装置,于低温_55°C冷冻干燥48h,去除有机 溶剂,再在室温下真空干燥24h,以去除残余四氢呋喃和水分,最后获得聚乳酸/聚甲基乙撑 碳酸酯/纳米羟基磷灰石医用复合多孔材料。
[0029]表一聚乳酸/聚甲基乙撑碳酸酯/纳米羟基磷灰石医用复合多孔材料的性能
【主权项】
1. 一种可生物降解的医用纳米复合多孔材料,其特征在于,该材料以聚乳酸和聚甲基 乙撑碳酸酯组成的合金为该多孔复合材料的基体,将纳米羟基磷灰石分散在该基体中制 得。2. 权利要求1所述的可生物降解的医用纳米复合多孔材料,其特征在于,聚乳酸和聚甲 基乙撑碳酸酯的质量比范围为1:0.1~9,优选值为1:0.3~0.8。3. 权利要求1所述的可生物降解的医用纳米复合多孔材料,其特征在于,聚合物基体与 纳米羟基磷灰石的质量比范围为5~20:1~15,优选值为10~15:1~7。4. 权利要求1所述的可生物降解的医用纳米复合多孔材料,其特征在于,纳米羟基磷灰 石的粒径范围为50~500纳米。5. 权利要求1-4任意一项所述的可生物降解的医用纳米复合多孔材料的制备方法,其 特征在于,具体制备方法如下: (1) 把蒸馏水喷入液氮中,在表面张力的作用下,骤冷的液滴冻结得到近球形的冰粒 子,用分样筛筛分后,选取50~500μπι的冰粒子,制得致孔剂冰粒子,储备待用; (2) 将聚合物基体聚乳酸和聚甲基乙撑碳酸酯溶于有机溶剂中,配成溶液; (3) 待步骤(2)中的聚合物完全溶解后,加入纳米羟基磷灰石,超声波分散Imin~ 60min,制得混合液; (4) 将步骤(3)的混合液在低于冰点温度预冷,再加入冰粒子于上述混合溶液中,混合 均匀后倒入模具中,然后将模具置入液氮中深度冷冻以制备样品; (5) 样品完全冻结后脱模,放入冷冻干燥装置,于_60°C~_50°C的低温下冷冻干燥5~ 48h,去除有机溶剂,再在室温下真空干燥1~24h,去除残余有机溶剂和水分,获得聚乳酸/ 聚甲基乙撑碳酸酯/纳米羟基磷灰石医用复合多孔材料。6. 权利要求5所述的可生物降解的医用纳米复合多孔材料的制备方法,其特征在于,所 述的有机溶剂为氯仿、四氢呋喃、丙酮、吡啶、甲醇、石油醚、乙醚、醋酸、二氯甲烷、乙酸乙 酯、乙醇、二氧六环、二甲基甲酰胺、二甲基乙酰胺中的一种或几种的混合物。7. 权利要求5所述的可生物降解的医用纳米复合多孔材料的制备方法,其特征在于,步 骤(2)中有机溶剂与聚合物基体的质量比为20:1~10,其中,聚合物基体指聚乳酸和聚甲基 乙撑碳酸酯两种组分的组合。8. 权利要求5所述的可生物降解的医用纳米复合多孔材料的制备方法,其特征在于,有 机溶剂与冰粒子的质量比为100:1~20。9. 权利要求1-8任一项所述的可生物降解的医用纳米复合多孔材料在制备人工骨材料 上的应用。
【文档编号】A61L27/50GK105903082SQ201610442154
【公开日】2016年8月31日
【申请日】2016年6月17日
【发明人】陈卫丰, 李德江, 胡为民, 李德莹, 张争光, 刘杨, 李永双, 晏佳莹, 阳青青
【申请人】三峡大学
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1