专利名称:具有增强药物动力特性的杂合肽的利记博彩app
1.简介本发明涉及源自各种反转录病毒包膜(gp41)蛋白序列的增强肽序列,所述蛋白序列能够增强与其相连的核心肽的药动特性。本发明在部分上是基于以下发现由增强肽序列和其相连接的核心肽所组成的杂合多肽具有增强了的药动特性,例如增加了半衰期。本发明进一步涉及到新的抗融合和/或抗病毒肽,包括那些含有该增强肽序列的多肽,和使用这些多肽的方法。本发明进一步涉及到通过将增强肽序列同核心肽相连,达到增强任何核心肽药动特性的方法。本发明所使用的核心肽包括任何在药物学上有用的肽,例如,作为治疗或预防的制剂。在一非限制性的实施方案中,通过以下实施例证明了本发明,即由HIV核心肽和增强肽序列组成的杂交多肽表现为对HIV-1、HIV-2和SIV感染强的、非细胞毒性的抑制。此外,已将本发明的增强肽序列连接到一呼吸道性合胞体病毒(RSV)核心肽和一促黄体激素(LH-RH)核心肽上。在每一实例中,发现杂合肽都具有增强的药动特性,RSV杂合肽表现为实际的抗RSV活性。
2.发明背景多肽产物作为治疗和/或预防制剂在预防和治疗疾病方面具有广泛的用途。许多多肽能够调节生化和生理过程,从而预防疾病或减轻同疾病相关症状。例如,已经成功利用多肽如病毒或细菌多肽作为疫苗来预防病原性疾病。此外,已成功利用多肽作为治疗制剂来治疗疾病症状。这样的肽分为几类,例如激素、酶、免疫调节剂、血清蛋白和细胞因子。
多肽在靶位点要表现出合适的生物和治疗效应,在作用位点的多肽浓度必须合适。此外,一般必须要维持它们的结构完整。因此,作为治疗用途的药物制剂的多肽制剂受以下因素影响多肽的化学本质和特性,例如大小、复杂性、构型需要和它们的复杂稳定性和可溶性。任何特定治疗肽的药动学都依赖于该肽的生物利用度、分布和清除。
因为许多生物活性物质,例如肽和蛋白,在体内快速的被破坏掉,因此,为了增加肽的功效,减小负面作用的偶然性和严重性,建立一能够在血中维持稳定肽浓度的有效体系就很关键。
3.发明概述本发明首先涉及到一最初来源于各种反转录病毒包膜(gp41)蛋白序列,例如HIV-1、HIV-2和SIV的增强肽序列,所述蛋白序列能够增强与其相连的核心肽的药动特性。本发明是基于以下令人吃惊的结果同单独的核心肽相比,本发明公开的增强肽序列和其相连接的核心肽所组成的杂交多肽具有增强了的药动特性,包括,例如增加了半衰期,减慢了清除的速率。本发明进一步涉及到杂合多肽和核心肽,和表现为抗融合活性、抗病毒活性和/或调节同卷曲螺旋结构相关的细胞内过程的新肽。这些肽中包含增强肽序列。
核心肽包括任何能够导入到一生物体系的肽,例如,任何能够用于治疗和预防疾病或用于诊断和预后方法的治疗、预防或显影制剂。这样的肽包括,例如,生长因子、激素、细胞因子、血管生长因子、激动剂、拮抗剂或反式激动剂、肽靶向剂例如显影制剂或细胞毒性靶向制剂、或表现为抗融合活性和/或抗病毒活性的多肽、和作为抗原或免疫原的肽或多肽,包括,例如病毒和细菌多肽。
本发明进一步涉及到通过将增强肽序列同核心肽相连,达到增强任何核心肽药动特性的方法。
本发明进一步涉及到使用本发明所公开肽的方法,包括含有增强肽序列的杂合肽。例如,本发明的方法包括减轻或抑制病毒感染,例如HIV-1、HIV-2、SIV、麻疹、流感、Epstein-Barr和肝炎病毒感染,和/或病毒诱导的细胞融合事件。此外,本发明的增强肽序列可用以增加同其相连核心肽在体外或离体的半衰期,例如增强肽序列可在细胞培养或细胞或组织样品中增加所相连核心肽的半衰期。
通过以下实施例证明了本发明,即由HIV核心肽和增强肽序列组成的杂交多肽表现为增强了的药动特性,可作为HIV-1、HIV-2和SIV感染中强的、非细胞毒性的抑制剂。本发明进一步由以下实施例所证实将本发明的增强肽序列连接到一呼吸道性合胞体病毒(RSV)核心肽和一促黄体激素(LH-RH)核心肽上形成的杂合肽表现为增强了的药动特性。此外,RSV杂合肽表现为实际的抗RSV活性。
3.1.定义肽、多肽和蛋白在此处定义为包含2个或更多氨基酸的有机化合物,通过共价连接,例如通过肽酰胺连接。肽、多肽和蛋白也包括非天然的氨基酸涉及任何修饰和此处描述的额外氨基或羧基基团。因此术语“肽”、“多肽”和“蛋白”在此处可以互换使用。
此处定义的肽序列按照下述用一个字母代表氨基酸的方式来表示A(丙氨酸)R(精氨酸)N(天冬酰胺)D(天冬氨酸)C(半胱氨酸)Q(谷氨酰胺)E(谷氨酸)G(甘氨酸)H(组氨酸)I(异亮氨酸)L(亮氨酸)K(赖氨酸)M(蛋氨酸)F(苯丙氨酸)P(脯氨酸)S(丝氨酸)T(苏氨酸)W(色氨酸)Y(酪氨酸)V(颉氨酸)X(任何氨基酸)“增强肽序列”定义为具有下述一致氨基酸序列的肽“WXXWXXXI”、“WXXWXXX”、“WXXWXX”、“WXXWX”、“WXXW”、“WXXXWXWX”、“XXXWXWX”、“XXWXWX”、“XWXWX”、“WXWX”、“WXXXWXW”、“WXXXWX”、“WXXXW”、“IXXXWXXW”、“XXXWXXW”、“XXWXXW”、“XWXXW”、“XWXWXXXW”、“XWXWXXX”、“XWXWXX”、“XWXWX”、“XWXW”、“WXWXXXW”或“XWXXXW”,其中X为任何氨基酸,W代表色氨酸,I代表异亮氨酸。如下述所讨论,本发明的增强肽序列也包括同一致氨基酸序列相同的肽序列,但含有氨基酸替代、插入或缺失,这些改变并不破坏该增强肽增强核心肽药动特性的能力。
此处所用的“核心肽”是指,任何可导入到一生物体系的多肽,因此代表一生物活性分子,例如任何可作为治疗预防疾病的在药物学上有用的肽。
此处所用的“杂合肽”是指,任何在氨基端、羧基端或氨基和羧基端包含末端增强肽序列和一核心肽的多肽。典型的,一增强肽序列直接连接在一核心肽上。需要明白的是,增强肽可连接在一插入氨基酸序列上,该序列位于增强肽序列和核心肽之间。
此处所用的“抗融合”和“抗膜融合”指,同不含该肽时发生在两个或多个结构之间的膜融合水平相比,肽能够抑制或降低这些结构融合的能力,例如细胞膜或病毒包膜或菌毛。
此处所用的“抗病毒”是指,肽抑制病毒感染细胞的能力,例如细胞融合或免于病毒感染。这样的感染涉及到膜融合,例如发生在包膜病毒,或涉及到病毒结构和一细胞结构的另一种融合事件,例如在细菌接合中病毒菌毛同细菌胞膜的融合)。
4.图例简述
图1。杂合肽。来源于可能的N端或C端相互作用区增强肽序列同一普通核心肽相连接。注意显示的增强肽序列可用作在N端、C端或N和C端添加。此外,增强肽序列可正向或反向连接到核心肽,可以以单独或任何可能的组合,来增强肽的药动性。
图2A。来源于各种包膜(gp41)蛋白序列的的增强肽序列,代表了在当前所有发表的HIV-1、HIV-2和SIV分离株序列中所观察到的N端相互作用区。最后的序列“WXXWXXXI”代表一共有序列。
图2B。来源于各种包膜(gp41)蛋白序列的的增强肽序列变体,代表了在当前所有发表的HIV-1、HIV-2和SIV分离株序列中所观察到的C端相互作用区。最后的序列“WXXXWXWX”代表一共有序列。
图3。在HuPBMC共培养分析中,通过P24水平所测定的HIV-19320感染SCID-HuPBMC鼠组织的HIV-1滴度比较。图中显示了体内T20和T1249病毒抑制的比较。
图4A-4B。对CD大鼠IV注射T1249和对照核心肽T1387后2小时(图4A)和8小时(图4B)的血浆药动谱。T1387为一核心肽,而T1249为一核心肽同一增强肽相连的多肽。
图5。对CD大鼠IV注射T1249和对照核心肽T20后的血浆药动谱。T1249为一核心肽(T1387)同一增强肽序列相连的杂交多肽。T20:n=4;T1249:n=3。
图6。T20/T1249抗HIV-1/Ⅲ活性和细胞毒性的比较。
图7。T1249同gp41构建体M41Δ178的直接结合。125I-T1249经HPLC纯化到最大比活。显示了T1249和以0.5mg/ml固定在微孔板上的M41Δ178(一缺乏T20氨基酸序列的gp41胞外(结构〕域融合蛋白)的饱和结合。
图8。T1249结合/解离时间曲线。结果表明125I-T1249和125I-T20具有相似的结合亲和力,大约为1-2nM。125I-T1249起始的开关速率显著低于125I-T20。在分析体系中加入1/10体积终浓度为10μM的未标记肽后,测定已结合的标记肽的解离。
图9。T1249同M41Δ178结合的竞争。在含有单一浓度125I-T1249或125I-T20时,滴定未标记的T1249和T20。在加入未标记肽后立即加入配体,开始孵育。
图10A-10B。在CD大鼠中RSV杂合肽T1301(10A)和T1302(10B)对T786的药动谱。
图11A。空斑减少分析。杂交多肽T1293能够抑制RSV的感染,IC50为2.6μg/ml。
图11B。空斑减少分析证明RSV杂合肽T1301、T1302和T1303具有抑制RSV感染的能力。
图12A和12B。在CD雄性大鼠中促黄体激素杂合肽T1324对T1323的药动谱。T1323多肽为一促黄体激素核心肽,而T1324多肽为一包含核心肽和增强肽的杂交多肽。
图13。来源于各种核心肽的杂合多肽序列。核心肽序列以阴影表示。非阴影的氨基和羧基端序列代表增强肽序列。
图14A-B。圆二色性(CD)色谱分析T1249单独(10μM;图14A)在溶液(磷酸盐缓冲液,pH7)和同来源于gp41HR1结合结构域(T1346)的45残基多肽的组合;实心的方框代表根据“非相互作用模型”预测的理论CD谱,而实际的CD谱以实心的圆表示。
图15。聚丙烯酰胺凝胶电泳表明T1249可以保护gp41构建体M41Δ178免受蛋白酶K的消化;泳道1引物标记;泳道2未处理的M41Δ178;泳道3同蛋白酶K孵育的M41Δ178;泳道4未处理的T1249;泳道5同蛋白酶K孵育的T1249;泳道6同T1249孵育的M41Δ178;泳道7在加入蛋白酶K之前,T1249已同M41Δ178孵育。
图16A-C。在Sprague-Dawley白化鼠中T1249的药动学;图16A连续皮下灌注单一剂量T1249的药动学图16B通过皮下注射(SC)或静脉内注射(IV)T1249的血浆药动学;图16C在静脉注射后T1249在淋巴和血浆的动力学分析。
图17A-B。在猕猴中的T1249的药动学;图17A经皮下(SC)、静脉(IV)或肌肉内(IM)注射单一剂量0.8mg/kg的血浆动力学;图17B以不同剂量水平(0.4mg/kg、0.8mg/kg和1.6mg/kg)的T1249皮下注射后的血浆药动学。
5.发明详述此处所描述的肽序列是指增强肽序列,它来源于各种反转录病毒包膜(gp41)蛋白序列,能够增强它所连接核心肽的药动特性。通过将增强肽序列同核心多肽相连接,可以形成一具有增强药动特性的杂合肽。同增强肽序列相连接的核心肽的体外半衰期也有增加。例如,连接的增强肽序列可增加核心肽在细胞培养、组织培养或病人样品例如细胞、组织或其它样品中的半衰期。
本发明杂合肽中所用的“核心肽”是指,任何可导入到一生物体系的多肽,例如任何可作为治疗或预防制剂用以治疗或预防疾病的在药物学上有用的肽,或一在体内用做显影生物结构的显影剂。
此处所描述的肽也包括含有增强肽序列,表现为抗融合和/或抗病毒活性的肽。此处进一步描述了使用这些肽的方法,包括减轻或抑制病毒感染和/或病毒诱导的细胞融合的方法。
5.1.杂合肽本发明的杂合多肽包括至少一个增强肽和一核心肽。优选的,本发明的杂合肽包括至少两个增强肽和一核心多肽,其中至少一个增强肽位于杂合肽的氨基端,至少一增强肽序列位于核心肽的羧基端。
本发明的增强肽序列包括最初来源于各种反转录病毒包膜(gp41)蛋白序列的肽序列。包括HIV-1、HIV-2和SIV序列,和下述的特定变异和修饰。核心肽序列是任何可导入到一生物体系的多肽,例如任何可作为治疗或预防或显影制剂用途的肽。
典型的,一杂合肽长为10到500个氨基酸,优选长度为大约10-100个氨基酸,组优选长度为10到40个氨基酸。
尽管不希望受特定的理论约束,包膜蛋白的结构为,位于蛋白C端可能的α螺旋可以同位于蛋白N端的亮氨酸拉链区作用。通过对目前所观察到的发表的HIV-1、HIV-2和SIV的N端和C端增强肽序列中gp41区的比较,鉴定出了共有的氨基酸序列。
特别的,下述的共有氨基酸序列代表了鉴定出的共有增强肽序列(下述所列的共有序列包括正向和反向,因为该增强肽序列可正向或反向使用)“WXXWXXXI”、“WXXWXXX”、“WXXWXX”、“WXXWX”、“WXXW”、“WXXXWXWX”、“XXXWXWX”、“XXWXWX”、“XWXWX”、“WXWX”、“WXXXWXW”、“WXXXWX”、“WXXXW”、“IXXXWXXW”、“XXXWXXW”、“XXWXXW”、“XWXXW”、“XWXWXXXW”、“XWXWXXX”、“XWXWXX”、“XWXWX”、“XWXW”、“WXWXXXW”或“XWXXXW”,其中X为任何氨基酸,W代表色氨酸,I代表异亮氨酸。正向的共有序列见图1和2.。
典型的,一增强肽序列长度为大约4、5、6、7、8、9、10、11、12、13、14、15、16、17、18、19、20、21、22、23、24、25、26、27、28、29或30个氨基酸残基,优选大约4到20个残基,更优选4-10个残基,最优选6到8个残基。
在本发明的一优选实施方案中,用以增强杂合肽药动特性的增强肽序列包含有图2、13和表1中所述的序列。最优选的增强肽序列包含下述氨基酸序列“WQEWEQKI”和“WASLWEWF”。
通过实施例的方法,而并非限制,表1列出了代表本发明增强肽序列优选实施方案的肽序列。需要明白,尽管下述的序列为正向序列,反向的序列也在本发明的范围之内。例如,尽管下述的正向增强肽序列为“WMEWDREI”,其反向序列,即“IERDWEMW”也包括在其中。
表1WMEWDREIWQEWERKVWQEWEQKVMTWMEWDREINNMTWMEWDREIWQEWEQKVRYLEANINNMTWQEWEZKVRYLEANIWNWFIWQEWDREISNYTSLIWQEWEREISAYTSLIWQEWDREIWQEWEIWNWFWQEWWQAWWQEWEQKIWASLWNWFWASLFNFFWDVFTNWLWASLWEWFEWASLWEWFWEWFEWEWFIEWEWFIEWEWEWEWWASLWEWFWAGLWEWFAKWASLWEWFAEWASLWEWFWASLWAWFAEWASLWAWFAKWASLWAWF
WAGLWAWFAEWAGLWAWFWASLWAWAEWASLWAWWAGLWAWAEWAGLWAWDKWEWFIEWASLWEWFIKWASLWEWFDEWEWFGGWASLWNWFGGWNWF在另一优选实施方案中,本发明特定的增强肽序列包含图2、13和表1中所描述增强肽序列,表现为在1、2或3个位置保守氨基酸序列的替换,但该替换后的杂合肽并不破坏杂合肽中增强肽序列对杂合肽中核心肽药动特性增强的影响。
最优选的,此类替代可导致增强肽序列落入到增强肽的共有序列中。因此,一般在相应于上述一致氨基酸序列和图1和2中的“X”位氨基酸进行替代。“保守替代”是指替代的氨基酸和被替代氨基酸残基具有相似的电荷、大小和/或疏水性/亲水性特性。这些氨基酸特性对本领域技术人员是众所周知的。
本发明进一步提供了含有图1、2、13和表1中氨基酸序列的增强肽序列,但该增强肽序列包含一个或多个氨基酸添加(在长度上一般不大于15个氨基酸残基)、缺失(例如氨基或羧基末端截短)或非保守性氨基酸残基替代,但并不破坏所得到增强肽在增加核心肽药动特性的能力。
添加一般不大于15个氨基酸残基,可包括连续的1、2、3、4、5、6、7、8、9、10、11、12、13、14或15个残基添加。优选在原始增强肽序列上添加的残基不大于15个残基,更优选不大于10个,最优选不大于5个残基。
优选缺失的残基总数目(连续或非连续残基)不大于3个残基,更优选2个残基,最优选缺失单个残基。一般的,缺失的残基相应于增强肽共有序列中的“X”残基。
本发明特定的增强肽序列包含图2、13和表1中所描述增强肽序列,表现为在1、2或3个位置非保守氨基酸序列的替换,优选两个被替代,最优选一个替代。“非保守性替代”是指替代的氨基酸和被替代氨基酸残基不具有相似的电荷、大小和/或疏水性/亲水性特性。这些氨基酸特性对本领域技术人员是众所周知的。
此外,氨基酸的替代在某些实施方案中优选,但不局限于遗传编码的氨基酸。事实上,肽可以包含遗传上非编码的氨基酸。因此,除了天然的遗传编码氨基酸外,肽中氨基酸残基的替代可以用天然或合成的氨基酸来进行替代。
某些经常遇到的对替代有用的氨基酸包括,但不局限于,β-丙氨酸合其它ω氨基酸如3-氨基丙酸、2,3-二氨基丙酸(Dpr)、4-氨基丁酸等;α-氨基异丁酸(Aib);ε-氨基乙酸(Aha);δ-氨基戊酸(Ava);N-甲基甘氨酸或肌氨酸(MeGly);鸟氨酸(Orn);瓜氨酸(Cit);t-丁基丙氨酸(t-BuA);t-丁基甘氨酸(t-BuG);N-甲基异亮氨酸(MeIle);苯甘氨酸(Phg);环己丙氨酸(Cha);正亮氨酸(Nle);萘基丙氨酸(Nal);4-氯苯丙氨酸(Phe(4-Cl));2-氟苯丙氨酸(Phe(2-F));3-氟苯丙氨酸(Phe(3-F));4-氟苯丙氨酸(Phe(4-F));青霉素衍胺(Pen);1,2,3,4,-四氢异喹喏啉-3-羧酸(Tic);β-2-噻吩丙氨酸(Thi);甲硫氨酸亚砜(MSO);高精氨酸(hArg);N-乙酰赖氨酸(AcLys);2,4-氨基丁酸(Dbu);2,3-二氨基丁酸(Dab);p-氨基苯丙氨酸(Phe(pNH2));N-甲基颉氨酸(MeVal);高半胱氨酸(hCys),高苯丙氨酸(hPhe)和高丝氨酸(hSer);羟脯氨酸(Hyp),高脯氨酸(hPro),N-甲基化氨基酸和类肽(N-取代的甘氨酸)。
在大多数情况下,尽管肽中氨基酸的替代是用L-异构型氨基酸,但替代却不限定于L-异构型氨基酸。因此,也包括定义为“突变”或“改变”的形式中L氨基酸被一致的D氨基酸(例如L-Arg被D-Arg替代)或具有相同分类或亚类氨基酸(例如L-Arg被D-Lys替代)替代的情形,反之亦然。
需要明白,本发明也考虑到肽类似物,其中一或多个酰胺键选择性的被其它非酰胺键连接所代替,优选被替代的为酰胺键或酰胺键的同配物。因此,当肽中的氨基酸残基在一般情况下用氨基酸术语进行描述时,而本发明的优选方案通过肽的形式作为实例时,本领域的技术人员应能认识到在实施方案中含有非酰胺键连接,此处所用的术语“氨基酸”或“残基”是指其它一些双功能部分,带有同氨基酸侧链结构相似的基团。此外,氨基酸残基可以封闭或未封闭形式。
此外,一或多个酰胺键连接可以被肽模拟物或酰胺键模仿部分代替,但并不显著干扰肽的结构和活性。合适的酰胺键模仿部分在例如,Olson等,1993,J.Med.Chem.36:3049中有描述。
增强肽序列可在核心肽的N-、C-、或N-和C-末端添加,从而增强核心肽的药动特性。优选增强肽序列的使用采取配对形式,也就是说,优选杂合肽在N端和C端都含有一增强肽序列,杂合肽也可只包含一个增强肽,该肽可以在杂合肽的氨基端或羧基端。此外,增强肽可以正向或反向,或以任何形式的可能组合连接到核心肽上。需要注意,任何增强肽序列都可插入到核心肽的N端或C端。此外,多个增强肽序列可以插入到杂合肽的N-、C-、或N-和C-末端。多个增强肽序列可以相互直接连接,或经将增强肽序列连接到核心肽上相同种类的连接(参照下文)。此外,相同种类的下述插入序列可以出现在一个或多个增强肽序列间。多个增强肽序列典型包含2到10个单个的增强肽序列(相同或不同氨基酸序列),优选2到大约4个。
需要明白,核心肽一般经肽酰胺键连接增强肽序列,尽管可用其它非酰胺键将增强肽序列连接在核心多肽上。这样的连接对本领域技术人员众所周知,包括例如,碳-碳、酯或化学键,将增强肽序列连接到核心肽上。
典型的,一增强肽序列直接连接到核心肽上。增强肽序列也可连接到一插入氨基酸序列上,该序列出现在增强肽和核心肽之间。插入的氨基酸序列典型的从1到大约50个氨基酸残基,优选长度为1到大约10个残基。所描述的用以将增强肽连接到核心肽的相同种类连接可用在将增强肽连接到插入序列中。
如上述所讨论的增强肽序列,核心和插入氨基酸序列并不局限于遗传编码的氨基酸,可包含上述任何氨基酸和连接修饰。
得到的杂合肽的氨基端和/或羧基端可分别包含氨基基团(-NH2)和羧基基团(-COOH)。可选择的,杂合肽的氨基末端可,例如,为疏水基团,包括但不局限于苄氧羧基(carbobenzyl)、丹酰基、叔丁氧羰基、癸酰基、奈基或其它碳水基团;乙酰基团;9-芴甲氧羰基(FMOC);或一经过修饰的非天然氨基酸残基。可选择的,杂和肽的羧基末端可,例如为酰胺基;叔丁氧羰基基团;或一经过修饰的非天然氨基酸残基。作为一非限制性实例,得到的杂和肽的氨基和/或羧基末端可包括下述图13和表2中描述的任何氨基和/或羧基修饰。
典型的,杂合肽包含一非天然的氨基酸序列。也就是说,典型的,杂合肽的氨基酸序列并不是单一的由内源的天然多肽的片段序列组成。此外,杂合肽也并不一定有单一的全长天然多肽组成。
核心肽可包含任何可导入到一生物体系的多肽,例如任何可作为药物学上有用的多肽。这样的核心肽可,例如,用于治疗或预防疾病,或用于诊断或预后方法,包括体内显影方法。核心肽的最低大小限制典型的为4-6个氨基酸残基。在理论上,核心肽大小没有上限,因为这样的核心肽可包括任何天然的多肽或片段,或任何修饰或合成多肽。典型的,核心肽大约从4-6个氨基酸到大约495-500个氨基酸,优选4到大约94-100个氨基酸残基,最优选4到大约34-40个氨基酸残基。
可能的核心肽实例,仅作为实例而非限制,包括但不局限于,生长因子、细胞因子、治疗多肽、激素例如胰岛素和激素的肽段、细胞因子的抑制或增强因子、肽生长和分化因子、白介素、趋化因子、干扰素、集落刺激因子、血管形成因子、受体的配体、激动剂、拮抗剂或反向激动剂、肽靶向因子如显影剂或细胞毒性靶向剂和细胞外基质蛋白如胶原、层粘连蛋白、粘连蛋白和整和素。此外,可能的核心肽可包括病毒或细菌的多肽,可直接或间接作为免疫原或抗原,因此用于治疗和预防病原性疾病。
杂合肽中组成核心肽的多肽为病毒蛋白序列的实例显示在图13,其中核心肽序列以阴影表示。核心肽也可包括但不局限于,在美国专利号为5464933、5656480和WO96/19495中所公开的多肽,在此完整引入作为参考。
核心多肽的序列可进一步包括但不局限于下述表2中所列出的多肽序列。需要注意,表2列出的除核心肽外还包括杂合肽。考虑到杂合肽中增强肽的序列出现在末端,杂合肽的序列是显而易见的。
表2序号 序列 序号 序列 序号 序列 序号 序列 序号 序列 序号 序列 序号 序列 序号 序列 序号 序列 序号序列 序号 序列 序号 序列 序号 序列 序号 序列 序号 序列 序号 序列 序号 序列 序号 序列 序号 序列 序号 序列 序号 序列 序号 序列 序号 序列 序号 序列 序号 序列 序号 序列 序号 序列
需要明白表2所列肽也在本发明范围之内。如上述所讨论,那些在表2描述但并不包含增强肽(也就是说,不代表杂和多肽)的肽序列可用以同增强肽序列相连以及用此处提供的指导来产生杂合肽。此外,核心肽和表2和图12所显示的杂和多肽中的核心肽可用以同此处所述的任何增强肽相连,从而按常规程序产生另外的杂交多肽,也落入本发明的范围之内。
需注意,尽管表2和图13中所列很多多肽具有修饰的氨基酸。例如,封闭的氨基和/或羧基末端或d-异构氨基酸(括号内指示的残基),任何包含在表2和图13中所描述的基本氨基酸都属于本发明的一部分。
表2和图13中显示的核心肽本身和含有这些核心肽的杂合肽可表现出抗病毒和/或抗融合活性和/或表现出调节同卷曲螺旋肽结构相关细胞内过程的能力。在这些核心肽序列中,例如那些来源于单一病毒蛋白序列。这些核心多肽序列中,例如来源于单一病毒蛋白序列的氨基酸序列(例如HIV-1、HIV-2和SIV来源的核心多肽)。
此外,对增强多肽序列而言,这样的核心多肽可表现为如上述讨论的氨基酸替代、缺失和/或插入,只要不破坏特定核心肽的抗病毒和/或抗融合活性(要么自身,要么为杂合肽的一部分)。
关于氨基酸的缺失,优选得到的核心肽在长度上至少大约4-6个氨基酸残基。至于氨基酸插入,优选的插入不大于50个氨基酸残基,更优选不超过15个氨基酸残基,也优选核心多肽的插入为氨基和/或羧基末端插入。
在这些氨基和/或羧基的插入中,也包括那些含有核心多肽来源的内源蛋白序列的氨基或羧基末端的氨基酸序列,例如,如果核心肽来自gp41蛋白,这样的插入含有一氨基或羧基端插入,该插入含有同gp41核心多肽序列临近的gp41氨基酸序列。这样的氨基和/或羧基末端插入典型的大约1、5、10、15、20、25、30、35、40、45、或50个氨基酸残基从氨基端和/或羧基端到原始核心多肽。
本发明的杂交多肽进一步包含额外的修饰,只要仍能识别出该多肽,例如,可对杂合肽进行直接或间接标记,肽标记技术对本领域技术人员众所周知,包括但不局限于放射性、荧光和显色技术。间接标记技术对本领域技术人员也众所周知,包括但不局限于生物素/链霉素标记和间接抗体标记。
本发明进一步涉及到增强多肽序列同其它非肽类型分子的结合,例如,可将增强肽连接到核酸分子上(例如DNA或RNA)或任何类型小的有机分子上,用以增强该分子的药动特性。
5.2肽的合成本发明增强肽、核心和杂合肽可用本领域技术人员所熟知的技术来合成或制备,参照例如,Creighton,1983,蛋白结构和分子原理,W.H.Freeman和Co.,NY.在此完整引入作为参考。杂合肽可用传统的逐步溶液或固相合成,片段浓缩、F-MOC或T-BOC化学来制备(参照例如,肽和蛋白合成的化学方法,Williams等,Esd.,1997,CRC出版社,Boca,Raton Florida,和其中所引用的文献;固相肽合成实用手册,Atherton & Sheppard,Eds,1989,IRL出版社,牛津,England,和其中引用的文献,对氨基和/或羧基端的修饰也同样适用。
本发明增强肽、核心肽和杂合肽的纯化可用本领域熟知的技术如正常和反相高效液相色谱、离子交换层析、凝胶电泳、亲和层析、分子排阻、沉淀和类似的方法。对特定多肽纯化的实际条件部分上依赖于合成的策略和一些因素如净电荷、疏水性、亲水性、可溶性、稳定性等,对本领域技术人员是显而易见的。
本发明杂合肽、增强肽和核心肽也可用重组DNA技术制备。此处可根据本领域熟知的技术合成和/或克隆并表达编码本发明多肽的核苷酸序列,参照例如Sambrook等,1989,分子克隆实验手册,卷1-3,冷泉港出版社,NY。
也可用本领域熟知的很多分子生物学技术获得编码目的多肽的DNA片段。例如,用多聚酶链反应(PCR)来得到编码目的蛋白的DNA片段。可选择的,DNA片段也可商品购得。
编码目的多肽的DNA可重组连接到很多宿主载体系统,从而可以大规模复制DNA。这些载体可设计包含指导编码杂合肽的DNA序列转录和/或翻译的必需元件。
可用的载体包括,但不局限于,源自细菌噬菌体DNA、质粒DNA或粘粒DNA的载体。例如,质粒载体如pcDNA3、pBR322、pUC19/18、pUC118、119和M13mp系列的载体。噬菌体载体包括λgt10、λgt11、λgt18-23、λZAP/R和EMBL系列的噬菌体载体。粘粒载体包括,但不局限于,pJB8、pCV103、pCV107、pCV108、pTM、pMCS、pNNL、pHSG274、COS202、COS203、pWE15、pWE16和卡隆粒(charomid)系列的载体。
可选择的,重组的病毒载体包括,但不局限于那些来自病毒如疱疹病毒、反转录病毒、痘苗病毒、腺病毒、腺联病毒或牛乳头瘤病毒、植物病毒如烟草花叶病毒和杆状病毒。
为了表达一生物活性肽,编码蛋白的序列可插入到一合适的表达载体,即含有插入编码序列转录和翻译的必需元件。可以用众所周知的方法构建含有杂合肽同合适转录/翻译控制信号可操作连接在一起的表达载体。这些方法包括体外重组DNA技术和合成技术。参照,例如,Sambrook等1992在Molecular Cloning,A Laboratory Manual,cold Spring Harbor Laboratory,N.Y和Ausubel等1989在Current Protocols in Molecular Biology,Greene PublishingAssociates & Wiley Interscience,N.Y.中的技术,在此完整引入作为参考。
编码目的杂合肽、增强肽和核心肽的核酸分子可以可操作的连接在不同的启动子/增强子元件上。可以选择启动子/增强子元件来优化表达蛋白的治疗剂量。这些载体的表达元件在强度和特异性上各异。依赖于所用的宿主/载体系统,可以使用很多合适转录和翻译元件中的任何一种。启动子可以选择天然连接在目的基因上的启动子。可选择的,DNA可以受一重组或异源启动子的控制,即正常情况下不与目的基因相连的启动子。例如,可以使用组织特异的启动子/增强子元件来调控所转基因在特异细胞类型的表达。
表现为组织特异性的转录控制区的实例已有描述,可以包括但不局限于,弹性酶Ⅰ基因控制区可以在胰腺细胞有活性(Swift et al.,1984,Cell 38:639-646;Ornitz et al.,1986,Cold Spring HarborSymp.Quant.Biol.50:399-409;MacDonald,1987,Hepatology7:42S-51S);胰岛素基因控制区在胰腺β细胞(Hanahan,1985,Nature315:115-122);免疫球蛋白基因控制区在淋巴细胞(Grosschedl etal.,1984,Cell 38:647-658;Adams et al.,1985,Nature318:533-538;Alexander et al.,1987,Mol.Cell.Biol.7:1436-1444);alumin基因控制区在肝细胞(Pinkert et al.,1987,Genesand Devel.1:268-276);甲胎蛋白基因控制区在肝细胞(Krumlaufet al.,1985,Mol.Cell.Biol.5:1639-1648;Hammer et al.,1987,Science235:53-58);α-1-抗胰酶基因控制区在肝细胞(Kelsey etal.,1987,Genes and Devel.1:161-171);beta-珠蛋白基因控制区在骨髓细胞(Magram et al.,1985,Nature315:338-340;Kollias et al.,1986,Cell 46:89-94);髓鞘碱性蛋白基因控制区在脑中的少突神经胶质细胞(Readhead et al.,1987,Cell48:703-712);肌球蛋白轻链2基因控制区在骨骼肌细胞(Shani,1985,Nature314:283-286);和促性腺激素释放激素基因控制区在下丘脑(Mason et al.,1986,Science234:1372-1378)。从生长在哺乳动物细胞的病毒基因组分离的启动子(例如痘苗病毒7.5K、SV40、HSV、腺病毒MLP、MMTV、LTR和CMV启动子)也可使用,以及从重组DNA或合成技术而来的启动子。
在一些例子中,启动子可以是组成性或可诱导的,从而在合适的条件控制下来指导目的核苷酸高水平或调控表达。在组成性启动子控制下的基因表达不需要一特异的底物来诱导基因的表达,在细胞生长的各种条件下都可表达。想反,受可诱导启动子控制的基因表达对诱导剂的存在与否作出反应。
特异的起始信号对插入的蛋白编码序列的高效表达也是需要的。这些信号包括ATG起始密码和临近序列。在整个编码序列插入到合适表达载体的情况,即包括起始密码核临近序列,不需要额外的翻译控制信号。但是,对于仅仅一部分编码序列插入的情况,外源性的翻译控制信号,必需包括ATG起始密码。此外,起始密码必须同编码序列同框,以保证整个插入子的翻译。这些外源性的翻译控制信号和起始密码可以不同来源,天然或合成。可以包括转录减弱序列、增强子元件来加强基因的有效表达。
5.3.本发明增强肽序列、核心多肽核杂交多肽的应用如上述所讨论,本发明的增强肽序列可用以增强任何核心肽的药动特性,通过将核心肽连接到增强肽序列上形成杂交多肽。所观察到的增强的药动特性是相对于核心多肽而言。用以测定和定性一试剂例如多肽的标准药动特征参数和方法对本领域技术人员是众所周知的。下述的实施例并不是此类方法的限制实施例。
此外,本发明的增强肽序列可用以在体外或离体增加核心肽的半衰期。例如,当得到的杂合肽在细胞培养、组织培养或患者样品(例如,细胞样品、活检组织样品或其它包含体液的样品)中时,增强肽序列可增强所连接核心多肽的半衰期。
本发明的核心肽和杂合肽也可用于部分调节(例如,减轻、抑制、破坏、稳定或增强)融合事件。优选的,这样的肽表现为抗融合和抗病毒活性。本发明的肽也可表现为调节同卷曲螺旋作用相关的细胞内过程的能力。
在特定的实施方案中,本发明表现为抗病毒活性的杂合肽和核心肽可用做减轻病毒感染的方法。这些抗病毒方法可用于,例如抗HIV-1和HIV-2、人T淋巴细胞病毒(HTLV-1和HTLV-Ⅱ)、非人的反转录病毒例如牛白细胞组织增生病毒、猫肉瘤和白血病病毒、猿免疫缺陷病毒(SIV)、肉瘤和白血病病毒和绵羊进行性肺炎病毒。
本发明的抗病毒方法可用以抗非逆转录病毒,包括但不局限于,呼吸道合胞体病毒(RSV)、犬瘟热病毒、新城疫病毒、人副流感病毒、Epstein-Barr病毒、乙型肝炎病毒和Mason-Pfizer病毒。
上述引用的病毒是有包膜病毒。本发明的抗病毒方法也可用以无包膜病毒,包括但不局限于脊髓灰质炎病毒、甲型肝炎病毒、肠道病毒、埃可病毒、柯萨奇病毒、乳多空病毒例如乳头瘤病毒、细小病毒、腺病毒和呼肠孤病毒。
其它用本发明肽可以调节的抗融合活性包括但不局限于,经细胞融合和精卵融合来调节神经递质的交换。在一些同卷曲螺旋作用相关的细胞内紊乱,可以用本发明的肽来消除的是,例如细菌毒素。
一给定核心多肽或杂合肽的抗融合或抗病毒活性可经标准的体外、离体和动物实验来确定,这些实验模型同抗病毒活性相关,可以对目的病毒特异或部分特异,对本领域技术人员众所周知。
上述的描述主要涉及到本发明核心肽和杂合肽的抗病毒或抗融合相关的活性。本发明的杂合肽也用做部分给药或单独用药的方法。使用杂合肽作为此类应用的例子,特别优选预期增加核心肽的药动特性。例如,胰岛素用于部分治疗某些类型的糖尿病。一杂合肽以胰岛素或胰岛素片段作为核心多肽,因此可用于消除一些形式糖尿病的症状,这些形式糖尿病一般使用胰岛素。
除了上述的治疗方法,本发明的肽可进一步用做部分预后的方法,用于预防疾病,包括但不局限于同融合事件相关疾病、同卷曲螺旋相关的细胞内过程和同细胞-细胞和/或细胞-病毒融合相关的病毒感染。例如,本发明的核心和杂交多肽可用做部分预防病毒感染的预防方法。
本发明的杂交多肽可进一步用做部分诊断方法。这些方法可以是体内或体外方法。任何一特定核心肽可用的诊断方法都可用包含此核心肽的杂合肽来完成,或使用一些修饰,只要仍可以识别出是杂合肽。该技术在诊断上的改进体现在同核心肽相比,杂合肽增加的半衰期可增加诊断程序的敏感性。这些诊断技术包括但不局限于显影方法,例如体内显影方法。在显影方法的一个非限制性的实例中,可以同杂合肽中核心肽结合的结构可因与杂合肽结合并对结合的杂合肽显影(直接或间接)来检测。5.4.药物制剂、剂量和给药物制剂式本发明的肽可用本领域众所周知的技术给药。优选的,对制剂制成药物制剂并全身给药。药物制剂和给药的技术可以在“Remington’sPharmaceutical Sciences”,最新版,Mack Publishing Co.,Easton,PA中发现。合适的给药途径包括口服、直肠、阴道、肺(例如通过呼吸)、经皮、经黏膜、或肠道吸收;非肠道给药包括肌肉内、皮下、髓内注射和鞘内、直接心室内、静脉内、会阴内、鼻内、或眼内注射,仅列举这些。对于静脉内注射,本发明的制剂可以制成水溶液,优选生理兼容缓冲液如Hank’s溶液、Ringer’s溶液或生理盐缓冲液,仅列举这些。此外,也可用灌注泵对本发明的肽给药。对于经黏膜给药,在制剂中要使用能够适合穿透障碍的穿透剂。这些穿透剂对本领域所熟知。
对于优选对本发明肽或其它抑制因子的细胞内给药的例子,可以使用本领域熟知的技术。例如,这些制剂可以制成脂质体或微球,然后按上述给药。脂质体为球状的脂双层,水相在内部。在脂质体形成过程中,所有在水溶液中的分子都进入内部水相。脂质体内容物可受外部微环境的保护,因为脂质体可以同细胞膜融合,有效的导入到细胞浆膜。此外,由于其疏水性,当对小分子给药时,可直接达到细胞内给药的目的。
用本领域众所周知的技术,通过细胞内给药可以使编码本发明肽的核苷酸序列在目的细胞表达。例如,来自病毒的表达载体如反转录病毒、痘苗病毒、腺连病毒、疱疹病毒或牛乳头瘤病毒可用于将这样的核苷酸序列导入到靶细胞群,并在其中表达。参照例如Sambrook等1992在Molecular Cloning,A Laboratory Manual,cold SpringHarbor Laboratory,N.Y和Ausubel等1989在Current Protocols inMolecular Biology,Greene Publishing Associates & WileyInterscience,N.Y.中的技术。
本发明肽给药的有效剂量可通过本领域众所周知的程序进行,如生物半衰期、生物利用度和毒性等参数。在特别优选实施方案中,有效的杂合肽剂量范围可以由本领域技术人员用本领域所熟知的常规体外、体内研究数据进行测定。例如,体外细胞培养的抗病毒活性,如下述第7部分中描述的T1249实例,可以从在本领域测定的阻断一定量病毒感染(例如,50%,IC50;或90%,IC90)的肽平均抑制浓度(IC)得到一些数据。合适剂量的选择可由本领域技术人员根据在一或多个动物模型中得到的药动数据来进行选择,例如Section10中所描述的T1249药动数据,使获得的肽最低血浆浓度等于或超过所测定的IC值。
多肽剂量的实例可以低至0.1μg/每kg体重,高至10mg/kg。更优选的剂量范围从0.1-100μg/kg。本发明肽的其它剂量范围实例包括1-5mg、1-10mg、1-30mg、1-50mg、1-75mg、1-100mg、1-125mg、1-150mg、1-200mg、或1-250mg肽。治疗有效剂量是指,化合物的量足以导致消除患者症状或延长存活。这些化合物的毒性和治疗功效可用细胞培养或实验动物的标准程序测定,例如测定LD50(致群体50%死亡的剂量)和ED50(对群体50%有效的治疗剂量)。毒性和治疗效果的比率微治疗指数,可表示为LD50/ED50。优选表现为较大治疗指数的化合物。从这些细胞培养和实验动物迩来的数据可用以选定在人的剂量范围。这样的剂量范围优选在包括ED50的循环浓度之内,而有小的毒性或无毒性。在此范围内剂量的变化依赖于所用药物形式和给药途径。对于本发明的任何化合物,治疗的有效剂量最初可从细胞培养分析中估算。可在实验动物对剂量配制使循环血浆浓度范围包括IC50(例如,取得半数最大抑制融合事件的测定化合物浓度,如相对无测试化合物存在时,测定病毒感染的半数最大抑制)。这些数据可用于精确测定在人的有效剂量。血浆水平的测定可通过,例如高效液相色谱(HPLC)或任何能够测定肽水平的生物或免疫分析。
本发明的杂合肽可以一次性给药、间歇给药、定时给药或连续给药。例如,本发明的多肽可单一给药,例如一次性皮下、一次性静脉内灌注或一次性摄入。本发明的多肽也可以多元化间歇给药,包括定时给药。例如,在本发明的某些实施例中,多肽可一周一次、一天一次、一天两次(例如每12小时)、每6小时、每4小时、每两小时或每1小时。本发明的多肽也可连续给药,例如连续皮下给药或通过灌注泵静脉内灌注,或通过皮下或其它部位植入,允许多肽连续被患者吸收。
本发明的杂交多肽也可同至少一种其它治疗剂结合给药。尽管不优选HIV治疗,对其它类型的治疗(例如癌治疗)可用交替或顺序治疗,包括循环治疗(也就是,对一种化合物给药一段时间,然后对第二种抗病毒化合物给药一段时间,然后重复该顺序给药,从而可减少产生对其中一种治疗剂的抗性)。
在病毒的情况,例如反转录病毒感染,杂合肽的有效剂量或一药物学上可接受的衍生物可以同至少一种,优选至少两种其它抗病毒制剂结合使用。
以HIV感染为例,这样的抗病毒制剂包括,但不限于,DP-107(T21)、DP-178(T20)、任何在表2中描述的来源于HIV-1或HIV-2的核心肽、任何核心肽至少一部分来自HIV-1或HIV-2的杂合肽、细胞因子例如rIFNα、rIFNβ、rIFNγ;反转录酶的抑制因子,包括核苷和非核苷抑制剂如AZT、3TC、D4T、ddI、adefovia、abacavir、和其它双脱氧核苷或双脱氧氟化核苷、或delaviridin mesylate、nevirapine、efavirenz;病毒mRNA加帽抑制剂如病毒唑;HIV蛋白酶抑制剂如ritonavir、nelfinavir mesylate、amprenavir、saquinavir、saquinvir mesylate、indinavir或ABT378、ABT538或MK639;作为抗HIV活性的脂结合分子两性霉素B;和作为糖蛋白处理抑制剂的castanospermine。
本发明的杂合肽和核心肽可进一步用做预防疾病。杂合肽和核心肽可用于直接预防疾病,或可选择的作为疫苗,从而使宿主产生针对本发明的抗体,来中和病原体,包括例如抑制病毒、细菌和原虫感染。
对于上述的治疗,确切的药物制剂、给药途径和剂量可由治疗医师根据病人状况来选择。(参照例如Fingel et al.,1975,在“ThePharmacological basis of Therapeutics”,Ch.1p.1)。
应该注意,护理医师应知道由于毒性或器官功能不全等造成的怎样在何时终止、中断或调整给药。相反,护理医师也应该知道,如果临床反应不足时(排除毒性),可调整升高水平。对肿瘤性疾病的给药剂量根据治疗对象的严重程度和给药途径而异。剂量和可能的剂量频率也根据年龄、体重以及患者的反应而变。上述讨论也适于兽医用药。
使用药物学上可接受的载体来用于本发明此处公开的化合物,使之适合于全身给药,也在本发明的范围之内。选择合适的载体和合适的生产程序,本发明的药物组成,特别是溶液制剂,可以注射给药,例如皮下注射、静脉注射、皮下灌注或静脉灌注,例如通过泵。也可用本领域众所周知的药物学上可接受的载体将化合物制成适于口服的制剂。这样的载体可使本发明的化合物制成片剂、丸剂、胶囊、液体、胶状、注射液、浆液、悬浊液和类似的形式对患者口服给药。
适于本发明应用的药物学组成包括,活性成分被包含在一有效剂量范围之内,以达到预期目的。测定有效剂量在本领域技术人员的能力范围之内,尤其是根据此处的详细公开。
除了活性成分,这些药物组成可包括药物学上可接受的载体,包括赋形剂和促进活性成分成为药物学上可应用制剂的辅助物。口服的制剂可以以片剂、糖锭剂、胶囊或溶液形式。对于肽的口服给药,所使用的技术如对本领域技术人员熟知的Emisphere Technologies可通常使用。
本发明的药物组成也可以一种自己的方式生产,如通过常规混合、溶解、颗粒化、制成糖锭剂、研碎、喷雾干燥、乳化、胶囊化、包裹或冻干过程。
用于注射给药的药物组成包括含有活性成分的水溶液。此外,也可制成含活性成分的乳浊液和悬浊液,用于合适的油注射混合物。本领域所熟知的亲脂溶剂或载体包括脂肪油如芝麻油、或合成脂肪酸酯如油酸乙酯或甘油三酯、脂质体或其它物质可用以制备脂或亲脂乳浊液。水相注射悬浊液可包括能增加悬浊液黏度的物质,如羧甲纤维素钠、山梨醇或葡聚糖。可选择的,悬浊液也可包括合适的稳定剂,或增加化合物溶解性的制剂,从而可得到高浓度的化合物。
对于口服的药物制剂可通过将活性化合物和固体赋形剂结合、可选择磨成粉状混合物、将混合物处理成粒状、如果希望,可加入合适的辅助物,从而获得片剂或糖锭剂。合适的赋形剂为,特别的,填充剂如糖、包括乳糖、蔗糖、海藻糖、甘油醇或山梨醇;纤维素制剂如玉米粉、面粉、大米粉、土豆粉、明胶、西黄芪胶、甲基纤维素、羧丙基甲基纤维素、羧甲基纤维素钠、和/或聚乙烯吡咯烷酮(PVP)。如果希望,可加入崩解剂如交连的聚乙烯吡咯烷酮、琼脂、或藻酸或盐如藻酸钠。
糖锭剂核心可包裹合适的糖衣。为此,使用一定浓度的糖溶液,可选择的包括阿拉伯胶、滑石粉、聚乙烯吡咯烷酮、carbopol gel、聚乙二醇、和/或二氧化钛、lacquer溶液、和合适的有机溶剂或溶剂混合物。也可加入染料或色素到片剂或糖锭剂包衣中,用于鉴别不同活性成分的组合。
用于口服的药物制剂也可包括明胶制成的push-fit胶囊、明胶和以成型剂如甘油和山梨醇制成的软\囊封胶囊。push-fit胶囊可包含活性成分同填充料如乳糖、粘合剂如淀粉、和/或润滑剂如滑石粉或硬脂酸镁和,可选择的,和稳定剂的混合物。在软胶囊中,活性成分可溶解或悬浮在一合适液体如脂肪油、液体石蜡或液体聚乙二醇中。
对于预期增强宿主免疫应答的例子,杂合肽可同合适的佐剂混合,以增强免疫应答。这样的佐剂包括,但不限于矿物胶如氢氧化铝;表面活性物质如溶血卵磷脂、pluronic polyols、聚阴离子;其它肽;油乳浊液;和潜在应用的佐剂如BCG和小棒杆菌(Corynebacteriumparvum)。许多方法可用于导入此处的疫苗制剂。这些方法包括但不局限于口服、皮内、肌肉内、会阴内、静脉内、皮下和鼻内途径。
6.实施例含有增强肽序列的一致氨基酸序列鉴定反转录病毒gp41蛋白含有位于蛋白C端α-螺旋区域和位于蛋白N端的亮氨酸拉链结构域。对来自当前所有发表的HIV-1、HIV-2和SIV分离株中gp41(图2A和2B)的增强肽序列的比较可鉴定出图1所示的一致氨基酸序列。
如下述实施例详细描述,这样的序列代表了增强肽序列,因为这些肽序列同不同核心肽序列的连接可增强所得到杂合肽的药动特性。
7.实施例作为HIV-1感染强抑制因子的杂合肽如图13所示,T1249为一增强肽连接在HIV核心多肽上的杂交多肽。如下所表明,T1249杂合肽在体外表现出对HIV-1、HIV-2和SIV分离株强的增强的药动特性,在HuPBMC感染体外分析中和体内在HuPBMC SCID小鼠模型分析中对HIV-1均表现出增强的活性。在下述生物学分析的描述中,对T1249和强的抗病毒T20多肽进行了比较。T20多肽,众所周知为DP-178,来自HIV-1gp41蛋白序列,公开保护在美国专利No.5464933中。
7.1.材料和方法7.1.1.肽合成和纯化肽的合成使用Fast Moc化学方法。一般的,除非另有说明,肽含有酰胺化的羧基端和乙酰化的氨基端。纯化用反相HPLC。
T1249(Ac-WQEWEQKITALLEQAQIQQEKNEYELQKLDKWASLWEWF-NH2)为一39个氨基酸的肽(分子量=5036.7),完全由天然氨基酸构成,在氨基末端由一乙酰基团封闭。羧基端由一酰胺基封闭以增强稳定性。T1387为以23氨基酸的肽,缺乏增强肽序列(Ac-TALLEQAQIQQEKNEYELQKLDK-NH2)。因此,T1387代表了T1249杂合肽的核心肽部分。T1387在氨基端和羧基端的封闭同T1249的方式相同。
特别的,T1249的合成用标准的固相合成技术进行。在HPLC trace主要峰的鉴定用质谱进一步证实为T1249。
T1249很容易用反相层析在6英寸装有C18、10micron,120A支持的柱子上进行。
7.1.2.病毒HIV-1LAI病毒(Popovic,M.Et al.,1984,Science224:497-508)的扩增用培养在含10%胎牛血清的RPMI中的CEM细胞上进行。感染的CEM细胞上清通过一0.2μm的滤膜,感染的滴度用支持病毒复制的AA5细胞微量感染分析来估算。为达到此目的,将20μl系列稀释的病毒加入到20μl细胞,细胞在96孔板上的浓度为6×105/ml。每一病毒稀释度以一式三份检测。细胞培养7天,每天换新鲜的培养液。在感染后7天,通过释放到上清中的反转录酶活性检测,来用上清检测病毒的复制。TCID50的计算根据Reed和Muench的公式(Reed,L.J.等。,1938,AM.J.Hyg.27:493-497)。
7.1.3.细胞融合实验如前所述(Matthews,T.J.Et al.1987,Proc.Natl.Acad.Sci.USA84:5424-5428),大约7×104的Molt-4细胞同1×104的CEM细胞在终体积为100μl的培养基(含10%灭活FBS的RPMI1640,补充有1%谷氨酰胺和1%的Pen-Strep)中孵育,后者培养在96孔板,短暂感染了HIV-1LAI病毒。加入10μl的肽抑制剂,在37℃的5%CO2中培养24小时。用显微镜计数多核巨细胞(合胞体,5个细胞宽或大),放大10和40倍以便能在一个视野中看到整个孔。将靶细胞同感染的、未处理对照相比,结果表示为感染对照的抑制百分率。
7.1.4.MAGI-CCR-5感染分析大约1×106MAGI-CCR-5细胞(通过NIH AIDS Research andReference Reagent Program,Division of AIDS,NIAID;Chackerian,B.Et al.,1997,J.Virol.71:3932-3939)接种到一48孔组织培养板(大约2×104细胞/孔,每孔为300μl选择性培养,在包括补充有10%热灭活FBS、1%L-谷氨酰胺、1%Pen/Strep、潮霉素B、庆大霉素、和嘌呤霉素),在37℃的5%CO2中培养过夜使细胞贴壁。细胞在第二天长至大约30%满。去除接种培养基,以50μl/孔加入稀释的肽抑制剂(未处理对照仅加入培养基),然后加入100μl/孔的稀释病毒(预期的加入病毒滴度为100-200pfu/孔)。最后,向每孔加入250μl的选择培养基,在37℃的5%CO2中培养2天。根据提供MAGI-CCR5细胞的NIAID所提供的程序进行固定和染色。简言之,从板上去除培养基,每孔加入500μl的固定液。室温固定5分钟。去除固定液,每孔用DPBS洗两次,加入200μl的染色液。然后在37℃的5%CO2中孵育50分钟,去除染色液,然后用DPBS洗两次。空气干燥培养板,然后用显微镜计数兰色细胞,对整个孔计数。将靶细胞同感染的、未处理对照相比,结果表示为感染对照的抑制百分率。
7.1.5.反转录酶分析微量反转录酶(RT)分析根据Goff等的方法(Goff,S.Et al.,1981,J.Virol.62:139-147)改进。来自病毒/细胞培养物的上清调整到含1%Triton-X100。10μl的每一上清/Triton-X100样品加入到50μl的96孔板上的RT混合物中(75mM KCl,2mM Clevelands试剂,5mM MgCl2,5μg/ml Poly A,0.25单位/ml oligo dT,0.05%NP40,50mM Tris-HCl,pH7.8,0.5μM非放射性dTTP和10μlCi/ml32P-dTTP),在37℃孵育90分钟。孵育后,在部分真空状态下,从每孔转移40μl反应混合物到Schleicher和Schuell(S+S)点印迹装置,该装置含一gridded的96孔滤膜-mat(Wallac catalog#1450-423),滤膜用2×SSC缓冲液(0.3M NaCl和0.003M柠檬酸钠)饱和。每孔用至少200μl的2×SSC缓冲液在真空状态下洗涤4次。去掉minifold并去除gridded的滤膜,用2×SSC缓冲液洗涤3次。最后,滤膜在吸水纸上吸干,空气干燥,热密封在一袋子中。样品置于phosphoscreen盒中,使用一erased(至少8分钟)phosphorscreen并关闭。暴光16小时。从phosphorimaging(Molecular DynamicsPhosphorimager)blot而来产生以volume reporting格式的PixelIndex Values(PIV)值,用以测定所有剂量的抑制剂同未处理、感染对照(以ImageQuant volime report,扣除背景)相比的受影响或抑制的部分(Fa)。
7.1.6.人PBMC感染性/中和实验原型实验使用的细胞系为基本分离实验所用的PBMC,从Interstate Blood Bank获得,同OKT3(0.5μg/ml)和CD28抗体(0.1μg/ml)混合激活2-3天。在淋巴细胞分离液(LSM)中分出目标带,洗涤冻存。细胞根据需要融化,在用于分析之前2-3天按照上述方法活化。在96孔分析中,细胞以2×106/ml培养在含5%IL-2的培养基中,终体积为100μ1。肽储存液在DPBS(1mg/ml)中制备。肽的稀释在20%的FBS RPM1 1640/5%IL-2完全培养基中进行。
7.1.7.体内HIV-1感染的HU-PBMC SCID模型雌性SCID小鼠(5-7周)接受皮内注射5-10×107成年人PBMC。在恢复两周后,对小鼠用TCID50为103的HIV-19320(AZT敏感分离株A018)感染。肽处理经IP从-1天持续到第6天。在动物放血和组织收集后(第7天,即最后一次药物处理后12-18小时),在血细胞、脾细胞、淋巴结和腹膜细胞的感染程度用和人PBMC blast定量共培养连续三周。对共培养上清中HIV-1p24抗原的产生作为评价病毒感染的指标(Immunotek Coulter Kits and protocol)。
7.1.8.大鼠药动研究使用来自Charles River Laboratories的250-300g的雄性CD大鼠,双侧颈静脉导管。在一颈静脉导管注射体积为200μl的肽溶液(大约3.75mg/ml),溶液浓度的测定用Edelhoch方法(Edelhoch,1967,Biochemistry6:1948-1954),根据动物的体重调整使每一动物接受的剂量为2.5mg/kg。在预先测定的时间间隔(0、15、30分钟和1、2、4、6和8小时)取250-300μl血样,加入到EDTA capiject管。在离心后从沉淀的细胞取血浆,冻存或立即处理用于荧光HPLC分析。
7.1.9.血浆样品的荧光HPLC分析100μl的样品血浆加入到900μl的沉淀缓冲液中(乙腈,1.0%TFA,去污剂),从而沉淀大部分的血浆蛋白。在10000rpm离心10分钟后,取400μl的上清加入600μl的HPLC级水。根据肽在每个样品中的浓度对样品进行系列稀释,稀释缓冲液的组成为40%的沉淀缓冲液和60%的HPLC水。除了样品稀释外,用和血浆相同的缓冲液进行系列稀释,用以产生一标准曲线,使峰区域同已知肽浓度相关。该曲线用以计算血浆肽浓度,从而可考虑到各稀释和注射到柱体中的量。
7.1.10.XTT说明为了测定肽的细胞毒/细胞抑制效应,在不同的肽浓度时进行XTT分析(Weislow,O.S.et al.,1989,J.Natl.Cancer Inst.81:577-586),以有效地建立一选择指数(SI)。在有系列稀释肽存在和不存在时同细胞共孵育,然后加入XTT,来测定TC50。在存活/正在代谢的细胞,XTT被还原为可溶性的棕色染料XTT-formazan。读取吸光值并比较在肽有和无时的值,用Karber方法(参照例如,Lennette,E.H.Et al.,eds.,1969,“Diagnostic Procedures for Viral andRickettsial Infections,“American Public Health Association,Inc.,fourth ed.,pp.47-52)测定TC50。Molt 4、CEM(80000细胞/孔)和两种细胞的组合(分别为70000和10000)置于板中,并与系列稀释的肽溶液在总体积为100μl的体系中孵育。孵育后,每孔加25μl的XTT工作液(1mg/ml XTT、25μM PMS溶解在含5%DMSO的完全培养基中),37℃孵育。读取显色,结果表示为含有肽孔的测定值占未处理孔测定值的百分率。
7.2.结果7.2.1.抗病毒活性-融合分析用临时感染的CEM细胞和未感染的Molt-4细胞混合,如下述表3所示,进行了病毒介导的细胞-细胞融合实验,比较了T1249和T20的抗病毒活性。同T20相比,T1249对实验室分离株如Ⅲb、MN和RF的融合抑制表现出大约2.5-5倍的改善。T1249对一些诱导合胞体的临床分离株,包括AZT抗性株(G691-2)、前AZT处理株(G762-3)和9320(在HuPBMC-SCID研究中分离),也表现出比T20更强的活性(3-28倍改进)。更显著的是,T1249在抗HIV-2NIHZ的活性比T20强800倍。
表3
7.2.2.抗病毒活性-Magi-CCR-5感染分析Magi-CCR-5感染分析可以直接对诱导合胞体病毒和不诱导合胞体病毒分离株进行比较,以及比较实验室和临床分离株。同通常用的间接测定感染的方法,如p24抗原和反转录分析相反,该分析也可直接测定病毒感染(感染后TAT表达,反式激活了LTR启动的beta-半乳糖苷酶的产生)。Magi-CCR-5感染分析表明(参照下述表4),同T20相比,T1249一致地表现为对各种检测的毒株更有效的抗性,根据EC50和Vn/Vo=0.1抑制计算。T1249对T20最不敏感的分离株之一的临床HIV-1分离株301714表现出很强的抗性(大于25倍)。此外,对SIV分离株B670,T1249比T20表现出至少强100倍的抗性。这些结果,结合融合实验的数据,说明T1249对HIV-1、HIV-2和SIV是强的肽抑制因子。
表4
7.2.3.抗病毒活性-HuPBMC感染分析在HuPBMC感染分析中对T1249和T20进行了直接比较,该系统为预测体内抑制病毒所需血浆浓度的体外可识别替代系统。这些比较表明,对目前检测的所有HIV-1分离株,T1249都表现出强的抑制作用,所有的Vn/Vo=0.1(使病毒滴度减少一个log值所需的剂量)值都减少到低于微克浓度的水平。许多对T20最不敏感的临床分离株都表现出对T1249 10倍或更高的敏感度。值得一提的是,用于HuPBMC SCID感染小鼠模型的分离株HIV-19320对T20的敏感度同T1249相比低46倍,表明同体内实验结果有很好的相关关系。
表5
7.2.4.抗病毒活性-T20抗性的实验室分离株用临时感染的CEM细胞和未感染的Molt-4细胞混合,如下述表6所示,进行了病毒介导的细胞-细胞融合实验,比较了T1249和T20的抗病毒活性。T1249对一T20抗性分离株的活性比T20强几乎200倍。
表6
在Magi-CCR-5分析中(参看下述表7),T1249对T20抗性株如pNL4-3SM和pNL4-3STM(Rimsky,L.And Matthews,T.,1998,J.Virol.72:986-993)的抗性比T20强50000倍。
表7
在HuPBMC感染分析中,直接比较了T1249和T20的抗性(参看下述表8),评价了对一抗性分离株的抗性差异。对抗性株pNL4-3SM,T1249比T20强250倍。
表8
7.2.5.抗病毒活性-体内SCID-HuPBMC模型在HIV-19320感染(图3)HuPBMC-SCID小鼠模型中,对T1249和T20的体内抗病毒活性直接进行了比较。在HuPBMCs恢复后两周,对小鼠通过IP用TCID50为103的在PBMCs中传代的HIV-19320感染(AZT敏感分离株A018),计为0天。从-1天开始,对小鼠经IP用每天总剂量为67mg/kg(T20)、20mg/kg(T1249)、6.7mg/kg(T1249)、2.0mg/kg(T1249)和0.67mg/kg(T1249)的肽进行处理。在放血杀死动物并组织收集(第7天,即最后一次药物处理后12-18小时)后,在血细胞、脾细胞、淋巴结和腹膜细胞的感染程度用和人PBMC blast定量共培养连续三周。对共培养上清中HIV-1p24抗原的产生作为评价病毒感染的指标。在T20处理的动物的腹膜洗脱物和脾制备物中尽管检测到了病毒,但在血和淋巴组织则没检测到传染性病毒。对T1249剂量为6.7mg/kg的处理动物,在任何部位都没检测到传染性病毒,表明同T20处理至少有10倍的改进。对T1249剂量为2.0mg/kg的处理动物,淋巴结和脾脏没检测到病毒,而在腹膜洗脱物和血中的病毒滴毒同感染的对照相比,分别减少2个和1个log10病毒滴毒。在T1249处理的最低剂量组即0.67mg/kg,在腹膜洗脱物和血中的病毒滴毒同感染的对照相当,在淋病结和脾脏可观察到至少一个log10病毒滴毒的减少。总之,这些结果表明在这些条件下,T1249在体内对HIV-19320的抗性有30-100倍的增强。
7.2.6.药动研究-大鼠用插有导管的大鼠对T1249的药动谱做进一步研究。使用250-300g的雄性CD大鼠,通过一颈静脉导管用T1249和T20给药。得到的血浆样品用荧光HPLC来估计分离血浆中的肽量。T1249的beta-phase半衰期和总AUC比T20几乎大三倍。
7.2.7.细胞毒性如图6所示,在体外没有观察到T1249的细胞毒性。
此外,通过颈静脉套管(0.3ml,2-3分钟)经IV给药剂量为167mg/kg时(实验的最高剂量),没有急性毒性(在24小时之内死亡)。
7.2.8.直接同gp41构建体M41Δ178的结合T1249用125I标记,用HPLC纯化到最大比活。T20用相同的方式碘化。图7显示了同以0.5mg/μl固定在微孔板上的M41Δ178(缺乏T20氨基酸序列的截短了的gp41胞外(结构)域融合蛋白)饱和结合。非特异性结合定义为在有1μM未标记肽时结合的放射性配体。特异性结合为总结合同非特异结合之差。结果表明125I-T1249和125I-T20具有相似的结合,为1-2nM。线性反式Scatchard作图表明每一配体都结合一类匀质位点。
125I-T1249和125I-T20结合的动力学在包被有0.5μg/ml M41Δ178的闪烁微孔板上测定。结合和解离时间显示在图8。结合的放射性配体的解离测定在加入1/10体积终浓度为10μM的未标记配体后进行。起始的125I-T1249结合和解离速率显著慢于125I-T20。两种放射性配体的解离谱在用其它未标记肽(例如125I-T1249用T20)起始解离后并未发生改变。
为了进一步证明两种配体竞争相同的靶位点,在单一浓度的125I-T1249或125I-T20存在时滴定未标记的T1249和T20。在加入未标记肽后加入配体开始孵育。图9的竞争曲线表明,尽管两种配体具有相似的亲和力,需要更高浓度的未标记T20或T1249才能来完全竞争结合的125I-T1249。
7.2.9.同gp41的HR1区的直接结合圆二色性(CD)色谱分析了T1249单独(10μM;图14A)在溶液(磷酸盐缓冲液,pH7)和同来源于gp41HR1(heptad repeatl)结合结构域(T1346)的45残基多肽组合时的二级结构。图14A说明了T1249单独在溶液中的CD谱(10μM,1℃)。该图谱为采取α螺旋结构的典型肽。特别的,使用单一值decomposition,根据基本的33个蛋白色谱对T1249色谱的解旋预测,T1249的螺旋(单独在溶液中)为50%。图14B为T1249同T1346混合的代表性CD谱。封闭的方框(■)代表根据“非相互作用模型”预测的理论CD谱,该理论假设肽在溶液中不相互作用。而实际的CD谱(以封闭的圆(●)表示)同这种理论上的“非相互作用模型”色谱显著不同,两种肽实际上相互作用,产生了在CD谱上可观察到的结构变化。
7.2.10.T1249同GP41结合区的蛋白酶保护对上述Section7.2.8中描述的嵌和蛋白M41Δ178对蛋白酶K消化的易感性进行了测定,并用聚丙烯酰胺凝胶电泳进行了分析。结果如图15所示。
当M41Δ178(未处理;图15,泳道2)或T1249(未处理;图15,泳道4)单独同蛋白酶K孵育时(分别为泳道3和5),两者都被消化。但是,当T1249在蛋白酶K处理前同M41Δ178孵育时(图15,泳道7),可得到一大约为6500道尔顿的HR-1保护片段。对保护片段的测序表明它相应于位于gp41的胞外(结构)域的区域。保护的片段覆盖了在上述Section7.2.9中CD研究所用的可溶性HR1肽(T1346),并包含了位于氨基端的另外7个氨基酸。该保护是由于T1249同包含M41Δ178构建体的gp41中特定区域的结合。
8.实施例呼吸道合胞体病毒杂合肽下面的实施例描述了增强了药动特性的呼吸道合胞体病毒杂和蛋白。此外,下面显示的结果表明RSV杂和多肽具有强的抑制RSV感染的能力。
8.1.材料和方法8.1.1.肽的合成和纯化肽的合成使用Fast Moc化学方法。一般的,除非另有说明,肽含有酰胺化的羧基端和乙酰化的氨基端。纯化用反相HPLC。
8.1.2.呼吸道合胞体病毒空斑减少实验所有必须的肽的稀释在干净、灭菌的96孔TC板上进行。每个肽共进行11个稀释度,加一不含肽的对照。肽的终浓度范围从50μg/ml或100μg/ml起始,总共11个2倍稀释。RSV制成在100μl3%EMEM,终浓度为100PFU/孔,用已知的RSV滴度测定。然后将病毒加入到所有孔中。
从一还未完全长满的96孔Hep2细胞培养板上去除培养基。将稀释板上的材料转移到细胞培养板上,先从第一排,然后转移到12排、11排等,直到所有排被转移。然后将培养板放回到培养箱孵育48小时。
检查细胞,在对照孔保证合胞体出现。去除培养基,然后向每孔加入大约50μl溶解在甲醇中的结晶紫。然后立即用水冲洗多余的染料,并干燥。用解剖显微镜对每孔的合胞体进行计数。
8.2.结果对RSV杂合肽T1301(Ac-WQEWDEYDASISQVNEKINQALAYIREADELWAWF-NH2)和T1302(Ac-WQAWDEYDASISQVNEKINQALAYIREADELWAWF-NH2)的研究发现,同核心肽T786(VYPSDEYDASISQVNEEINQALAYIREADELWEWF-NH2)相比,含有增强肽序列的杂合肽可表现出增强的半衰期,如图10A-10B所示。杂合肽T1301T1302和T1303(Ac-WQAWDEYDASISDVNEKINQALAYIREADELWEWF-NH2)同核心肽T1476(Ac-DEYDASISQVNEKINQALAYIREADEL-NH2)相比,也表现出增强的半衰期。
也检测了RSV杂合肽T1301、T1302和T1303以及多肽T786和T1293的抑制RSV空斑形成的能力。如图11A和11B所示,实验的RSV杂合肽和T786核心肽能抑制RSV感染。令人吃惊的是,T1293杂合肽也是一种强的抗RSV化合物(图13)。
9.实施例促黄体激素杂合肽此处的实施例描述了具有增强药动特性的促黄体激素(LH)杂交蛋白。下面的LH杂合肽的合成和纯化使用上述的方法核心肽T1323(Ac-QHWSYGLRPG-NH2)和杂合肽T1324(Ac-WQEWEQKIQHWSYGLRPGWASLWEWF-NH2),后者包含核心肽T1323氨基端序列,并在氨基或羧基末端偶连有增强肽序列。如图12A和12B所示,同缺乏增强肽序列的核心肽T1323相比,T1324杂合肽表现出明显长的半衰期。
10.实施例杂合肽T1249的药物学图13中描述的杂合肽T1249包含一连接到从混合病毒序列迩来核心肽上的增强肽序列。如上述Section7实施例中所述,杂合肽T1249表现出增强的药动特性和强的体外和体内抗HIV-1活性。在下述的实施例中,对T1249在啮齿和羚长类动物上的药物特性做了进一步描述。
10.1.材料和方法10.1.1.对啮齿动物单一剂量给药将T1249对Spragu-Dawley白化大鼠用连续皮下灌注(SCI)、皮下(SC)注射或静脉内(IV)注射进行单一剂量给药。处理组由每组两种性别各9只大鼠组成。各组通过CSI接受T1249制剂的剂量分别为0.5、2.0、或6.5mg/kg。对照组接受50mM的pH为8.5的碳酸-碳酸氢盐缓冲液。肽的给药是通过手术植入颈窝的聚氯乙烯/聚乙烯导管进行12小时灌注。两组接受T1249单一剂量为1.2或1.5mg/kg的动物用皮下注射到肩胛区域。两组接受T1249单一剂量为1.5或5mg/kg的用静脉注射。根据肽含量来计算T1249的实际毫克量,用以批量给药。
用于分析的端点(endpoint)包括笼边观察(每天两次观察死亡和濒死)、临床观察、临床实验参数、体重和尸检。用少量取样技术对每组每性别的三只大鼠在12小时内按下述实验点取血给药后0.5、1、2、4、6、8、9、和12小时。用PcAb ECLIA分析(Blackburn,G.等。1991.Clin.Chem.37:1534-1539;Deaver,D.,1995,Nature377:758)对样品进行分析。
对T1249在大鼠血浆和淋巴药动分析,将T1249制成在碳酸盐缓冲液中的无菌溶液,用做单一剂量,以20mg/kg静脉快速浓注到侧尾静脉内。从颈静脉留置导管的动物采集血样。样品收集在注射后5、15和30分钟、和1、2、4和6小时后。对于淋巴液分析,样品在注射前和注射后6小时内每隔20分钟收集。淋巴液的收集从前述直接安置在胸部(thoracic)淋巴管上的导管上进行(Kirkpatrck and Silver,1970,The Journal of Surgical Research10:147-158).T1248在血浆和淋巴液中的浓度用标准的T1249竞争ELISA分析进行(Hamilton,G.1991,p.139,in“Immunochemistry ofSolid-Phase Immunoassay,”,Butler,J.,ed.,CRC Press,Boston).
10.1.2.对灵长类的单剂量给药T1249的无菌制剂对猕猴用皮下(SC)、肌肉内(IM)或静脉内(IV)注射进行单剂量给药。在一顺序交换设计中,一组动物包括每性别两个动物进行单丸剂剂量T1249的给药,用IV(0.8mg/kg)、IM(0.8mg/kg)或SC(0.4、0.8和1.6mg/kg)注射。每次给药分开至少3天以达到完全排除。冻干的T1249在用前用pH7.4的磷酸盐缓冲液稀释。根据肽含量来计算T1249的实际毫克量,用以批量给药。
用于分析的端点包括笼边观察(每天两次观察死亡和濒死)、临床观察、临床实验参数、体重和尸检。对于IV期研究,按下述时间点在肝素管中收集血样注射后立即、0.25、0.5、1.5、3、6、12和24小时后。对于IM和SC给药研究,按下述时间点在肝素管中收集血样0.5、1、2、3、6、12和24小时后。血浆样品的制备要在一小时以内,并快速在液氮中冻存。用PcAb ECLIA分析(Blackburn,G.等。1991.Clin.Chem.37:1534-1539;Deaver,D.,1995,Nature377:758)对样品进行分析。
10.1.3.Bridging药动研究6个雄性猕猴随机分配导三个组别中,每组两个动物。该研究分为两个阶段。在阶段1,第1、2和3组的动物一天接受两次无菌T1249散剂(例如,散剂+1249溶解在pH8.5的碳酸-碳酸氢盐缓冲液中),连续4天(研究的1-4天),剂量分别为0.2、0.6和2.0mg/kg。在阶段1和阶段2之间间隔10天。在阶段2,第1、2和3组的动物一天接受两次无菌T1249药品制剂(例如,在pH6.5水相溶液,加甘露醇),连续4天(研究的15-18天),剂量分别为0.2、0.6和2.0mg/kg。
在研究的1和15天,收集用于药动分析的血样,评价单剂量的药动参数。样品按下述时间点收集注射前、0.5、1.5、3.0、4.0、6.0、8.0和12小时。在阶段1和2中监测动物的临床症状和体重变化。
10.2.结果10.2.1.T1249对大鼠给药的药动学用大鼠模型作为最初评价T1249的血浆药动学和分布。对于所有的注射组动物,没有体重、物理观察、血液学、和临床化学参数或宏观病理观察等方面同T1249给药相关的变化。
通过CSI接受T1249的大鼠在给药大约4小时后,血浆肽浓度达到稳定状态。血浆稳定状态的浓度(Cpss)和血浆浓度的计算区域对时间曲线(AUC)均直接正比于所给剂量,表明T1249在给药剂量范围0.5-6.5mg/kg内表现为线性药动学。经CSI途径给药计算的药动参数和血浆浓度对时间曲线分别显示在表9和图16A。
表9剂量组参数 0.5mg/kg2.0mg/kg6.5mg/kgCP35(μg/ml) 0.802.8010.9AUC(0-12h)(μg·h/ml) 7.9925.9120在检测剂量范围内,经静脉快速浓注注射的T1249给药可导致线性的剂量依赖药动学。相比而言,经SC注射T1249给药在测试范围内并不表现为剂量依赖。经SC和IV途径给药计算的药动参数和血浆浓度对时间曲线分别显示在表10和图16B。
表10剂量/给药(SC) (IV)参数 1.2mg/kg15mg/kg 1.5mg/kg5.0mg/kgt1/2,terminal2.02 2.00 2.46 1.86(hours)tmax(hours) 1.09 1.88- -Cmax(μg/m1) 6.37 21.5 15.7 46.3AUC(0-12h)27.0 10745.6 118(μg·h/ml)AUC(0-∞)27.6 11047.1 120(μg·h/ml)同IV给药相比,对大鼠皮下给药的T1249生物利用度进行了测定。测定结果显示在下述表11。在低剂量时(1.2mg/kg),T1249在皮下注射的相对生物利用度(FR)为73%。在所有检测剂量的12小时研究时间之内,在远大于抑制90%(IC90)HIV感染的浓度时,高剂量(15mg/kg)的T1249给药时的相对生物利用度为30%。
表11途径 剂量 AUC(0-∞)归一化的AUC(0-FR(mg/kg)(μg·h/ml)∞)(%)(μg·h/ml)低剂量SC 1.2 27.6 34.5(a)73IV 1.5 47.1 - -高剂量SC 15 110 36.5(b)30IV 5120- -(a)用1.25乘AUC(0-∞)将1.2mg/kg归一化至1.5mg/kg。(b)用3除AUC(0-∞)将15mg/kg归一化至5mg/kg。
血浆和淋巴T1249浓度的动力学数据在图16C和下面的表12中说明。T1249快速渗透到淋巴系统,并在给药大约1小时后同血浆药物库达到平衡。在两相达到平衡后,在5只动物中的四只,在注射后三小时的血浆和淋巴药物水平相当。其中一只动物淋巴药物水平持续低于其它动物,但这只动物药物在淋巴的消除同其它动物没有明显差别。对血浆和淋巴的消除半衰期(t1/2)的比较表明,T1249在两相之间是一扩散控制的过程。在3小时后,似乎有一第二次更快速的从淋巴系统的消除。这种差别可能是基于机理(例如,由于在淋巴中的重分布或加速的肽降解)或其它因素。在给药6小时后淋巴中的T1249浓度要大于普通实验室株或灵长类临床分离株HIV-1的IC90。
对T1249进入到脑脊髓液(CSF)的渗入程度也进行了评价。在所有检测时间点,T1249浓度都低于检测限度(LOD;2.0ng T1249/mlCSF),表明T1249在单剂量给药后并不渗透到中心神经系统。
表12T1249参数 血浆 淋巴t1/2,2.6±0.41 1.3±0.27消光(小时)Cmax(μg/ml) 291 133(a)/155(b)AUC(0-6h)(μg·h/ml)506 348(a)/411(b)AUC(0-∞)(μg·h/ml)598 390(a)/449(b)Cl(ml/h)7.8 11.5(a)包括1号鼠所计算的平均值,该大鼠的淋巴浓度显著低于其它动物但同本组其它动物比有相似的动力谱。(b)排除1号大鼠所计算的平均值。
10.2.2.T1249给灵长类给药后的药动学灵长类模型被用于评价在肠胃外T1249给药后剂量水平和各种药动参数的关系。
经各种途径给药都可使T1249的血浆浓度达到大于6.0μg/ml,在SC和IV给药后24小时,可检测到能定量的水平(例如,高于0.5μg/ml)。各种给药后药物消除的t1/2相当(IV、SC和IM给药分别为5.4、4.8和5.6小时)。在整个24小时取样之内的各个时间点,T1249的血浆浓度均大于实验室菌株和临床分离HIV-1毒株的IC90值。
对于经各种途径(SC、IV和IM)的肠胃外给药剂量为0.8mg/kgT1249的数据比较列于图17A。图15B说明了用不同剂量的T1249(0.4、0.8、1.6mg/kg)经SC注射或获得的数据比较。图B中的插入包含一计算的AUC对给药剂量的作图。
在给药剂量范围内,T1249在猕猴SC注射后表现为线性药动学,表明在此范围内不存在或未发生清除机制的饱和。对猕猴进行肠胃外给药后的药动数据总结在下面的表13。血浆AUC值的比较显示,同静脉内注射相比,T1249在肌肉内注射和皮下注射的生物利用度分别为64%和92%。
表13参数 给药途径(剂量水平,mg/kg)SC(0.4) SC(0.8)SC(1.6) IM(0.8) IV(0.8)t1/2,terminal(h)6.23±0.52 4.83±0.48 5.55±0.92 5.57±0.24 5.35±0.95tmax(h) 3.97±1.18 4.58±1.45 4.72±1.81 2.32±0.43 -Cmax(μg/ml) 3.17±0.09 6.85±1.01 13.3±2.55 6.37±1.69 26.7±0.25AUC(0-24)37.5±6.6 8.12±11.4 168±34.0 56.4±12.3 87.4±25.0(μg·h/ml)AUC(0-∞)40.9±8.2 85.3±13.6 181±44.0 59.5±13.1 92.5±25.0(μg·h/ml)FR(%)- 92.3 - 64.4 -10.2.3.搭桥(Bridging)药动研究为了比较上述非临床实验中所用的T1249散装药物物质同配制后的T1249的药动谱,进行了搭桥药动研究,其中配制后的T1249可以给药给实际的受体或患者,例如治疗HIV。该实验设计一平行组、单向和交叉比较三个不同剂量的T1249散装药物物质和三个不同剂量的配制后的T1249。在单一剂量给药和获得稳定状态后对血浆药动学进行评估。
皮下注射T1249可导致在各个剂量组获得可测定量的肽。对于T1249散装药物物质同配制后的T1249,在最初剂量(第1和15天)和获得稳定状态后(第4和18天),所有剂量组的血浆浓度对时间的曲线大致平行。此外,AUC(0-12hr)值同两种药物的剂量水平呈正相关。所计算的AUC(0-12hr)值二者相比,在单一剂量注射后,药品为药物的43%到80%,在稳定状态为36%到71%。
在所检测的剂量水平和体积中,猕猴在快速浓注皮下给药后,散装药物和药品表现为相似的药动谱。直接对本实验血浆浓度对时间曲线形状同以前获得的猕猴的曲线形状的比较说明,当通过皮下注射给药时,T1249具有累积效应。随时间的增加,可达到最大的血浆浓度(tmax)和t1/2。
这些结果表明,在药物学上使用的散装药物的制剂可得到在AUC值和其它动力学参数同配制后的药品给药后所达到的参数相当。这些观察表明,临床使用T1249可以使病人完全暴露于T1249。
本发明并不限于此处所描述的具体实施方案范围,这些实施例仅用于单一说明本发明的一方面,在功能上等同的方法和成分也在本发明范围之内。实施上,除了此处所显示的本发明的各种变通,根据上述描述和所附图表,对本领域技术人员都是显而易见的。这样的变通也落入本发明范围之内。
权利要求
1.一种杂合肽,该杂合肽包含一连接在核心肽上的增强肽序列。
2.权利要求1的杂合肽,其中所述的增强肽的序列包括“WXXWXXXI”、“WXXWXXX”、“WXXWXX”、“WXXWX”、“WXXW”、“WXXXWXWX”、“XXXWXWX”、“XXWXWX”、“XWXWX”、“WXWX”、“WXXXWXW”、“WXXXWX”、“WXXXW”、“IXXXWXXW”、“XXXWXXW”、“XXWXXW”、“XWXXW”、“XWXWXXXW”、“XWXWXXX”、“XWXWXX”、“XWXWX”、“XWXW”、“WXWXXXW”或“XWXXXW”。
3.权利要求1的杂合肽,其中所述的增强肽的序列包括WQEWEQKI或WASLWEWF。
4.权利要求1的杂合肽,其中所述的增强肽连接在核心肽的氨基末端。
5.权利要求4的杂合肽,进一步包含连接在核心肽羧基端的增强肽序列。
6.权利要求1的杂合肽,其中所述的增强肽连接在核心肽的羧基端。
7.权利要求1的杂合肽,其中的核心肽为治疗制剂。
8.权利要求1的杂合肽,其中的核心肽为生物活性肽、生长因子、细胞因子、分化因子、白介素、干扰素、集落刺激因子、激素或血管形成因子氨基酸序列。
9.权利要求1的杂合肽,其中的核心肽包括下述氨基酸YTSLIHSLIEESQNQQEKNEQELLELDK;LEENITALLEEAQIQQEKNMYELQKLNS;LEANISQSLEQAQIQQEKNMYELQKLNS;NNYTSLIHSLIEESQNQQEKNEQELLEL;DFLEENITALLEEAQIQQEKNMYELQKL;RYLEANISQSLEQAQIQQEKNMYELQKL;RYLEANITALLEQAQIQQEKNEYELQKL;NNYTSLIHSLIEESQNQQEKNEQELLELDK;TALLEQAQIQQEKNEYELQKLDK;TALLEQAQIQQEKNEYELQKLDE;TALLEQAQIQQEKNEYELQKLIE;TALLEQAQIQQEKIEYELQKLDK;TALLEQAQIQQEKIEYELQKLDE;TALLEQAQIQQEKIEYEIQKLIE;TALLEQAQIQQEKIEYELQKLE;TALLEQAQIQQEKIEYELQKLAK;TALLEQAQIQQEKIEYELQKLAE;TALLEQAQIQQEKAEYELQKLE;TALLEQAQIQQEKNEYELQKLE;TALLEQAQIQQEKGEYELQKLE;TALLEQAQIQQEKAEYELQKLAK;TALLEQAQIQQEKNEYELQKLAK;TALLEQAQIQQEKGEYELQKLAK;TALLEQAQIQQEKAEYELQKLAE;TALLEQAQIQQEKNEYELQKLAE;TALLEQAQIQQEKGEYELQKLAE;DEFDASISQVNEKINQSLAFIRKSDELL;DEYDASISQVNEKINQALAYIREADEL;DEYDASISQVNEEINQALAYIRKADEL;DEFDESISQVNEKIEESLAFIRKSDELL;DEFDESISQVNEKIEESLAFIRKSDEL;或QHWSYGLRPG.
10.权利要求9的杂合肽,其中所述的增强肽序列连接在核心肽的氨基端。
11.权利要求10的杂合肽,进一步包含一连接在核心肽羧基端的增强肽序列。
12.权利要求9的杂合肽,其中所述的增强肽序列连接在核心肽羧基端。
13.权利要求9的杂合肽,其中所述的增强肽序列包括WQEWEQKI或WASLWEWF。
14.权利要求9中的杂合肽,其中所述的增强肽序列含下述氨基酸WQEWEQKITALLEQAQIQQEKNEYELQKLDKWASLWEWF,WQEWEQKITALLEQAQIQQEKIEYELQKLIEWEWF或VYPSDEYDASISQVNEEINQALAYIRKADELLENV.
15.权利要求14中的杂合肽,进一步包含一氨基端乙酰基和一羧基端酰胺基。
16.一种核心肽,其中包含YTSLIHSLIEESQNQQEKNEQELLELDK;LEENITALLEEAQIQQEKNMYELQKLNS;LEANISQSLEQAQIQQEKNMYELQKLNS;NNYTSLIHSLIEESQNQQEKNEQELLEL;DFLEENITALLEEAQIQQEKNMYELQKL;RYLEANISQSLEQAQIQQEKNMYELQKL;RYLEANITALLEQAQIQQEKNEYELQKL;NNYTSLIHSLIEESQNQQEKNEQELLELDK;TALLEQAQIQQEKNEYELQKLDK;TALLEQAQIQQEKNEYELQKLDE;TALLEQAQIQQEKNEYELQKLIE;TALLEQAQIQQEKIEYELQKLDK;TALLEQAQIQQEKIEYELQKLDE;TALLEQAQIQQEKIEYELQKLIE;TALLEQAQIQQEKIEYELQKLE;TALLEQAQIQQEKIEYELQKLAK;TALLEQAQIQQEKIEYELQKLAE;TALLEQAQIQQEKAEYELQKLE;TALLEQAQIQQEKNEYELQKLE;TALLEQAQIQQEKGEYELQKLE;TALLEQAQIQQEKAEYELQKLAK;TALLEQAQIQQEKNEYELQKLAK;TALLEQAQIQQEKGEYELQKLAK;TALLEQAQIQQEKAEYELQKLAE;TALLEQAQIQQEKNEYELQKLAE;TALLEQAQIQQEKGEYELQKLAE;DEFDASISQVNEKINQSLAFIRKSDELL;DEYDASISQVNEKINQALAYIREADEL;DEYDASISQVNEEINQALAYIRKADEL;DEFDESISQVNEKIEESLAFIRKSDELL;DEFDESISQVNEKIEESLAFIRKSDEL;或QHWSYGLRPG.
17.权利要求16中的核心肽,进一步包含一氨基端乙酰基和一羧基端酰胺基。
18.一种用来增强核心肽药动特性的方法,该方法包括将共有增强肽序列和核心肽连接,因此,当其被导入到活体系统中时,同核心肽相比,杂合肽表现为增强的药动特性。
19.权利要求18的方法,其中核心肽为治疗制剂。
20.权利要求18的方法,其中核心肽为生物活性肽、生长因子、细胞因子、分化因子、白介素、干扰素、菌落刺激因子、激素或血管形成因子氨基酸序列。
全文摘要
本发明涉及源自各种反转录病毒包膜(gp41)蛋白序列的增强肽序列,所述蛋白序列能够增强与其相连的核心肽的药动特性。本发明部分上基于以下发现:由增强肽序列和其相连接的核心肽所组成的杂合多肽具有增强了的药动特性,例如增加了半衰期。本发明进一步涉及通过将增强肽序列同核心肽相连,达到增强任何核心肽药动特性的方法。本发明所使用的核心肽包括任何在药物学上有用的肽,例如,用作治疗或预防制剂的药物学上有用的肽。
文档编号A61P31/04GK1310626SQ99808936
公开日2001年8月29日 申请日期1999年5月20日 优先权日1998年5月20日
发明者S.巴尼, K.I.古斯里, G.梅鲁特卡, M.K.安维尔, D.M·拉姆博特 申请人:特莱默里斯公司