用于螺旋扫描立体计算的x断层照相系统的改进的探测器阵列的几何形状的利记博彩app

文档序号:1071884阅读:313来源:国知局
专利名称:用于螺旋扫描立体计算的x断层照相系统的改进的探测器阵列的几何形状的利记博彩app
相关的申请本申请对1997年7月1日申请的60/051,409号U.S.(美国临时申请)的权益提出要求,并将其内容并入此处,以作参考。
本发明的背景在现代计算的X断层照相(CT)扫描仪系统中,一个X-射线源生成一个探询物体的X-射线光束,并入射于一个传感器阵列。在第三代CT系统中,能量源和传感器阵列安装在一个围绕物体旋转的台架上。按逐步递增的台架的旋转角对物体的连续的投影集加以记录。在台架完成一次半旋转("半扫描"系统)或一次全旋转("全扫描"系统)之后,把来自连续旋转角度的数据结合于一个名为重构的过程,以创建物体的一个横断面图象。在一个静态扫描配置中,每次扫描期间,物体固定在相应的位置上。然而在一个平移扫描或"螺旋"扫描中,物体和台架在旋转扫描期间互相相对平移,并改进了系统的处理能力。
在一个传统的二维CT扫描仪中,如先有技术

图1中所示,X-射线光束51在位于点源54和传感器阵列52之间的一个平面的扇形50中传播。传感器阵列52包括一个一维探测器元件53阵列。扇形光束50叫做"平移轴扇形",因为这一扇形的平面与旋转轴(即z轴)相垂直。一个二维图象重构过程收集处于每一旋转角的初始数据,在一次半扫描或全扫描之后,这些数据将转换成物体55的一部分的一个平面象素图象,X-射线将流经这一物体。每次扫描后,可将物体沿z轴平移,以生成物体55的相邻的横断面图象或"切片",可以把这些横断面图象或"切片"组合在一起,以产生一个三维的图象。
在一个三维的CT扫描仪中,如先有技术图2中所示,在点源54处生成的锥形X-射线光束61(也叫做"锥形光束"),沿光束轴y穿过物体55投影,并入射于一个二维的传感器阵列63。阵列63包括多行探测器56(行1…M)和多列探测器62(列1...N),它们位于于一个柱面58上。在这一配置中,X-射线锥形光束61不仅沿xy平面岔开,而且也沿z轴岔开。
每一个锥形光束61由多个平移轴扇形光束层组成,其中的三个由60A、60B以及60C加以指示。每一个平移轴光束定义在X-射线点源54和1...M行探测器元件56A、56B以及56C之中的某一行之间。注意,平移轴扇形光束60B例外,它沿xy平面布置,余下的平移轴扇形光束,例如光束60A、60C,不垂直于旋转的z轴,因此并不是最严格意义上的"平移轴"。即其余的每一扇形光束,例如光束60A或60C都相对xy平面以一个很小的倾斜角β,这一倾角叫做"锥形角",如先有技术图3所示。在这一定义中,沿xy平面投影的平移轴扇形光束60B,可视为一个拥有0°锥形角的平移轴扇形光束。
X-射线点源54和探测器元件62的1...N各列也定义了"轴"扇形光束,其中的三个由符号64A、64B和64C指示,如先有技术图4中所示。每一个轴扇形光束64位于于一个平行于旋转轴的平面。探测器j0列的扇形光束64B例外,它直接在yz平面上布置,所以能穿过z轴以所有旋转角加以投影。余下的1...N列的轴扇形以一个"轴角"γ从yz平面岔开。可把沿yz平面投影的中心轴扇形光束64B视为一个拥有0°轴角γ的轴扇形光束。当处于旋转状态时,将会在台架的一系列连续旋转角中的每一个角位置提供一组线投影。在xy平面上所测得的一个线投影的角叫做该投影的一个视角。因而,在旋转角θ位置,处于轴角γ处的每一轴扇形光束中的线投影将与处于相同角度的视角φ=θ+γ处的轴扇形光束中的线投影相关联。
在实践中,传统的二维重构算法不适用于根据一个二维探测器阵列所收集的锥形光束数据来重构三维立体图象。三维锥形光束数据不能沿z轴精确地分解为独立的平行层,以插进二维重构,因为如上所述的每一扇形光束都位于相对于z轴的一个锥形角β位于于z轴。所以对于每一扇形光束数据集来说,使用这样的数据执行二维重构将会导致重构误差,但沿xy平面的中心扇形光束60B例外。当锥形角β加大时,重构误差也相应增大。一种叫做"针对静态扫描配置的锥形光束重构"的更精确的三维重构技术描述于1.L.A.Feldkamp、L.CDavis以及J.W.Kress所著的"实际的锥形光束算法",1984年6月刊载于J.Opt.Soc.Am.A,第1卷,第1号,第612页。
上述的讨论适用于扫描一个相对z轴静态不动的物体。在另一种技术上叫做"螺旋扫描"的扫描形式中,物体和台架沿一个平移轴相互间相对平移(典型的情况为,物体相对台架平移),通常平行于z轴,并在台架旋转期间保持常速。从物体的角度来看,可认为在数据收集间X-射线源和传感器是以螺旋轨道围绕着物体加以旋转的。在一个具有单行探测器的传统系统的螺旋扫描过程中,首先把投影数据插值于每一切片的z位置,以生成切片的平面图象,并把这些平面图象沿z轴连续定位。可对连续的切片加以组合,供各种三维显示模式进一步加以处理。然而令人感到遗憾的是,在一个锥形光束系统中,z轴平移将会导致所收集到的数据进一步偏离那些标准二维或三维重构技术所要求的数据。因此,一个锥形光束系统的螺旋扫描所引发的重构误差,将高于静止扫描所引发的误差。用于锥形光束螺旋扫描的重构与增强方法描述于2.1994年3月1日授权给A.H.Pfoh的美国5,291,402号专利"螺旋扫描计算的X线断层照相装置";3.1994年12月27日授权给H.Hu的美国5,377,250号专利"具有多行探测器阵列的螺旋扫描计算的X线断层照相装置的重构方法";4.1995年7月4日授权给H.Hu、N.J.Pele以及A.HPfoh的美国5,430,783号专利"具有使用重叠光束的多行探测器阵列螺旋扫描计算的X断层照相装置的重构方法";以及5.D.L.Parker所著的"用于扇形光束CT的最佳短扫描旋转重构",于1982年3/4月刊载于Med.Phys第9卷,第2号,第254页。
在上述的这些参照中,为了在所扫描的区域上重构立体图象,数据在台架进行一次完全旋转,即"全扫描"过程中加以收集的。然而,也可以根据在台架的半旋转,即"半扫描"过程中所收集到的数据对图象进行重构。半扫描图象处理具有双倍于全扫描吞吐率或"螺旋线间距"的优点,其中"螺旋线间距"是物体在台架的全旋转期间沿z轴平移的范围。在一个静态锥形光束系统中,全扫描重构技术提供的图象一般优于半扫描重构技术所提供的图象,其原因在于在全扫描过程中,在视角φ和φ+π处的轴扇形光束66、68分别以相反的方向岔开,如先有技术图5A中概略加以描述的。当把数据与来自其它相反视图的数据重新加以排序时,将有助于抵消某些重构误差。另一方面,在半扫描的每一视角φ处,不存在处于视角φ+π处的相应的可提供物体同一区域的相反视图的扇形光束68。
在先有技术图5B所示的螺旋扫描中,分别在视角φ和φ+π处的相反的轴扇形光束66和68不对应于同一z位置。因此,与静态全扫描相比,螺旋全扫描包含更大的重构误差。无论在全扫描还是在半扫描锥形光束系统中,重构误差都将会随轴X-射线光束岔开度的增加而增长。如果使用更多的探测器行56,或如果每一行的宽度增加,则重构的误差将会变得更大,因为增大了锥形角β的角度。
发明概述本发明旨在提供一种可用于锥形光束重构的改进的方法与装置,这一改进的方法与装置将可克服先有技术的诸多限制。本发明提供了一个改进的探测器阵列配置,它具有一种更有利的几何形状,从而可提供对在锥形光束重构期间所获数据的更有效的使用。
在第一种方式中,本发明包括了一个可重构物体立体图象的计算的X线断层照相系统,这一系统包含一个用于放射锥形光束的能源,锥形光束以光束轴为中心穿过物体朝一个探测器阵列的方向加以放射。源和探测器阵列可围绕物体加以旋转,以便当物体和光束沿一个正交于光束轴的平移轴互相相对平移时,在连续的各视角处对物体加以探询。探测器阵列包括一组传感器元件,这些传感器元件以一系列相互正交的行、列加以排列,并定位在光束路径上。它们可在光束轴上,以一个倾角α(这里α≠0)加以旋转。在这一方式中,列在扫描期间位于相对平移轴的倾角α处(其中α≠0)。
在一个推荐的实施例中,倾角α是作为物体的相对平移的平移速率的一个函数或作为源和探测器阵列围绕物体旋转的旋转速率的一个函数加以确定的。一个推荐的具体方案还将包括一个托板,用于安装探测器阵列,以允许对倾角α有选择地进行调整。更可取的做法是,托板可由电机加以驱动,以便能够在一定的范围内对倾角α加以选择。探测器阵列可包括一个平面阵列或定形为位于一个以穿过源的轴为中心的柱面上的阵列。
在第二种方式中,本发明包括一个改进了的用于计算的X线断层照相系统的探测器阵列,以重构一个物体的立体图象。该系统包括一个用于放射锥形光束的能源,锥形光束以光束轴为中心穿过物体朝一个探测器阵列的方向加以放射。源和探测器阵列可围绕物体加以旋转,以便当物体和光束沿一个正交于光束轴的平移轴互相相对平移时,在连续的各视角处对物体加以探询。改进了的探测器阵列元件以一系列相互正交的行、列加以排列。一个托板把探测器阵列定位在以可变倾角α围绕着光束轴的光束路径中,以便在扫描期间各列能够以倾角α相对于平移轴加以布置。在一个推荐的实施例中,倾角α变化在-5和+5度的范围之间。
在第三种方式中,本发明包括一个改进了的用于计算的X线断层照相系统的探测器阵列,以重构一个物体的立体图象。该系统包括一个围绕该物体与阵列成旋转关系的源,以便当物体和源沿一个正交于旋转平面的平移轴互相相对平移时,在连续的各视角处对物体加以探询。探测器阵列包括一个二维的探测器元件阵列,其中的探测器元件以行、列的形式加以排列。这一探测器阵列关于平移轴呈非对称形状。
在第一种推荐的实施例中,探测器的各列垂直于探测器的各行,以便元件处于正交关系。在这一配置中,对处在顶行和底行中的探测器元件部分地予以减少,与/或在阵列的相反的角落部分地予以添加,以提供一个具有较大螺旋断面的阵列。
在第二种推荐的实施例中,阵列中的每一个探测器列沿平移轴相对于中心列位移一个量ΔZ。ΔZ可以由系统螺旋线间距或(j-jo)*δ*D*R/(π*r)所确定。在(j-jo)*δ*D*R/(π*r)中,j是列号,jo是中心列号,δ是行之间的角度间隔,D是在系统旋转π角期间的平移距离,R是探测器阵列与X-射线源的径向距离,r是旋转中心距X-射线源的径向距离。
在第三种推荐的实施例中,探测器各列的一个子集的元件沿平移轴相对于中心列元件延伸。探测器元件可以随距中心列距离的增长而不断延伸。
在上述的每一种实施例中,探测器阵各列和各行的元件可位于于一个柱面上。另外,列和源之间的距离可作为列相对于探测器中心列的位置的一个函数逐渐减小。
本发明适用于一种采用叫做"常数-z插值"的重构技术的系统。"常数-z插值"重构技术描述于美国的09/038,320号专利申请"具有多探测器行的螺旋扫描计算的X断层照相系统中重构立体图象的方法与装置"。这一专利于1998年3月11日申请,现并入此处以作参考。本发明还适用于叫做"逐步近似法"的改进的重构技术,这一技术描述于美国的09/066,494号专利应用"在锥形光束计算的X断层照相系统中使用逐步近似法重构立体图象",这一专利于1998年4月24日申请,现并入此处以作参考。
附图的简要描述通过对本发明所推荐的实施例的更具体的描述,本发明上述的及其它目标、特性以及优点将会变得十分明显。如附图中所示,其中同样的参照字符将适用于所有不同视图中相同的部件。这些图并不严格符合实际装置的比例,而主要是为了说明本发明的基本原理。
先有技术图1描述了一个X-射线源和一个单行探测器,它们定义了在一个先有技术的传统的计算的X断层照相系统中垂直于旋转z轴的平移轴扇形光束。
先有技术图2描述了一个X-射线源和一个多行探测器阵列,它们定义了在一个先有技术的锥形光束X线断层照相系统中的多个平移轴扇形光束和多个轴扇形光束。
先有技术图3描述了图2所示系统的平移轴扇形光束,每一平移轴扇形光束指向一个不同的探测器行,并拥有一个2γmax的平移轴扇形角,以锥形角β相对于xy平面布置。
先有技术图4描述了图2所示系统的轴扇形光束,每一个轴扇形光束指向一个不同的探测器列,并拥有一个2βmax的轴扇形角,以角γ相对于yz平面布置。
先有技术图5A描述了一次静态扫描中处在视角φ和φ+π位置的相反的轴扇形光束。
先有技术图5B描述了一次螺旋扫描中处在视角φ和φ+π位置的相反的轴扇形光束。
图6是对符合本发明的根据平移轴扇形光束投影重新加以排序的平行投影的一个图示说明。
图7是对符合本发明的一个平移轴扇形光束的几何形状和相应投影路径中间点的图示说明。
图8是对符合本发明的图7所示投影路径中间点图示说明的一个俯视图。
图9是对符合发明的图7所示投影路径中间点轨迹的一个侧视图的图示说明。
图10A是对符合本发明的中心探测器列jo的锥形角的图示说明。
图10B是对符合本发明的探测器的第j列的锥形角的一个图示说明。
图11是对符合本发明的在常数-z插值之前和之后第一和最后一行投影数据z位置的一个图示说明。
图12是对符合本发明的一条投影路径距中心投影的空间距离和角度距离的一个图示说明。
图13A、13B以及13C是对符合本发明的相对于z轴平移的、来自一系列视角的轴投影的图示说明。
图14是对符合本发明的针对中心探测器列的常数-z插值投影Sij(φ)的分布状况的图示说明。
图15是对符合本发明的针对定位在距中心列一段距离处的一个探测器列的常数-z插值投影Sij(φ)分布状况的图示说明,图中把cij做为便于插值的中间点。
图16是对符合本发明的针对定位在距中心列一段距离处的一个探测器列的常数-z插值投影Sij(φ)分布状况的图示说明,图中把bij做为便于插值的中间点。
图17是对符合本发明的相反的轴扇形的图示说明,其中W是重叠区域的宽度,并画出了一条限定每一针对背面投影的扇形范围的分隔线。
图18是对符合本发明的固定在物体空间中的一个坐标系(x′,y′,z′)中的物体的一部分的重构的图示说明以及对背面投影第一阶段插值的几何形状的图示说明。
图19、20A以及20B是对符合本发明的背面投影第二阶段插值的几何形状的图示说明。
图21A是对称柱面探测器阵列的一个例子的透视图,该例子包括7行31列探测器元件,适用于使用以上所描述的符合本发明的技术对物体进行X线断层照相图象处理。
图21B是以二维形式画出的图21A所示的柱面探测器阵列。
图22A是对图21A和21B所示探测器阵列的图示说明,但根据本发明,其中减少了不需要的探测器元件,例如那些无益于提高图象质量的探测器。
图22B是对符合本发明的一个探测器阵列的图示说明,其中阵列的活跃区域中添加了附加的探测器元件。
图23是对符合本发明的一个探测器阵列的图示说明,其每一列沿平移轴拥有一个相对z位置位移。
图24描述了在常数-z插值前和插值后来自图23所示探测器阵列的第一行和最后一行投影数据的相对z位置。
图25是对符合本发明的一个探测器阵列的图示说明,其每一列沿平移轴拥有一个相对z位置位移和延伸。
图26是符合本发明的一个探测器阵列的俯视图,其具有依赖于列的距X-射线源的距离。
图27A是对符合本发明的图21所示的一个标准对称探测器阵列的透视图,该阵列围绕y轴以一个很小的倾角α加以旋转。
图27B是以二维形式画出的图27A所示的符合本发明的倾斜的探测器阵列。
图28是对图27A和图27B所示的一个倾斜的平移轴扇形的扇形角γ和在xy平面上所测得的相应的扇形角γa的图示说明。
图29是对两个探测器列的定位的图示说明,这两个探测器列拥有用于生成垂直轴扇形的倾斜的轴扇形和相应的插值定位。
图30是对与垂直轴扇形的i行j列处定位相关的维度以及处在倾斜的探测器阵列的i行q列处的相应的探测器的图示说明。
图31是对一个倾斜的平移轴扇形的扇形角γ和在xy平面测得的相应的扇形角γa(考虑到探测器阵列的圆形柱面几何形状)的图示说明。
图32是对一个倾斜的柱面探测器阵列的三维几何形状以及垂直的j列和处在i行q列处的探测器之间的关系的图示说明。
图33是对一个倾斜的柱面探测器阵列的i行和q列处的探测器的z位置的图示说明。
对所推荐实施例的详细描述Ⅰ.概述如人们所知,在一个传统的静态、单行探测器、半扫描的计算的X线断层照相系统中,精确重构所需的平移轴扇形光束数据,取决于π半扫描旋转旋角加一个附加的2γmax角(是扇形光束的角开度),如以上所引用的Parker的专著中所描述的。若不使用额外的2γmax角,则在启动旋转角θ附近或在完成旋转角θ+π附近,某些投影将不会出现,而另外一些投影将会重复出现(双重采样的)。额外的2γmax扫描角可确保在启动和完成角附近不缺乏用于重构的投影。对于这些双重采样数据的存在,在启动角θ位置的扇形左侧的每一投影与在相反的角θ+π位置的扇形右侧上的一个平行的投影将成对儿出现,即它们将沿穿过物体的同一路径以相反的方向加以投影。通过适当的加权来均衡相反的投影,可对这一冗余性加以补偿,以便能够对所有数据充分加以利用和最小化启动与完成角之间的不连续性。
对于具有多行探测器的锥形光束系统的螺旋扫描来说,这一现象要复杂的得多,其中每一成对儿出现的冗余投影是从处于不同行中的探测器加以收集的。尽管在xy空间投影是平行的(其中z维度不予考虑),但它们相对于z轴的角度不同,因为不同的探测器行拥有不同的锥形角β。为此,与具有单行探测器的传统系统相比,在锥形光束系统中,加权冗余投影的补偿技术效率偏低。而且,与静态全扫描也不相同,在静态全扫描中X-射线相对于被扫描的物体在第一和第二半旋转过程之间对称地分岔,但锥形光束螺旋扫描缺乏这样的对称性。
本发明可满足人们对一个针对在螺旋半扫描期间所收集到的数据的改进的锥形光束重构技术的需求。这一新的技术避免了扇形光束重构算法的不良影响,并可生成一个更精确的三维图象。与此同时,它还可通过对xy空间平行光束背面投影的使用,减少所需的计算量。
在本发明的改进的技术中,首先把所收集到的数据作为在每一探测器处感应到的信号强度的对数的一个函数转换成投影,然后按照人们所熟悉的计算的X断层照相技术对位移、非线性以及其它需要加以校正的因素进行一定程度的校正。根据附近的旋转角,把扇形光束投影(对于每一探测器行)重新排序成平行光束投影Rij(φ),如图6所示。在每一平行光束视角φ处,重新加以排序后的投影在xy空间中是互相平行的。然而,由于投影Rij(φ)是根据不同的扇形光束旋转角重新加以排序的,所以在一个视角φ中的平行光束投影处在相对于沿z轴或平移轴方向平移的物体的不同的z位置上。本发明通过一个在此处叫做"常数-z插值"的过程,把从探测器阵列的同一探测器列或通道而不是从不同行获得的投影,插值于常数z位置来补偿这一点。
对常数-z插值的平行光束投影的取样,是以每行相等的角度间隔进行的。为准备进行过滤的背面投影,把来自每一探测器行的投影插值为相等的空间间隔。然后,一个旋转内核(convolution kernel)针对每一探测器行对相等空间间隔的投影加以过滤,过滤的方式类似于对来自平行光束投影的一个二维图象的重构旋转。
在重构的最后阶段中,使用三维背面投影技术对旋转的平行光束投影进行背面投影。在这一所推荐的配置中,对于φ的每一值,把处于平行光束视角φ和φ+π处的所有投影行加以组合,以对所扫描的三维象素进行背面投影。每一个三维象素是根据处在视角φ或φ+π处并穿过这一三维象素的旋转投影加以背面投影的。由于三维象素并不精确地定位在一个投影的路径上,因此用以向一个三维象素进行背面投影的值是根据相邻的投影加以插值的。
在接下来的描述中,将假定锥形光束从一个点源向一个二维探测器阵列加以发射,并假定探测器阵列位于于一个其中心为穿过源的一个轴的柱面上。另外还假设探测器的各列平行于旋转轴或z轴布置,并垂直于xy平面。本发明同样适用于其它可以想象的螺旋扫描几何形状。然而,为了便于以下的说明,仍将沿用上述的假设。注意,对于本发明来说,术语"通道"指的是一个给定探测器行中的一个探测器元件,而术语"列"指的是相邻探测器行(即平行于旋转轴的)中的一列通道(或元件)的一个排列。
Ⅱ.从扇形到平行光束对投影重新加以排序现参照各附图将更详细地描述把从每行探测器收集来的扇形光束投影重新排序成独立于其它行的平行光束投影的最初步骤。假设Pij(θ)代表从位于扇形光束旋转角θ处第j列第i行探测器那里获得的一个线投影的幅度度Rij(φ)代表在平行光束视角φ处第i行第j列中重新加以排序的幅度,那么Rij(φ)=Pij(φ-(j-jo)*δ)(1)其中δ代表相邻列之间的角度间隔,jo代表中心列。如果探测器阵列拥有M行,每行N列或探测器通道,那么i=1,2,...Mj=1,2,...Njo=(N+1)/2(2)假设探测器阵列63(参见图7)是关于旋转轴对称的。因为平移轴扇形的扇形角是2γmax,所以
δ=2γmax(N-1)(3)把角度间隔δ与扇形角关联起来。
在一次扫描期间,台架围绕z轴旋转,数据在台架旋转角θ=θk=k*Δθ(4)的连续的间隔加以收集。其中k是一个整数,Δθ是连续扇形光束投影之间的台架旋转角的增量。
如所推荐的,假设所选择的平行光束视角φ拥有同样的旋转角增量Δθ,那么φ=φm=m*Δθ,其中整数m=0,1,2,...。如果数据是在增量旋转角等价于列之间的角度间隔,即Δθ=δ这样的速率下获得的,那么方程1变成Rij(φ)=Pij((m+jo-j)*Δθ)=Pij(θk)(5)其中k=m+jo-j。
在方程5中,由于(m+jo-j)是一个整数,所以重新加以排序的投影Rij(φ)可以根据处在连续扇形光束旋转角处的Pij(θk)加以获得。
在连续的扇形光束投影之间的增量旋转角大于角的列间距的情况下,即Δθ>δ或Δθ>a*δ(其中a>1)的情况下,方程1变成Rij(φ)=Pij((m+(jo-j)/a*Δθ)=Pij(θka),ka=m+(jo-j)/a(6)在这一情况下,ka不是一个整数,除非(jo-j)可为a整除。
令k≤ka<k+1,其中k是ka的截断整数,余数f=ka-k。这将得到θka=θk+f*Δθ,其中0≤f<1(7)如果使用线性插值,把方程6和7组合在一起,则重新加以排序的投影Rij(φ)可计算为Rij(φ)=(1.0-f)*Pij(θk)+f*Pij(θk+1)(8)
因此,方程8适用于一个增量旋转角大于角的列间隔(即Δθ>δ)的系统中的重新加以排序的投影Rij(φ)的推导。与此同时,方程5适用于那些增量旋转角与角的列间隔相等(即Δθ=δ)的系统。
Ⅲ.常数-z插值图6中所描述的针对处于视角φ处所有通道j的最终的重新加以排序的投影Rij(φ)是互相平行的,因为它们是从同一行i的探测器推导出来的。然而,它们不平行于根据其它行i′的重新加以排序的投影Rij(φ),原因在于行i和行i′之间的锥形角不同,而且沿z轴的每一个重新加以排序的投影的定位是依赖于列的,因为在一螺旋扫描期间,每一个投影是根据处在不同z位置处的同一探测器的一个扇形光束重新加以排序。精确的旋转(较后将作为背面投影过程的一个前身加以执行)要求重新加以排序的投影位于或几乎位于于所选择的用以旋转的切片的平面上。为此,针对行i的重新加以排序的投影Rij(φ)(在xy空间中平行,但z位置明显分离)得以插值,或换句话说,得以重新取样到一组仍在xy空间平行而不是在重构切片的常数z位置处平行的投影。
在本发明的下一阶段,在一个叫做常数-z插值的过程中,同一列内的重新加以排序的投影用于在一个常数z位置处生成投影,因此适用于旋转结构。在常数-z插值完成之后,尽管所有列的插值的重新加以排序的投影并不严格垂直于z轴(即它们的锥形角在变化),但对处于每一视角φ处的每一插值的行i来说,所有列的插值的重新加以排序的投影将对应于一个常数z位置。
除相应于中心探测器行io的投影路径外,无其它投影路径严格垂直z轴。因此,每一投影的z坐标沿其在源和探测器元件之间的路径变化。选择一个叫做投影路径"中间点"的参照点来代表投影的z位置,并把这一"中间点"定义为投影路径和一个通过z轴并正交于投影路径的一个平面(或,更精确地说,一个通过z轴并正交于含有投影的轴扇形的平面)之间的交点。注意,一条投影线的中间点不必是源和探测器的中间位置,也不必相应于旋转轴。中间点的z坐标定义了投影路径的z位置。相同轴扇形(即同一例)的投影的中间点位于沿一条平行于z轴的线上布置,而从同一平移轴扇形(即同一行)导出的投影的中间点,位于一条略微偏离一圆弧的曲线上。
图7显示了一个平移轴扇形上的各中间点的轨迹,并将它们标记为c1,...cN,相应于探测器行84中的探测器通道1...N。图8显示了中间点c1...cN的俯视图,其中,一个投影路径,例如Aj,是从垂直于xy平面的轴扇形的中心探测器行导出的。以探测器列j为例,cj是投影路径Aj的中间点,bj布置在圆弧83上,圆弧83以X-射线源为中心,并通过z轴。对于中心探测器列jo的投影Ajo来说,中间点Cjo相交于圆弧83,并与旋转中心O相重合。对于其它探测器通道来说,从X-射线源82到中间点cj的距离aj略短于圆弧83的半径。距离aj可表示为aj=r*cos(γ)=r*cos(j-jo)*δ)(9)如先前所定义的,其中jo是中心探测器的列号,δ代表角度间隔。
图9说明了在yz平面上来自第j个轴扇形的中间点的轨迹,显示了投影路径Aij的中间点cij及其相应的z坐标zij,其中,下标i表示行1...M中的第i探测器行的投影。相应于图8的bj的点表示为bij,它的坐标是hij。假定柱面探测器阵列63是以X-射线源为中心的,并假定探测器阵列63以及旋转中心O到X-射线源的径向距离分别叫做R和r。假定第i探测器行的z轴位置是Hj,于是图9中的点bij的z坐标可计算为hij=Hj*r/R=hj(10)对于同一行中的所有探测器通道来说这一坐标是相同的,因此,下标j可予以忽略。如果相邻探测器行之间的空间间隔由ΔH加以表示,那么连续行之间的hij的z坐标增量是Δh=ΔH*r/R(11)因此点bij的z坐标hij可表示为hij=hi=(i-io)*Δh(12)其中io是中心行号。
根据图9的几何形状,中间点cij的z坐标zij可以计算为距离aj相对于hij与半径r的一个比例zij=hij*aj/r(13)假设在台架旋转π角期间,物体平移一段距离D,等价于一次螺旋扫描的2D的螺旋线间距,扇形光束投影Pij(θ)的z位置是zij(θ)=zij+θ*D/π(14)其中θ代表旋转角。把方程12~14组合起来zij(θ)=(i-io)*Δh*aj/r+θ*D/π(15)使用方程1中的关系θ=φ-(j-jo)*δ,重新加以排序的平行光束投影Rij(φ)的z位置zij(φ)可以写成zij(φ)=(i-io)*Δh*aj/r+(φ-(j-jo)*δ)*D/π(16)使用方程16中给定的每一投影路径的z位置,可从沿z方向的相邻的行对重新加以排序的投影Rij(φ)进行插值,以便插值后的投影Sij(φ)拥有针对每一行的一个常数z位置。假定所选定的常数z位置等于中心列jo的z位置zijo(φ)=(i-io)*Δh+φ*D/π(17)其中,对于中心列jo,aj=ajo=r,j=jo。
如果i′是具有这一z位置的列j中的相应的行号,那么把方程16和17结合在一起可得(i′-io)*Δh*aj/r+(φ-(j-jo)*δ)*D/π=(i-io)*Δh+φ*D/π或i′=i+(j-jo)*δ*D*r/(Δh*aj*π)(18)其中aj是由方程9给定的。注意,方程18独立于平行光束角φ,因此,将针对每一视角按严格相同的方式对投影进行插值。
一般说来,i′不是一个整数。令k是i′的截断整数,即i′=k+fk,(19)其中0≤fk<1.0。如果使用线性插值,常数-z插值的投影Sij(φ)可根据重新加以排序的投影的两个相邻的行k和k+1行计算为Sij(φ)=(1.0-fk)*Rkj(φ)+fk*Rk+1,j(φ)(20)为了获得更精确的结果,建议采用更高阶的插值方法对Sij(φ)进行计算。
尽管常数-z插值的投影Sij(φ)的每一行代表了在一个常数z位置处的xy空间中的平行光束投影,但在三维空间中它们并不真正平行,因为每一投影都拥有一个不同的锥形角β,这一锥形角β指的是投影路径和xy平面之间的角β。针对每一投影Sij(φ)的锥形角可通过返回到图10A和10B所示初始几何图形加以发现,图10A和10B分别描述了针对探测器行i的中心探测器列jo和第j探测器列的锥形角βij。就hi和r而言βi=tan-1(hi/r)(21)对于同一平移轴扇形中初始扇形光束投影Pij的所有通道来说,锥形角βi都是相同的,因为hij=hijo=hj。
由于每一行重新加以排序的平行光束投影Rij都是根据处在不同的旋转θ处的同一行扇形光束投影Pij重新加以排序的,所以它们中的每一个都拥有相同的锥形角βi。把方程12和21结合在一起,可以得到βi=tan-1(i-io)*Δh/r)(22)由于常数-z插值的投影Sij(φ)是根据平行光束投影Ri’j(φ)加以插值的(其中i′依赖于通道j),所以Sij(φ)的锥形角βij随行号i以及列号j的不同而不同。对于第i行中的第j列,Sij(φ)的锥形角是βij=tan-1((i′-io)*Δh/r)。
根据方程18替换i′,锥形角变成βij=tan-1((i-io)*Δh/r)+(j-jo)*δ*D/(aj*π)(23)如果对于所有行中的所有探测器,锥形角βij均为0,则重构将会象在传统系统中一样精确。非0的锥形角βij向图象引入了重构误差。然而,无论锥形角在同一行中是相等的,还是随通道到通道逐步变化的,在重构误差范围内,这一误差并无太大的差别,如方程23所示,只要各锥形角的大小处于同一范围内即可。重构误差主要由投影路径偏离重构的切片平面的大小程度所决定,而不管这一偏离是出现在同一视图中还是出现在不同的视图中。
由于常数-z插值的投影Sij是根据重新加以排序的投影Rij加以插值的,因此,与重新加以排序的投影Rij相比,插值的Sij在z维度中拥有一个较小的位置范围。图11是对在视角φ处的Rij和Sij的第一行90和最后一行92的z位置的一个标绘。假定相邻的行之间拥有相同的间隔,则为了使所有列均拥有有效的插值的投影Sij,常数-z插值的投影Sij的行数必须小于重新加以排序的投影Rij的行数。如果Rij的初始行数是M,且Sij的减少后的行数是m,则针对一次全扫描或一次半扫描的最长的平移距离D将为D=m*Δh(24)其中m<M。于是,为了确保所有插值的常数z-投影Sij处于扫描范围之内,建议把全扫描系统的最大螺旋线间距设置为D,如方程24中所给定的,把半扫描系统的最大螺旋线间距设置为2D。
Ⅳ.针对相等空间间隔的插值对于一个柱面的探测器阵列,插值的常数-z投影Sij(φ)是根据初始投影导出的,这些投影由平移轴扇形中的一个常数角间隔δ加以分隔,如方程3中所给出的。尽管初始投影已在xy空间重新排序成平行的投影Rij,但相邻投影之间的空间间隔是不相等的,这与所推荐的平行光束重构技术相反,在平行光束重构技术中相邻投影之间的空间间隔是相等的。因此更取的做法是对常数-z插值的投影Sij(φ)进行二次插值,以便对于每一行最终的相等空间的投影Tij(φ)拥有一个相等的空间间隔d。
为了对具有相等空间间隔的投影Tij(φ)的探测器列j进行插值,在插值的常数-z投影Sij(φ)中的相应的列j′可以根据下列关系加以计算(j-jo)*d=r*sin(j′-jo)*δ)(25)其中,jo是图12中所示的中心列,重新排列方程25,可以得到
j′=jo+sin-1((j-jo)*d/r)/δ(26)更可取的做法是,把中心列及其相邻通道之间的空间间隔,即投影Sijo(φ)和Si,jo+1(φ)之间的空间间隔做为常数d。
基于方程26,可针对处在每一视角(φ)处的每一行i,从插值的常数z-投影Sij′(φ)对相等空间间隔的投影Tij(φ)进行插值。建议把高阶的插值用于这一计算,例如人们所熟悉的4点或6点Everett(埃弗雷特)插值。
Ⅴ.旋转本发明技术的下一个阶段是对等空间间隔投影Tij(φ)的旋转。与单行探测器系统的传统扫描仪中的二维重构一样,等空间间隔投影Tij(φ)是从不同视角处通过低频部件过采样(oversample)的。例如,Tij(φ)的DC部件代表第i行中所有投影的总和,这一总合是由第i行的X-射线光束所辐射到的物体的总量。如果象在二维重构情况中那样,锥形角βij为0,则对于所有视角,每一行中的Tij(φ)的DC部件将是相同的。其它低频部件不象DC部件那样冗余,但依然是过采样的。旋转结构是作为一种高通滤波器加以运作的,它不强调低频部件在二维频率空间针对背面投影进行相等化的取样。
初始的投影不辐射物体的相同的平面,因为视角会因非0的锥形角βij和沿z轴的平移而发生变化。但对于投影Tij(φ)(它们已被插值在一个常数z位置)来说,如果锥形角βij很小,投影仅会稍稍偏离处在那一z位置的xy平面。换句话说,对于很小的锥形角来说,在二维频率空间中的采样近似于零锥形角的情况。对于很小的锥形角来说,使用与传统二维平行光束重构相同的旋转内核是一种很好的近似。
在这一视图,也是本发明所推荐的一个实施例中,使用了一个传统的旋转内核过滤等空间间隔投影Tij(φ),以为处于每一视角φ处的每一行i提供过滤的投影Uij(φ)。过滤的投影Uij(φ)以后将用于背面投影。
为了评价旋转结构的效果,考虑一个不使用旋转结构的背面投影点扩展函数。如果所检测物体的密度数据除单一的某一点外在任何地方均可忽视不计,那么由背面投影所产生的图象的密度将会在这一点处达到高峰,并向周围区域加以分布。适用于该投影的高通旋转内核,强化了这一点扩展函数。尤其是,把这一过滤内核做为一个空间领域中的窄sinc函数。它的振辐在中心处达到高峰,并在两侧迅速衰减。因此,为了使过滤内核正常工作,令附近的投影处于同一平面上将是十分重要的。但在一个远离中心点的定位上的那些投影可能会稍微偏离这一平面,因为它们对高通过滤内核不能很好地做出响应。
Ⅵ.三维背面投影A.概述旋转阶段完成之后,将把过滤后的投影Uij(φ)沿它们相应的X-射线光束路径进行背面投影,以形成一个三维立体图象。由于锥形角βij的存在,一般情况下,每一个三维象素是根据处在不同视角φ处的不同过滤的投影加以背面投影的。由于一个三维象素不严格位于于一个探测器的投影路径上,因此应根据相邻列和相邻行的过滤的投影Uij(φ)对用于向三维象素背面投影的数据进行插值。进而,在一次螺旋扫描中,物体的连续部分沿z方向连续地得以扫描。把数据按一定的顺序进行分组和处理,以便可使立体图象以连续和有序的方式一部分一部分地得以重构。
考察一个随台架旋转并随物体平移的坐标系xyz,可等价地认为,在这一坐标系下,物体正在围绕z轴旋转,而台架正沿z方向平移。图13A、13B以及13C标绘了在这一坐标系下yz平面上的中心列jo的轴投影路径。针对其它列j的轴扇形也沿yz平面,但在不同的x位置上布置。
图13B把来自视角φ、φ+π、φ+2π以及φ+3π位置的投影路径加以叠置。这4个视角的投影数据是当台架的中心分别位于z位置za、zb、zc、zd处时,在每半旋转过程中获得的。这些z位置由一个常数距离D加以分隔,D等于螺旋线间隔的一半或系统每次旋转时平移距离的一半。由于半旋转之差,所以把针对视角φ和φ+2π的路径按反y轴方向(相对于视角φ+π的φ+3π)加以标绘的。
把立体图象划分成m0、m1、m2、m3等...部分,每一部分包括同样数量的物体切片m,但定位在不同的z位置上。图13A是处在多个第一视角0、π、2π以及3π位置处的叠置的投影路径;而图13C代表了重构部分的最后视角π-Δφ、2π-Δφ、3π-Δφ,其中Δφ是视角的角度间隔。这些部分的划分拥有与轴扇形一样的重复。因此,可按同样的方式对每一部分进行背面投影。一个三维矩阵将用于每一部分的背面投影。当利用从0到π-Δφ范围内的视角的叠置投影对三维矩阵进行重构时,可把同一三维矩阵用于重构下一个部分。
例如,针对m1部分的背面投影要求初始视角中的每一列拥有两个中心在zc和zb的轴扇形。在视角φ处,还进一步要求针对中心在za处的轴扇形的数据。于是,对于在一个视角处的每一个部分m0...m3的背面投影,要求每列拥有2~3个轴扇形。通过减少每部分的切片个数而又不改变切片的宽度,把这一需求减少到不多于2个轴扇形是可能的。然而,由于某些计算可在这些切片之间加以共享,所以令数目较少的部分拥有更多的切片,将可对背面投影的整体效率加以改进。
B.轴扇形分隔线的重叠两个叠置的轴扇形(例如扇形100A和100B)之间的界线102可稍微有些重叠,重叠的范围取于把重新加以排序的投影Rij(φ)插值于常数-z投影Sij(φ)的方式,并取决于用于螺旋扫描的螺旋线间距D。如果在台架的一次半旋转过程中,把以上所描述的中间点cij用于测量投影的z位置以及平移距离为D=m*Δh,如方程24中所给出的,那么Sij(φ)的两个叠置的轴扇形将会更完美地得以匹配,而不会在每一探测器列中重叠。这正是把中点cij做为常数z位置插值的参照点的一大优点。
图14和图15分别针对中心探测器列和一个距中心有一段距离的探测器列,显示了Sij(φ)、Sij(φ+π)以及Sij(φ+2π)在yz空间中的分布状况,针对Sij(φ)、Sij(φ+π)以及Sij(φ+2π)的常数-z间隔Δh的定位全都在z轴上。
如果把图9的点bij做为对一个可选实施例中的常数-z插值的参照点,那么请参照图16中对一个其列位置远离中心列的Sij(φ)的分布状况的描述,以作比较。与图15中的基于中间点cij的情况不同,常数-z间隔Δh的定位不位于于xz平面(即非y=0),尽管针对中心列的分布仍旧与图14中所示的相同。常数z位置的较差的分布不仅要求更多的计算量,而且还会导致对靠近边界区域的三维象素的不够精确的背面投影。
当螺旋线间距较短时,例如在D(m*Δh的地方,边界区域102中将会出现重叠。无论使用可使两个叠置的轴扇形的完全匹配的螺旋线间距,还是采用较短的螺旋线间隔进行扫描,都将使用一条跨边界区域的分隔线86,以针对背面投影分隔轴扇形100A和100B。更为可取的做法是,把连接两个轴扇形源82A和82B的线做为这一分隔线,如图17所示,其中具有稍加重叠的区域102。
轴扇形100A或100B的超出这一分隔线86的投影,将不会用于背面投影。例如,对应于重叠区域102A(轴扇形100A的一部分)的那些投影和对应于重叠区域102B(扇形100B的一部分)的那些投影,将不予考虑。在这一排列之下,在重叠区域102A和102B中的投影不是惟一定义的。在一个视角φ处,将把一个三维象素定位在这一分隔线86的任一边,并仅把来自轴扇形那一边的投影值背面投影于该三维象素。
针对不同列的分隔线86互不平行,因为轴扇形的z位置是依赖于列的。假定在一个给定的视角φ处,两个相反的轴扇形源的z位置分别为za和zb,如图17中所示。通过令i=io,并注意在过滤的投影Uij(φ+π)中的列与Uij(φ)中的列顺序相反,则za和zb之间的差可从方程16获得zb-za=D+2δ*(j-jo)*D/π(27)针对zb,用φ+π替代φ,并设i=io,则za和zb之间的中间位置也可以从方程16获得(zb+za)/2=D/2+φ*D/π(28)使用方程27和28,根据zsj=(zb+za)/2-y*(zb-za)/2aj(29)可以把分隔线zsj的z坐标作为y坐标的一个函数计算。在方程29和方程16中,当φ=0时,Uij(φ)的中心列的位置处在z=0处。在zsj=zo-(zb+za)/2-y*(zb-za)/2aj(30)的一般情况情况下,一个位移zo将添加到方程26中。在方程30中zo是在视角φ=0处的za值,aj是由方程9给出的。
C.两阶段的背面投影本发明过程的下一个阶段将涉及一个两阶段的背面投影,每一个阶段均涉及一个插值。第一个插值阶段基于三维象素的x位置,对相应的列jx进行计算,并针对每行叠置的投影,根据相邻的列Uij和Ui,j+1(其中j≤jx<j+1)对过滤的投影值Uijx进行插值。第二个阶段基于每一三维象素的y和z位置,对穿过定位(y,z)的投影的相应的行iz进行计算,并根据Uijx和Ui+1,jx(其中i≤iz<i+1),对投影值Uizjx进行插值。然而,更可取的做法是,把双线性插值的投影Uizjx用于对三维象素的背面投影。
为了重构物体的一部分,使用一个固定于物体空间中的坐标系x′y′z′,如图18所示。假设在代表物体的三维象素的三维矩阵中,在x′y′平面存在m个切片。对于视角φ,这一坐标系针对角φ相对于坐标系xyz围绕z′轴旋转,其中z′轴与z轴重合。相对于台架的一个三维象素的定位,即坐标(x,y),可根据物体坐标(x′,y′)中的三维象素的定位加以计算。z位置不会因旋转而改变,那些来自不同切片的具有相同(x′,y′)定位的三维象素,将拥有相同的(x,y)坐标。
D.第一阶段插值在针对Uijx的x维度中的第一阶段的插值普遍用于传统二维平行光束的重构。如果(x′,y′,z′)是在旋转角φ处的一个三维象素的坐标,那么x=x′cos(φ)+y′sin(φ)y=y′cos(φ)-x′sin(φ)z=z′(31)图18说明了位置在(x′,y′)处的一个三维象素的坐标(x,y)。坐标x转换成了一个相应的列号jx=jo+x(32)其中,jo是中心列号。通过线性插值可以把插值的投影计算为Uijx=(j+1-jx)*Uij+(jx-j)*Ui,j+1(33)其中j≤jx<j+1)。
插值是针对两个叠置的轴扇形加以执行的。换句话说,把方程33用于针对Uijx(φ)100A和Uijx(φ+π)100B的插值,其中100B位于矩阵的z维度。例如,图19中标绘了一列具有相同(x,y)坐标但不同z坐标的三维象素103。在这一例子中,将根据Uij(φ)100A对这些三维象素中的大多数加以背面投影,而处在最高z坐标处的两个三维象素101将根据Uij(φ+π)100B加以背面投影。
E.第二阶段插值在yz空间中针对Uizjk的第二阶段的插值比第一阶段更加复杂。给定一个三维象素的坐标(y,z),必须首先确定穿过该三维象素的投影Uizjx的相应的行号iz。可以从投影Uizjx的z位置计算出这一行号iz,Uizjx的z位置是Uizjx在z轴上的截距。令y1和z1代表所测得的三维象素105A距X-射线源Uijx(φ)的距离,Uijx(φ)从处在一个正的y轴位置ya=ajx处的一个焦点岔开,如图20A中所示。相类似,令y2和z2代表所测得的三维象素105B到X-射线源Uijx(φ+π)的距离,Uijx(φ+π)从处在yb=-ajx的一个负y轴位置处的一个焦点岔开,从这一图可以清楚地看出对于Uijx(φ)y1=ajx-y(34)z1=z-za和对于Uijx(φ+π)y2=ajx+y(35)z2=z-zb当沿z方向对X-射线路径进行测量时,它们是按相等的空间间隔加以分割的。图20B说明了穿过(y1,z1)处的三维象素的Uijk(φ)投影路径。该路径在z轴上的截距是i1-io1=z1*ajx/y1(36)其中io1是Uijx(φ)的中心行号。方程36提供了相对于该三维象素的z坐标增量的行号的增量,Δi1=ΔZ1*ajx/y1(37)如果所选择的矩阵的z维度将具有与X-射线路径在z轴上的截距相同的空间间隔,那么ΔZ1=1。针对Uijx(φ)和Uijx(φ+π)的行增量分别变为Δi1=ajx/y1Δi2=ajx/y2(38)为了快速地加以计算,Δi1和Δi2可以从一个基于y1和y2的查找表中获得。
通过使用j=jx和方程31中y,可根据方程27、28以及30计算出这两个轴扇形之间的分隔线的zsjx的定位。
对于具有0≤z<zsjx的z定位的三维象素,将针对背面投影对轴扇形Uijx(φ)进行插值。插值的行号可从iz=io1+z1*Δi1(39)计算出来。其中z1和Δi1由方程34和38给出。
于是针对背面投影的最后的投影值是Uizjx(φ)=(i+1-iz)*Uijx(φ)+(iz-i)*Ui,jk+1(φ)(40)其中i≤iz<i+1。
对于具有zsjx≤z<m的z位置的三维象素,将针对背面投影对其它轴扇形Uijx(φ+π)加以计算。插值的行号可从iz=io2+z2*Δi2(41)计算出来。其中io2是Uijx(φ+π)的中心行号。针对背面投影的最后的投影值是Uizjx(φ)=(i+1-iz)*Uijx(φ+π)+(iz-i)*Ui,jx+1(φ+π)(42)其中i≤iz<i+1。
Ⅶ.改进的探测器阵列几何图形以上的文字描述和图示说明均基于一个对称的柱面探测器阵列,在以下的描述中将把这一阵列叫做标准几何形状探测器阵列。其它几何形状的探测器阵列也是可能的,但最好能对它们进行适当的修改。
例如,对于图2中所示的标准几何形状的探测器阵列,上述的常数-z插值技术限制了对所获数据的充分使用,因为从接近探测器阵列元件53的顶行56A和底行56C获得的部分投影数据超出了这一插值的边界。这一点可更清楚地从图11中看出。以小圆圈92标记的投影是从探测器元件53的第一行中的探测器收集到的重新加以排序的投影Rij。由于螺旋扫描中的平移,重新加以排序的投影Rij不位于于垂直z轴的一个平面内。相比之下,以小矩形标记的投影是常数-z插值投影Sij的第一行,它们完全位于于垂直z轴的一个平面,以维持所要求的常数z位置。例如,对于Soj的常数-z插值,如果选择了任何一个超出Sij的z位置,则Soj的一部分将超出重新加以排序的投影的区域,并可能不适当地被插值。与第一行和最后一行Sij之间的插值的投影不一样,部分插值的投影Soj不包括穿过物体的整个平移轴部分的所有投影,它们不能被用于重构过滤的背面投影方法所需那些图象。
因此,位于于的Rij和Sij之间的图11所示的三角区域91A内的重新加以排序的投影Rij是不能用于常数-z插值和连续操作的多余数据。这些多余数据来自探测器元件53的左上角中的探测器,对于重构物体的图象而言,它们被视为越界。同样,在图11的下方的三角区域91B中的重新加以排序的投影Rij是从阵列的右下角中的探测器获得的越界数据。由于这些越界数据的存在,螺旋扫描的最大线距要小于采用其它方法可能获得的最大螺旋线间距。取代于台架的半旋转过程中在由所有探测器阵列的行所定义的整个距离上平移物体,而只让物体平移这一距离的大约三分之二。
对所获得的数据不能充分使用以及螺旋线间距的减少,可以通过按符合本发明的一个更好的几何形状来配置探测器阵列而加以调整。以下将对能够达到这一目的几种可选择的技术加以描述。
例如,一个拥有7行和31列的标准的对称柱面探测器阵列,如图21A中所示,将作为以下讨论的一个例子。在实践中,列j的数目通常明显大于行i的数目,且数目可以是偶数也可以是奇数。图21B中给出了同一探测器阵列的一个二维的图示说明,以说明探测器53的相对定位和正交的空间关系。
为了对余下的附图更好地进行说明,假定物体的相对平移方向为定义了正的z轴平移方向的箭头所指的方向。与此同时,把探测器阵列的前缘(旋转的方向)视为探测器的最左边。
由常数-z插值所引发的越界数据,是针对每一旋转角,从靠近两个相反的角120A和120B(探测器阵列的后缘和前延伸角)处的那些探测器元件获得的。为了符合本发明的一个方面,可以减少处在越界区120A和120B中的探测器元件,或增加处在两个相反的角122A和122B(探测器阵列的后缘和前延伸角)处的探测器元件,或者同时采用这两种方法,以充分利用由阵列中每一探测器元件所收集到的数据。
图22说明了一个采用了减少配置的探测器阵列。这一阵列拥有与图21A所示标准几何形状同样数目的探测器列j,而顶和底行i仅部分地得以增加。以上定义的与常数-z插值技术相关的标准几何形状的所有数学方程,均适用于图22A的这一减少型配置。惟一的不同是,在区域120A和120B中越界的数据(未用于任何事件中的背面投影)是无效的。
图22B显示了一个拥有增加配置的探测器阵列。在这一配置中,把更多的探测器元件添加到阵列的相反的角122A和122B处,来自所有探测器的数据都可用于背面投影。虽然探测器阵列行i的有效数目增加,但外层行中的元件总数并未增加。
在图23所示的第二种推荐的配置中,同行中的探测器拥有不同的z位置。换言之,这一探测器阵列配置相对于沿平移轴的一个z位置是独立于列的。每一个列j沿z方向位移了一个量,以便同一行i的探测器对应于一条沿柱面的螺旋路径。更精确的配置是,把行i和列j处的探测器放在Hij=(i-io)*ΔH+(j-jo)*δ*D*R/(π*aj)(43)的z定位Hij处。
其中的变量与以上定义的一样。具体地说,ΔH是探测器的相邻行之间的空间间隔,δ是探测器的相邻列之间的角度间隔。根据方程10~13,在这一位移的配置中,中间点cij的z坐标变成zij=(i-io)*Δh*aj*/r+(j-jo)*δ*D/π(44)根据方程(14),当与标准配置相对应的方程(15)进行比较时,针对这一位移配置的扇形光束投影Pij(θ)的z位置变成zij(θ)=(i-io)*Δh*aj/r+(θ+(j-jo)*δ)*D/π(45)于是,当与对应标准几何形状的方程16相比时,针对位移配置的重新加以排序的平行光束投影Rij(φ)的z位置变成zij(φ)=(i-io)*Δh*aj/r+φ*D/π(46)在中心列j=jo附近,因数aj/r相应于1.0。如果平移轴扇形的扇形角,即2γmax,为60°,则因数aj/r的最糟糕的情况是(对于j=1或j=N)cos30°=0.866。因此,如方程46中所示,对于中心区域附近的每一投影行,重新加以排序的投影Rij(φ)都拥有接近常数的z位置。仍建议把上述的常数-z插值技术用于这一实施例,但在中心列jo附近的那些列中,这一技术并无明显的功效上的优势。对于那些距中心列jo最远的列j,常数-z插值与在图21A所示的标准几何形状中一样重要。然而,在最糟糕的情况中,插值点的z定位距所收集数据点的距离仅为距离(i-io)Δh的大约15%。这意味着,只有很少量的探测器在这一配置中越界。作为与图11中标准几何形状的比较,图24描述了重新加以排序的投影Rij(φ)和常数-z插值投影Sij(φ)的顶行和底行的z定位。由于仅显示了顶行和底行202A和202B,似乎常数-z插值的投影Sij偏离重新加以排序的投影Rij在中心列jo列附近达到最大程度。事实上,在中心列附近,一个从行i导出的插值后的投影Sij可拥有对一个相邻行i′的Rij的十分接近的近似,这一近似依赖于所选择的插值间隔。
如果把每一列都位移一个量(j-jo)*δ*D*R/(π*r),以便Hij=(i-io)*ΔH+(j-jo)*δ*D*R/(π*r)(47)然后取代方程43,点bij的z位置bij可由hij=Hij*r/R=(i-io)*Δh+(j-jo)*δ*D/π(48)加以表示。
因此,参照图8和图9及相应的讨论,如果把bij而不是cij做为常数-z插值的中间点,那么中间点bij的z坐标为zij=hij,且重新加以排序的投影Rij(φ)的z坐标变成zij(φ)=(i-io)*Δh+φ*D/π(49)在这些条件下,重新加以排序的投影Rij(φ)将拥有一个针对每投影行的常数z位置,且不再需要常数-z插值。然而,更可取的做法是把bij而不是cij用作背面投影过程期间的投影路径的中间点。
在如图25所示的一个可选的实施例中,每一列不仅可象图23的实施例中所示的那样相对平移轴位移,而且还可把一个列的元件沿z维延伸,或扩展,以便可把处在行i和列j的探测器的z定位放在Hij=(i-io)*ΔH*r/aj+(j-jo)*δ*D*R/(π*aj)(50)
这一配置的几何形状消除了方程45中的因数aj/r,重新加以排序的投影Rij(φ)的z位置变成zij(φ)=(i-io)*Δh+φ*D/π(51)这是一种十分理想的配置,在这一配置中,重新加以排序的投影Rij(φ)拥有一个针对每一投影行的常数z位置。可以对全部所获得的数据充分加以利用,且不存在对常数-z插值的需求。在方程50的第一项中的因数是扩展因数。对于中心列j=jo来说,这一因数等于1.0,并沿阵列两端的方向逐渐增加。在阵列极端点位置的列j=1或j=N处,列的维度延伸到最大因数1.0/cos30°=1.155(假定平移轴扇形角为60°)。与此同时,还可维持同样数目的探测器作为中心列。
图26是一个可选配置的俯视图,在这一配置中,每一列根据方程43沿z方向位移,那些离中心列jo较远的列在更靠近X-射线源S的位置加以放置。例如,探测器行可能采用一个略偏离一圆形断面的修改过的断面。在这一实施例中,列j和X-射线源之间的推荐的距离是Rj=R*aj/r。在这一距离上,X-射线源所能够覆盖的一个列的轴扇形角,可延伸到与上述扩展因数所给定的相同的程度。因此,在不必物理地扩展每一列探测器的情况下,这一配置能够达到同样的理想状态,在这一状态中,重新加以排序的投影拥有一个针对每一投影行的常数z位置。
应该加以注意的是,上述的每一个在标准几何形状基础上修改过的配置,都针对一个具体的2D螺旋线间距进行过相应的优化。在实现最少越界数据或最小化常数-z插值程度方面,无论采用改变空间分布还是采用改变探测器的定位的办法,修改的范围都依赖于D的大小。
在图27A所示的一个可选的装置中,探测器阵列是按标准几何形状加以配置的,但这一装置以一个很小的角α(其中α≠0,叫做倾角)安装在台架上。该装置围绕y轴或光束轴旋转(即当每一个探测器行都排列于或平行置于xy平面时,该装置将从这一位置状态开始旋转)。其中,光束轴是由X-射线源和探测器阵列的中心所定义的一个轴。更可取的做法是,令探测器阵列和角α可变地定位在一个由电机203和控制器205所驱动的、能够加以旋转的托板207上。由于倾角α的存在,每一探测器的z位置和角位置都是既依赖于行也依赖于列的。建议采用较小的倾角α,例如小于5°。为了计算探测器的z位置和角位置,把柱面探测器阵列考虑为一个其各列之间具有相等角度间隔δ的平面探测器阵列,是一种合理的近似,如图27B所示。
角位置的变化可以根据中心行io中的探测器加以计算。在不具倾角α的情况下,中心行io是一个平移轴扇形,处在列j的探测器拥有一个γ=(j-jo)*δ的扇形角。当探测器阵列以角α倾斜时,则把在平移轴平面上所测得的探测器的扇形角减少到γa,如图28所示。从图28中可以看出γa=γ*cosα(52)方程52表明,γa与γ成正比,于轴扇形之间的平移轴平面上所测得的角度间隔在倾斜的探测器阵列中仍是一个常数。假定角度间隔为δa,则方程52给出(j-jo)*δa=(j-jo)*δ*cosα,或δa=δ*cosα(53)由于倾角α的存在,每一列中的轴扇形以倾斜角α倾斜,因此,作为背面投影的一个参照已不再适合。然而,垂直的轴扇形,即平行于z轴的轴扇形,可以从倾斜的投影加以插值。图29显示了用以获得一个垂直轴扇形的那些插值点的定位。其中相邻轴扇形之间的角度间隔减少到δa。中心行io是惟一的例外,在那里插值点与探测器定位相重合。
假定列之间的空间间隔与行之间的空间间隔相同,换句话说,即δ*R=ΔH,列维度中的单位δ等价于行维度中的单位ΔH。图30说明了具有倾斜轴扇形的列号q与具有垂直轴扇形的列号j之间具有(j-jo)*δa=(q-jo)*δ*cosα-(i-io)*δ*sinα(54)关系。把方程53和54相结合,可以得出关系q=j+(i-io)*tanα(55)行i和列j处的垂直的轴扇形的z定位在图30中还可显示为Hij=(i-io)*ΔH/cosα+(j-jo)*ΔH*sinα(56)其中第二项是从图30中的(j-jo)δa*tanα*ΔH*/δ和方程53中的关系获得的。
令Δha=Δh/cosα(57)并把这一关系施用于方程10~13,则中间点cij的z坐标变成zij=(i-io)*Δha*aj/r+(j-jo)*Δh*sinα*aj/r(58)令Qij(θ)是在旋转角θ处具有垂直轴扇形的行i和列j位置的插值的投影,将根据在q列定位处收集到的投影Pij(θ)的第i行对这一投影进行插值。令k是q和gk的截断整数或余数,则q=k+gk(59)如果使用线性插值,可以从方程55和59,并根据所收集到的扇形光束投影Pij(θ)把插值的投影Qij(θ)插值为
Qij(θ)=Piq(θ)=(1.0-gk)*Pik(θ)+gk*Pi,k+1(θ)(60)除行和列之间的间隔变成Δha和δa外,插值的扇形光束投影Qij(θ)是对标准几何形状投影Pij(θ)的模拟。Qij(θ)的z位置由zij(θ)=zij+θ*D/π(61)加以表示。
当把Qij(θ)重新排序成平行光束投影Rij(φ)时,例如象对Pij(θ)所做的那样,Rij(φ)的z位置由zij(φ)=zij+(φ-(j-jo)*δa)*D/π(62)加以表示,这一表示是在方程61中用φ-(j-jo)*δa替代θ而获得的。使用方程58,则z位置变成zij(φ)=(i-io)*Δha*aj/r+(j-jo)*Δh*sinα*aj/r-δa*D/π)+φ*D/π(63)更可取的做法是把倾角α选成sinα=δa*D/(Δh*π),它与tanα=δ*D/(Δh*π)(64)相同。具有这一倾角,z位置变成zij(φ)=(i-io)*Δha*aj/r-(1-aj/r)*(j-jo)*δa*D/π)+φ*D/π(65)方程65表明,在靠近中心列jo的地方,重新加以排序的投影Rij(φ)接近于zijo(φ)=(i-io)*Δha+φ*D/π的一个常数z位置。与图23中所示具有位移的探测器列的配置一样,为了获得更精确的结果,仍建议使用常数-z插值。然而,越界的数据的数量在这一倾角将会处大大减少。
上述的图示说明和数学方程的推导,提供了图27A所示倾斜的探测器阵列配置的一般的几何图形。然而,假设的近似方法把探测器阵列做为列之间具有相等角度间隔的一个平面阵列加以对待。作为一种更严格、更精确的推导,应考虑采用柱面探测器阵列几何形状。图31中针对一个倾斜角为α的平移轴扇形说明了这一点。在具有关系tanγa=tanγ*cosα(66)的平移轴平面中,扇形角γ减小到γa。把这一关系与方程52相比较,可以看出γa不再与γ成正比。因此,当在平移轴平面上测量倾斜的轴扇形之间的角度间隔时,这一间隔不是一个常数。根据方程66,在靠近中心列jo的地方(在那里γ是非常小的,而且γa=γ*cosα),这一角度间隔为δa=δ*cosα(67)如方程53所示。更可取的做法是,把δa做为垂直轴扇形角的常数角度间隔,它们是根据倾斜轴扇形加以插值的。倾斜轴扇形的列号q和垂直轴扇形的列号j可以从图32中推导出来,其中R′*tanγa=R′*tanγo*cosα,且γo=γ-Δγo,即tan((j-jo)*δa)=tan((q-jo)*δ-(i-io)*δtanα)*cosα(68)根据这一方程,可得出下列的关系q=jo+tan-1(tan(j-jo)*δa)/cosα)/δ+(i-io)*tanα(69)基于列号q,可根据Pij(θ)对Qij(θ)加以插值,如方程59和60中所描述的。
图33描述了处在行i和列j处的垂直轴扇形的z定位Hij=(i-io)*ΔH/cosα+R′*tanγa*tanα,其中γa=(j-jo)*δa=(j-jo)*δ*cosα。
使用ΔH=R*δ和关系R′/R=cosγ=aj/r,可以得到Hij=(i-io)*ΔH/cosα+(j-jo)*ΔH*sinα(tanγa/γa)*(aj/r)(70)方程70与方程56相同,除了因数sinα为(tanγa/γa)*(aj/r)所修改。因此,方程63变成zij(φ)=(i-io)*Δha*aj/r+(j-jo)*(Δh*sinα*(tanγa/γa)*(aj/r)2-δa*D/π)+φ*D/π(71)其中Δha是在方程57中定义的。
更可取的做法是,把倾角α选择为tanα=δ*D/(Δh*π)(72)如方程64中所示。对于该倾角,z位置变成zij(φ)=(i-io)*Δha*aj/r-(1-(tanγLa/γa)*(aj/r)2)*(j-jo)*δa*D/π)+φ*D/π(73)与方程65相同,在这一倾角处,中心列jo附近的重新加以排序的投影Rij(φ)接近于zijo(φ)=(i-io)*Δha+φ*D/π的常数z位置。
这一严格的技术所产生的结果非常接近于使用平面几何形状近似技术所达到的结果,但对于重新排序和常数-z插值来说,确定定位q和zij(φ)的过程较为复杂。无论把近似技术还是把这一严格的技术用于重构,以上的描述和图示说明,表明图27A所示的倾斜的配置可用于对那些能够对探测器元件更有效利用的类似标准几何形状的图象的重构。倾角α是根据螺旋扫描的螺旋线间距加以选择的(如方程64或72所给出的),以最小化在这一倾角处的越界数据的数量。
更可取的做法是,拥有可对倾角α进行调整的能力。例如零倾角的设置是将有益于对系统的测试与校正。也可以使用一个电机驱动机制,以致当需要时可针对每一扫描的新设置重新定位倾角。具有机动化的控制,把系统配置为能够以零倾斜角进行静态扫描是可行的。另外,针对不同的平移速度设置不同的倾斜角也是可能的。一个相反的倾角也能够针对反向螺旋扫描平移加以设置。
尽管本发明在说明与描述过程中特别涉及了所推荐的实施例,但正因为如此,本发明可为那些熟悉这一技术的人所理解,以便他们能够在不背离本发明所附权力要求中所定义的本发明的精神与范围的情况下,在形式和具体细节方面对实施例加以变化。
例如,尽管此处对改进的探测器阵列几何形状的操作的描述是按照本发明所透露的常数-z插置技术,该技术在赖景明于1998年3月11日申请的、名为"在一个具有多行探测器的螺旋扫描计算的X断层照相系统中重构立体图象的方法与装置"的序号为09/038,320的美国专利应用所透露,并入此处以作参考,但本专利发明的应用并不局限于使用常数-z插置的重构技术。本发明还适用于由赖景明申请的、于1998年4月24日申请、名为"针对螺旋扫描立体计算的X断层照相系统的改进的探测器几何形状"的为序号09/066,494美国应用中所描述的逐步近似的重构技术,并入此处以作参考。
权利要求
1.一个用于重构物体立体图象的计算的X断层照相系统包括一个能量源,该能量源将以某一光束轴为中心的一个锥形光束穿过物体射向一个探测器阵列,上述的能量源和上述的探测器阵列可围绕物体加以旋转,从而当上述的物体和光束沿正交于光束轴的平移轴相互相对平移时,能够在连续的视角处探询物体,其中,探测器阵列包括一个传感器元件阵列,这些传感器元件以正交的行、列加以排列,定位在上述的光束的路径中,并以一个倾斜角α围绕光束轴旋转,其中α≠0,以便上述的列能够在一次扫描期间以倾角α相对于平移轴布置。
2.权力要求1中的系统,其中倾角α是作为物体和光束相对平移的平移速率的一个函数加以确定的。
3.权力要求1中的系统,其中倾角α是作为源和探测器阵列围绕物体旋转的旋转速率的一个函数加以确定的。
4.权力要求1中的系统还包括一个用于安装探测器阵列的托板,以允许对倾角α进行有选择的调整。
5.权力要求4中的系统,其中托板是由电机驱动的,用以在一定范围内选择倾角α。
6.权力要求1中的系统,其中探测器阵列是平面的。
7.权力要求1中的系统,其中探测器阵列的形状设置为可位于于一个柱面。
8.权力要求7中的系统,其中柱面是一个以某一穿过该源的轴为中心的圆形柱面。
9.一个用于重构物体立体图象的计算的X断层照相系统中,包括一个能量源,该将以某一光束轴为中心的一个锥形光束穿过物体射向一个探测器阵列,上述源和上述的探测器阵列可围绕物体加以旋转,从而当上述的物体和光束沿正交于光束轴的平移轴相互相对平移时,能够在连续的视角处探询物体,一个改进的探测器阵列包括一个按正交行、列加以排列的探测器元件阵列,以及一个用于将上述的光束路径中探测器阵列定位在一个围绕光束轴可变的倾角α的托板,以便上述的列能够在一次扫描期间以倾角α相对于平移轴布置。
10.权力要求9中的系统,其中倾角α是作为物体和光束互相相对平移的平移速率的一个函数加以确定的。
11.权力要求9中的系统,其中倾角α是作为源和探测器阵列围绕物体旋转的旋转速率的一个函数加以确定的。
12.权力要求9中的系统,其中托板是由电机驱动的,用以在一定范围内选择倾角α。
13.权力要求9中的系统,其中探测器阵列是平面的。
14.权力要求9中的系统,其中探测器阵列的形状设置为可位于于一个柱面。
15.权力要求14中的系统,其中柱面是一个以某一穿过源的轴为中心的圆形柱面。
16.权力要求9中的系统,其中倾角α可在-5和+5度之间变化。
17.一个在重构物体立体图象的计算的X断层照相系统中使用的探测器阵列,该系统包括一个围绕物体与该阵列成旋转关系的源,从而当对上述的物体、上述的源和上述的阵列沿一个正交于旋转平面的平移轴相互相对平移时,能够在连续的视角处探询物体,上述的探测器阵列包括一个二维的探测器元件阵列,这些探测器元件按正交的行、列加以排列,上述的探测器阵列相对于平移轴呈非对称形状。
18.权力要求17中的探测器阵列,其中探测器列垂直于这一阵列中的行,以至于所有元件呈正交关系。
19.权力要求18中的探测器阵列,其中该阵列呈矩型,且顶和底探测器行中的探测器元件在阵列的相反的角处部分地减少,以提供一个具有基本螺旋断面的阵列。
20.权力要求18中的探测器阵列,其中该阵列呈矩型,且顶和底探测器行中的探测器元件在阵列的相反的角处部分地增加,以提供一个具有螺旋断面的阵列。
21.权力要求17中的探测器阵列,其中每一探测器列相对于中心列沿平移轴位移一个量ΔZ。
22.权力要求21中的探测器阵列,其中ΔZ是由系统的螺旋线间距所确定的。
23.权力要求21中的探测器阵列,其中ΔZ是由(j-jo)*δ*D*R/(π*r)所确定的,其中j是列号,jo是中心列号,δ是行之间的角度间隔,D是系统旋转角π期间的平移距离,R是探测器阵列距X-射线源的径向距离,r是旋转中心距X-射线源的径向距离。
24.权力要求21中的探测器阵列,其中,探测器列中的元件沿平移轴相对于一个中心列的元件延伸。
25.权力要求24中的探测器阵列,其中,探测器元件随到中心列距离的增加而逐渐延伸。
26.权力要求17中的探测器阵列,其中一个列与源之间的距离作为相对中心列的列位置的一个函数逐渐减小。
27.权力要求17中的探测器阵列,其中探测器阵列的元件的列和行位于于一个柱面。
28.权力要求17中的探测器阵列,其中系统充分利用了由探测器阵列的每一元件所收集到的数据。
全文摘要
在一个用于锥形光束重构的改进的方法和装置中,提供了一个改进的探测器阵列,这一探测器阵列相对于平移轴呈非对称形状。在第一个实施例中,一个标准的对称阵列以倾角α围绕光束轴旋转。在第二个实施例中,构造了一个拥有较大螺转断面的阵列。在这一方式中,探测器元件得以有效使用、系统的螺旋线间距增大、图象质量进一步提高。
文档编号A61B8/13GK1309548SQ98808437
公开日2001年8月22日 申请日期1998年6月11日 优先权日1997年7月1日
发明者赖景明 申请人:模拟技术有限公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1