生产微胶囊的方法

文档序号:1045599阅读:725来源:国知局
专利名称:生产微胶囊的方法
技术领域
本发明涉及一种生产生物可降解微胶囊的方法,它应用了生物可降解的毒物学上无毒的溶剂。为简便起见所用的微胶囊概念既包括微胶囊本身,也包括微球和微颗粒。它符合下列定义微胶囊概念是颗粒大小范围在1-1000微米的球形颗粒,它由一个含有液态或固态活性物质的内核和由聚合物构成的胶囊壁组成。微球或微颗粒的概念是颗粒大小范围在1-1000微米由聚合物基体构成的球形或非球形颗粒,而活性物质是以所谓固化了的溶液或悬浮液包覆在聚合物基体中。
生物高活性和敏感性活性物质如某种药物、肽、蛋白质、酶和疫苗,优选作为注射液以不经胃肠的方式使用。然而许多这类活性物质只有短的生物半衰期或者在作为溶液使用时活性不是很高(疫苗)。这意味着对于成功的治疗或预防医治,必不可少的前提是连续地或脉冲式地补充活性物质(长期释放)。这种在较长时间内持续的活性物质供应可以这样来达到活性物质被嵌入比如说一种生物可降解的释放体系中去。可以用微胶囊或植入杆状体形式来制备这种释放体系。过去已经很好地证实,这种生物可降解微胶囊颗粒可以很容易地通过普通的注射针以不经胃肠的方式投药。已知的生物可降解药物释放体系是以乳酸和羟基乙酸聚酯为基础的(D.H.Lewis,Controlledreleaseofbioactiveagentsfromlactide/glycolidepolymers,inBiodegradablepolymersasdrugdeliverysystems,M.Chasin,andR.Langer(Eds.),M.Dekker,NewYork,1990,pp.1-41)。
为了制备聚酯微胶囊,如聚酯(丙交酯)和共聚酯(丙交酯和乙交酯)已知有三种主要方法比如通过加入非溶剂进行聚结(Koazervation)(相分离),水包油分散体中的溶剂挥发(溶剂的挥发)、或萃取(溶剂萃取)以及喷雾干燥(R.Jalil等人,J.ofMicroencapsulation7,297-325,(1990))。所有这些方法都必须加入一种有机溶剂以溶解生物可降解聚合物,经过这种处理后绝大部分有机溶剂被除掉。然而从聚合物中全部除去溶剂是不可能的,在微胶囊中总会残留有机溶剂的残余,以数量级为0.01-10%存在(G.Spenlehauer,等人,Biomaterials10,557-563,(1989);D.H.Lewis等人,PCTWO89/03678)。迄今为止在所提到的三种制备法中所描述的主要溶剂是不可生物降解的而且有一部分还是非常毒的或为环境污染性的物质(二氯甲烷、三氯甲烷、苯、四氢呋喃、乙腈、含氟氯的碳氢化合物等)。这样生物可降解释放体系的优点就名誉扫地。
所以(例如)按照PS-US5,066,436用聚结法制备微胶囊,它就负载上一定数量的这种有机溶剂。除了聚合物用的有机溶剂,还有其它有机溶剂用于原来的相分离,用于所加入的微胶囊的时效硬化和洗涤。这样制备的微胶囊比较大,而且在制备工艺中易于烧结,因而残留有机溶剂的除去就变得更加困难。
随溶剂蒸发或溶剂萃取法带来的缺点,一方面是已提到的微胶囊的残留溶剂在毒物学上不是无毒的,另一方面的困难是水溶性活性物质例如某种药物、肽、蛋白质、酶和疫苗被水溶性分散相溶出,因而部分地或全部地没有被包覆。
喷雾干燥是制备生物可降解微胶囊的已知的简单和快速的方法,然而此法也显示出其难点在于用生物可降解的乳酸和羟基乙酸聚合物生产球状和无孔隙的颗粒。用在二氯甲烷中溶解的聚合物(d.1-乳酸)将得到非常不规则地成型的微胶囊,其表面不规则并有相当大份额的纤维状物质(R.Bodmeier等人,J.Pharm.Pharmacol.40,754-757(1988))。由PS-EPAl315,875可知乳酸与羟基乙酸的共聚物(PLGA)不能通过喷雾干燥加工成微胶囊。然而作为包覆材料此共聚物已知是极有兴趣的,因为它比单纯的乳酸或羟基乙酸的均聚物能在生物体中更快地分解。已经说明PLGA-聚合物,特别是乳酸和羟基乙酸各为50%份额的PLGA[PLGA50∶50]能够在3-4周内释放活性物质。这对于比如荷尔蒙疗法和酶疗法是所希望的剂量间隔值。
用喷雾干燥法进行微胶囊加工的另一困难在于要进行微胶囊化的物质的特性。在聚合物溶液(多数在二氯甲烷中)中能溶解的物质一般在微胶囊中包覆时效率比较高并有较均匀的活性物质分布(高的含量均一性),与此相反,在聚合物溶液中不能溶解的物质如某些药物、肽、蛋白质、酶和疫苗,其微胶囊化就有问题。如果这些活性物质以微粒形式悬浮在有机聚合液中那么只能得到不令人满意的包覆效率,包覆效率强烈地取决于活性物质的细度。因而水溶性的活性物质常常首先溶于水中,然后该活性物质水溶液再在聚合物溶液中分散(油包水-分散体),然而用一般已知的溶剂只能制得不令人满意的油包水-分散体,这表明它具有不太高的细度和不太高的物理稳定性。其结果是被分散的水相迅速合并(聚结)从而导致不好的胶囊化效率。经常观察到微胶囊化了的蛋白质在1-3天时间内又释放出来,一般这种现象可归因于微胶囊化不完全的活性物质所占份额较高和微胶囊的高孔隙率(H.T.Wang等,Biomaterials,11,679-685(1990))。此外,不能使用可与水溶混的溶剂如丙酮、四氢呋喃、二噁烷、乙腈等,因为正是由于这种溶混性会导致活性物质和/或聚合物的沉积或聚集。
本发明的任务在于解决这样的问题。在生物可降解和毒物学上无毒性的溶剂中溶解生物可降解聚合物,并在此溶液中引入活性物质,或者更确切地说是生物活性物质,如药物、肽、蛋白质、酶和疫苗、并通过喷雾干燥法制备微胶囊。
本发明涉及制备微胶囊方法及其应用,该方法从一个或多个生物可降解聚合物出发,其特征在于将生物可降解聚合物溶解在生物可降解溶剂中(步骤1),在聚合物溶液中引入活性物质(步骤2),此溶液在生物可降解溶剂中溶解(步骤3),以及由此得到的有机活性物质溶液与聚合物溶液混合(步骤4),或悬浮在聚合物溶液中(步骤5),或者在一种水溶性介质中溶解(步骤6),并把由此得到的水溶性活性物质很细地分散到聚合物溶液中去(步骤7),而此基质“溶液”、“悬浮液”或“油包水-分散体”紧接着进行喷雾干燥(步骤8)。其中生物可降解溶剂包含至少一种简单酯,优选至少一种简单酯和至少一种C1-C5-醇,比较优选的是甲酸乙酯、乙酸乙酯或乙酸异丙酯。其中优选简单酯是由一个C1-C5-醇和C1-C5-单羧酸构成的。该方法优选将在生物可降解溶剂中不能溶解的活性物质溶解在水溶性介质中(步骤6),而此溶液用超声很细地分散到生物可降解的溶剂中(步骤7)。优选活性物质包含药物、肽、蛋白质、酶或疫苗,比较优选的活性物质为固态或液态的。在该方法的应用中,微胶囊中优选包含药物、疫苗或酶。
本发明的任务是根据上述方法来解决的。本发明的方法将在流程图(

图1)中作更详细说明。在图1中描述了一般步骤。此外,为叙述不同的方法步骤使用了该流程图参考数字。它列举出了单个步骤中的环节。
图1显示出制备微胶囊方法的流程图,它可用步骤1-8描述如下1.溶解(Ⅰ)方法的出发点是所有的只要能溶于本发明的溶剂中的生物可降解聚合物如乳酸、羟基乙酸和β-羟基丁酸以及δ-戊内酯和ε-己内酯的单聚酯和共聚酯。聚合乳酸和聚合羟基乙酸也可称为聚合(丙交酯)和聚合(乙交酯)。生物可降解聚合物或者生物可降解聚合物的混合物能溶解于本发明的溶剂中,从而生成聚合物溶液(第一溶液)。属于这类溶剂的有由C1-C5-醇和C1-C5-单羧酸组成的简单酯,以及这种简单酯与C1-C5-醇的混合物。属于生物可降解的溶剂的有比如甲酸乙酯、甲酸丙酯、甲酸丁酯、乙酸乙酯、乙酸丙酯、乙酸异丙酯、丙酸乙酯、丁酸乙酯和戊酸乙酯以及这些酯与乙醇、丙醇、异丙醇等的混合物。这些溶剂或溶剂混合物对于比如由羟基乙酸、乳酸、β-羟基丁酸、δ-戊内酯和ε-己内酯构成的生物可降解聚酯化合物具有惊人高的溶解能力。它们既能溶解不同的摩尔比例(例如大约50∶50、65∶35、75∶25或85∶15)和宽分子量范围(2000-150000)的羧酸均聚物也能溶解其共聚物。这样这些聚合物可以单独地或作为混合物引入溶液中,而本发明的溶剂可以单独地或可以以由各种酯或酯和醇组成的溶剂混合物来使用。
2.活性物质的引用在生物可降解聚合物中欲胶囊化的活性物质的加入取决于它们的溶解度,相应于步骤3、5和6分为三种类型。定义为活性物质的有下列物质它在活有机体中起生物作用,因此它可以是(例如)药理型、免疫型或酶促型的。欲微胶囊化的活性物质一般以固体形式(粉末)存在,但也可以以液体形式存在并作为液体来加工。
3.溶解(Ⅱ)在本发明中由酯,由C1-C5-醇以及任意的酯-醇的混合物所组成的生物可降解溶剂中能够溶解的活性物质被直接溶解在此溶剂中。这样生成了有机活性物质溶液(第二溶液)。这种活性物质溶液是优选的方法步骤,因为它可在制备时花费最小并且热力学上稳定。
4.混合紧接着,使聚合物溶液(第一溶液)与有机活性物质溶液(第二溶液)结合在一起,并混和,因此得到了基质“溶液”。这里所描述的溶剂表明它们对于多数低分子的活性物质如某种药物和肽有高的溶解能力。这种溶剂的优良特性使得活性物质和生物可降解聚合物能同时被放入溶液中,用的是相同的溶剂或是生物可降解溶剂的结合溶剂。此方法包括在后面步骤8中。
5.悬浮化在生物可降解溶剂中包含有生物可降解聚合物,它们组成了聚合物溶液,在此溶液中,用机械或超声手段将既不能在水中也不能在本发明溶剂中充分溶解的活性物质悬浮化以得到基质“悬浮液”。为了得到高的包覆效率,活性物质最好以微粒形式存在。为此一般力图使活性物质颗粒小于10微米,此方法包含在后面步骤8中。
6.溶解(Ⅲ)对于水溶性好的活性物质,如某些药物、肽、蛋白质、酶或疫苗(在本发明溶剂中不能溶解),有益的方式是将它们用尽可能少量体积的水溶性介质溶解生成水溶性活性物质溶液,此水溶性介质除了含水外还可以含添加物如缓冲盐、表面活性剂、稳定剂和防腐剂。
7.分散化按步骤6得到的水溶性活性物质溶液紧接着在聚合物溶液中进行细化分散,以得到基质“油包水-分散体”,聚合物溶液是在本发明溶剂中含有生物可降解聚合物。这样使水溶性活性物质溶液在小的能量消耗下以毫微米级分散形式引入聚合物溶液,其体积分率可达50%。分散可以通过摇晃,最好通过机械分散设备或超声来完成。优选的分散方法是受到50-400瓦超声波作用10-300秒,或者必要时还要作用更长时间。水溶性活性物质溶液在聚合物溶液中的这种分散作用令人意外地保持稳定(无聚结)超过几小时而不需添加表面活性剂或假乳化剂,并且不再需要在喷雾过程中继续分散,这就显示出其特别的优点。本发明由水溶性活性物质溶液得到油包水-分散体,就其细度和稳定性来说是一般所用溶剂(例如二氯甲烷)所不能达到的,此方法包含在后面步骤8。
8.喷雾干燥由步骤4、5和7提供的基质“溶液”、“悬浮液”和“油包水-分散体”通过喷雾干燥加工成微胶囊,它用一个(例如)小型喷雾干燥器190(Büchi)完成。通过喷雾干燥制得的微胶囊的直径一般为1-50微米,而最大达100微米,因而很容易通过注射针。微胶囊的装载度(活性物质含量)在0-50%之间,然而优选约在0-20%之间。
由这种方法制得的微胶囊将按其目的和最终的消耗适当地进一步加工,比如后接一个洗涤过程、按不同粒度分级、在高真空下最终干燥、用γ-辐射处理法灭菌或任何其他过程。
基于本发明溶剂对许多活性物质的高溶解能力以及基于水溶性活性物质溶液的易于分散性,这里用1-8步骤所描述的方法使得有可能对具有各种溶解特性的活性物质得到高的包覆效率和聚合物中活性物质的均匀分布。依赖于所用的聚合物、装载度、可能还依赖于添加物(释放调节剂),活性物质可以在时间为一天到一年的范围内从微胶囊中释放出来。
与一般采用的卤代和非卤代的有机溶剂不同,本发明的生物可降解溶剂本身也可以和聚合(d,1-乳酸)或聚合(乳酸-羟基乙酸)一起,通过喷雾干燥制备微胶囊。所得产品显示出规则球形的颗粒态以及平滑的无孔表面。几乎看不到有颗粒粘连、颗粒聚结或颗粒变形。
本发明溶剂另具有特殊优点,即它在毒物学上是无毒的。正像微胶囊的基础聚合物一样,本发明的溶剂在有机体中分解为小的、无毒的组分,而且部分还分解为生理组分。这种分解基本上通过水解进行,也可以通过(例如)酯酶或脱氢酶的酶促方式完成。与本发明溶剂不同,其他普遍用的溶剂在有机体内转化为有毒的代谢物。包括有理由怀疑可能在有机体内产生恶性肿瘤和各种有毒作用的(例如有毒气体一氧化碳)的二氯甲烷。
实施例1该实施例说明了含有蛋白质的微胶囊的制备将0.09克牛血清蛋白(Fluka,CH-Buchs)溶于2.16克水中。此水溶液借助于超声发生器分散在含有3.0克聚合(d,1-乳酸)(ResomerR202,BoehringerIngelheim)的57.0克乙酸异丙酯溶液中。分散化是在冰冷却下用260瓦能量的超声处理器(振动池,VC375,SonicsandMaterials,Danbury,CT)作用2×30秒完成的。分散体用实验室喷雾干燥器(微型喷雾干燥器,Büchi190,BüchiLaboratorien,CH-Flawil)在下列条件下雾化入口温度55℃,喷雾流量400刻度值,抽气器15刻度值,喷雾速度2.4毫升/分。
形成的微胶囊是白色的能自由流动的粉末。产量1.8g(理论值的58%),活性物质含量2.9%(理论值的100%)。
实施例2该实施例说明了含有蛋白质的微胶囊的制备将0.09克牛血清蛋白溶于2.16克水中。此水溶液借助于超声发生器(260瓦作用30秒)分散在含有3.0克聚合(d,1-乳酸)(ResomerR202,BoehringerIngelheim)的57.0克乙酸乙酯溶液中。分散化和喷雾干燥是在与实施例1相同的条件下完成的。产量1.6克(理论值的52%),活性物质含量2.9%(理论值的100%)。
实施例3该实施例说明了含有疫苗的微胶囊的制备将0.100克冷冻干燥的破伤风类毒素在2.0毫升水中溶解。此水溶液借助于超声发生器分散在含有5.0克聚合(d,1-乳酸-羟基乙酸)(ResomerRG502,BoehringerIngelheim)的100.0克甲酸乙酯溶液中。分散化是在冰冷却下用210瓦超声能量作用2×30秒完成的。分散体用一个实验室喷雾干燥器在下述条件下雾化入口温度55℃,喷雾流量500刻度值,抽气器17.5刻度值,喷雾速度2.4毫升/分。
形成的微胶囊是白色的能自由流动的粉末。产量0.7克(理论值的40%),蛋白质含量1.82%(相当于理论上计算出的活性物质含量的93%)。
实施例4该实施例说明了含有酶的微胶囊的制备将从活性为75.8单位/毫克(Fluka,CH-Buchs)的辣根中得到的15毫克过氧化物酶溶解于0.6毫升水中。此水溶液借助于375瓦的超声作用30秒,在冰冷却下分散在含有1.5克聚合(d,1-乳酸)(ResomerR202,BoehringerIngelheim)的30.0克甲酸乙酯中。此分散体用实验室喷雾干燥器在下述条件下雾化入口温度47℃,喷雾流量450刻度值,抽气器17刻度值,喷雾速度1.6毫升/分。
形成的微胶囊为白色的能自由流动的粉末。产量0.92克(理论值的61%),酶活性0.177单位/毫克微胶囊,相当于理论上计算出的活性值的23.4%。
实施例5该实施例说明了含有药物的微胶囊的制备将30毫克前列腺素E2(Fluka,CH-Buchs)和6.0克聚合(d,1-乳酸-羧基乙酸)(Resomer RG 502,Boehringer Ingelheim)分别溶于60克甲酸乙酯中。合并的溶液在下述条件下雾化入口温度45℃,喷雾流量420刻度值,抽气器15刻度值,雾化速度2.4毫升/分。
形成的微胶囊为白色的能自由流动的粉末。产量4.2克(理论值的70%),装载度4.99微克/毫克微胶囊(理论值的100%)。
实施例6
该实施例描述了含有人工合成疫苗的微胶囊的制备将0.02克人工合成的蛋白质(它由破伤风类毒素的肽序列947-967和Plasmodiumberghei的Circumsporozoit蛋白质的重复区域中的B-细胞Epitop组成)溶于1.0毫升水中。将该水溶液借助于超声发生器分散在含有2.0克聚合(d,1-乳酸-羟基乙酸)(ResomerRG752,BoehringerIngelheim)的40.0克甲酸乙酯溶液中。分散化是在冰冷却下2×30秒内用210瓦超声能量完成的。分散体用一个实验室喷雾干燥器在下列条件下雾化入口温度50℃,喷雾流量450刻度值,抽气器14刻度值,喷雾速度2.6毫升/分。
形成的微胶囊是白色的能自由流动的粉末。产量1.12克(理论值的56%);蛋白质含量0.66%(相当于理论上计算出的活性物质含量的0.6%)。
本发明的实质是提出了生物可降解的溶剂,由此溶剂制得的微胶囊不存在有毒的残余溶剂。通过雾化一种由活性物质和聚合物组成的溶液、悬浮液或分散体得到生胶囊。作为需要包覆的活性物质既可以是水溶性的,也可以是不溶于水的物质。水溶性的活性物质如肽、蛋白质、疫苗最好以水溶液在聚合物溶液中分散。这里提供一种方法,它可以在制备药物制剂、疫苗制剂和酶制剂中得到应用。
权利要求
1.制备微胶囊的方法,它从一个或多个生物可降解聚合物出发,其特征在于将生物可降解聚合物溶解在生物可降解溶剂中(步骤1),在聚合物溶液中引入活性物质(步骤2),此溶液在生物可降解溶剂中溶解(步骤3),以及由此得到的有机活性物质溶液与聚合物溶液混合(步骤4),或悬浮在聚合物溶液中(步骤5),或者在一种水溶性介质中溶解(步骤6),并把由此得到的水溶性活性物质很细地分散到聚合物溶液中去(步骤7),而此基质“溶液”、“悬浮液”或“油包水-分散体”紧接着进行喷雾干燥(步骤8)。
2.按权利要求1的方法,其特征是至少有一种简单酯被用作生物可降解溶剂。
3.按权利要求1的方法,其特征是至少一种简单酯和至少一种C1-C5-醇被用作生物可降解溶剂。
4.按权利要求1-3的方法,其特征是使用了由一个C1-C5-醇和C1-C5-单羧酸构成的简单酯。
5.按权利要求1的方法,其特征是采用了甲酸乙酯作为生物可降解溶剂。
6.按权利要求1的方法,其特征是采用了乙酸乙酯或乙酸异丙酯作为生物可降解溶剂。
7.按权利要求1的方法,其特征在于,将在生物可降解溶剂中不能溶解的活性物质溶解在水溶性介质中(步骤6),而此溶液用超声很细地分散到生物可降解的溶剂中(步骤7)。
8.按权利要求1-7的方法,其特征是药物、肽、蛋白质、酶或疫苗被用作活性物质。
9.按权利要求1-8的方法,其特征是采用了固态的或液态的活性物质。
10.按权利要求1-9制备微胶囊方法的应用,该微胶囊中包含药物、疫苗或酶。
全文摘要
本发明涉及一种从生物可降解聚合物制备微胶囊的方法,此法描述了采用了生物可降解溶剂,提供了无毒性残留溶剂的微胶囊。所用的溶剂包括由C
文档编号A61K9/50GK1090172SQ9311964
公开日1994年8月3日 申请日期1993年10月26日 优先权日1992年10月26日
发明者H·P·默克尔, B·甘德 申请人:施瓦茨制药有限公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1