一种基于静息态功能磁共振的术前脑功能网络定位方法

文档序号:766471阅读:923来源:国知局
一种基于静息态功能磁共振的术前脑功能网络定位方法
【专利摘要】本发明公开一种基于静息态功能磁共振的术前脑功能网络定位方法。该方法是首先根据病灶所在脑区位置使用任务态功能磁共振构建解剖模板,然后进行静息态功能磁共振扫描;通过独立成分分析方法对静息态功能磁共振数据分解,提取大脑功能网络;采用模板匹配方法对大脑功能网络进行相似度匹配,找出最相似与次相似大脑功能网络,分析处理得到最佳大脑功能网络,用于术前功能定位。该方法克服了传统术前定位种子点难以确定,独立成分分析模型阶数难以确定,成分识别主观度大且易错的三大经典难题,使术前定位客观准确,自动简便。
【专利说明】一种基于静息态功能磁共振的术前脑功能网络定位方法

【技术领域】
[0001] 本发明涉及医学图像处理辅助技术,是一种基于静息态脑功能成像的独立成分分 析结果的功能网络自动化筛选方法,用于神经外科术前定位的脑功能网络自动识别。

【背景技术】
[0002] 颅内肿瘤包括原发性脑瘤和转移瘤,约占全身肿瘤的5%,占儿童肿瘤的70%。由 于其膨胀的浸润性生长,在颅内占据一定空间时,不论其性质是良性还是恶性,都势必使颅 内压升高,压迫脑组织,导致中枢神经损害,危及患者生命。颅内肿瘤的首要治疗方法是脑 外科手术,原则是最大限度的保留神经功能的情况下做到肿瘤尽可能的全切除。目前,脑瘤 手术已由单纯的利用解剖信息向结合功能定位信息转化,后遗症发生率显著降低。由此可 见,准确、可靠的功能区定位极为重要,是"事先预知、术中把握"的有效保证。术前利用任务 态功能磁共振进行特定脑功能区定位,在美国已获得FDA批准并常规用于临床辅助评估。
[0003] 基于脑功能影像特别是功能磁共振(functional magnetic resonance imaging,fMRI)的术前定位研究已经成为需手术的脑肿瘤病人的重要的术前评估手段, 可基于定出的功能区保护患者重要的功能,并辅助肿瘤最大化切除。传统fMRI术前定 位依赖患者执行特定任务,而大部分患者无法很好执行任务或者不愿配合。这将导致 激活结果不准确,给基于任务态fMRI的术前定位的可靠性带来了问题。利用静息态 fMRI (resting-state fMRI, rs-fMRI)进行功能连接分析从而找出重要的功能网络,可以在 患者不用执行任务的前提下进行功能定位,简单易行,容易在各大医院推广使用,被认为是 任务fMRI定位的有效补充。
[0004] 目前,国际上主要的术前定位手段还是任务态fMRI,采用静息态fMRI进行术前定 位的研究非常初步,到目前为止仅仅有6篇。而且绝大多数都是种子点功能连接计算方法 得到的术前功能定位结果。Liu et al.,(2009)利用种子点功能连接定位了 6例患者的运 动网络;Zhang et al.,(2010)利用种子点功能连接提取了 4例肿瘤病人的感觉运动网络; Bottger et al.,(2011)利用种子点功能连接做了 8例病人的默认网络、运动网络、语言网 络、背侧注意网络。这些研究虽然体现了静息态fMRI术前定位的可行性,但是研究样本量 都非常有限(小于10人);而且,种子点功能连接计算方法对噪声很敏感,对种子点的位置 确定也很敏感,噪声较大情况下或者种子点位置很难确定的情况下,该方法受到严重制约。 此外,目前为止,功能区定位仅仅停留在运动功能区定位研究上。对于肿瘤特别是非恶性肿 瘤的切除术来说,除了保留运动功能区,语言功能区的保护同样是非常重要的目标。国际上 最前沿的术前定位研究表明,仅仅局限于特定脑功能网络的定位远远不够,离"最大限度保 留神经功能"尚有距离。多功能系统术前综合定位是未来的趋势。
[0005] 目前的静息态fMRI的分析方法主要有两种,一种是种子点功能连接的分析方法, 另外一种是独立成分分析法(Independent component analysis, ICA),这种方法可以将4 维静息态fMRI数据根据空间独立的假设进行盲源分解,结果可以得出各种功能网络。但 是,如何从中挑选感兴趣的脑功能网络(如语言网络)仍无可靠、客观、科学的方法;另外, ICA分解结果受模型阶数(即成分数)定义影响很大。传统虽然有基于数据和信息论的方 法估计模型阶数,但是现在越来越受研究者的诟病,因为估计的模型阶数很难说是"准确" 的。模型阶数不同,得到的功能网络不同,到底什么样的模型阶数能够得到最佳结果,是亟 待解决的问题。


【发明内容】

[0006] 本发明的目的是针对已有技术的不足,本发明提供一种简便易行的、自动化的基 于静息态功能磁共振的术前脑功能网络定位方法,同时解决种子点难以定义,噪声问题、无 法多功能网络共同定位、无法合理优化模型阶数、无法自动识别成分的问题。
[0007] 为实现上述目的,本发明方法采取以下步骤:
[0008] 步骤(1).对无磁共振禁忌症的病患进行结构磁共振扫描,得到结构磁共振成像 数据;然后判断该病患是否可以接受任务态功能磁共振扫描,若是则进行步骤(2),若否则 进行步骤(9);
[0009] 所述的磁共振禁忌症是指体内有金属植入物或电子植入物,或患有幽闭恐惧症, 或无法仰躺,或有在金属环境工作的经历;
[0010] 可以接受任务态功能磁共振扫描的病患是指病患可以在磁共振中顺利配合完成 一定时间的简单任务如图片命名,双手握拳运动等;
[0011] 步骤(2).判断病患的病灶所在脑区位置,以及病灶所在脑区位置是否和某重要 功能区相邻,若是则对该病患进行该重要功能的任务功能磁共振扫描,得到任务态功能磁 共振数据;若否则无需术前功能定位;
[0012] 所述的重要功能区是指日常生活息息相关的功能,如语言、运动;
[0013] 所述的重要功能的任务功能磁共振扫描是指根据该重要功能区所负责的功能来 制定的任务功能磁共振扫描;
[0014] 步骤(3).对步骤(2)同一个病患进行静息态功能磁共振扫描,得到静息态功能磁 共振数据;
[0015] 所述的静息态功能磁共振扫描是当病患处于安静闭眼休息的状态时进行的功能 磁共振扫描,在扫描过程中,病患无需执行任务;
[0016] 步骤(4).通过对步骤(2)得到的任务态功能磁共振数据进行分析,得到任务激活 区;通过任务激活区制作解剖模板,用于步骤(6)对静息态功能磁共振数据的分析;
[0017] 所述的任务激活区是指通过多重回归分析(广义线性模型)得出的当病患进行任 务时大脑被激活的区域;
[0018] 所述的激活是指某脑区在执行任务时,神经元活动导致血氧水平依赖(Blood Oxygenated Level Dependent, BOLD)信号相对于基线水平升高;
[0019] 所述的解剖模板的利记博彩app为将任务激活区结果,应用一定阈值(如T检验结果P 值小于0. 001),使之从连续值的图像,变为二值化的图像(即只有0和1两种值,其中0表 示解剖模板外的体素,1表示解剖模板内的体素);
[0020] 步骤(5).通过独立成分分析方法对步骤(3)得到的静息态功能磁共振数据进行 分析,提取大脑功能网络;
[0021] 所述的独立成分分析方法是指基于空间独立假设的,多元数据分析的盲源分析方 法;它可将静息态功能磁共振数据分解为多个空间独立的大脑功能网络;
[0022] 由于独立成分分析的结果受初始值的影响,会产生较大的变异,因此,本发明推荐 使用受初始值影响小的"被试数据连接顺序无关"独立成分分析方法(SOI-GICA);
[0023] 步骤¢).采用模板匹配方法对步骤(5)得到的多个大脑功能网络进行自动化的 相似度匹配,找出和步骤(4)制作出的解剖模板最相似与次相似的大脑功能网络;
[0024] 所述的模板匹配方法的选取要求是可同时考虑大脑功能网络提取的敏感度和特 异度,如基于信号检测论(Signal detection theory)的辨别力指标(Discriminability index);
[0025] 所述的基于信号检测论的辨别力指标是指在信号检测论中,用一种指标定义信号 和噪声之间的差异;如果该指标越大,表示操作者能准确从噪声中辨别出信号;而如果该 指标较小,则表示很难辨别;
[0026] 步骤(7).对独立成分分析模型的模型阶数进行改变,遍历各模型阶数,进行步骤 (6)所述的分析,得到在不同模型阶数的取值下,和步骤(4)制作出的解剖模板最相似与次 相似的大脑功能网络;
[0027] 所述的模型阶数是指在独立成分分析中,设置将静息态功能磁共振数据分解为多 少个空间独立成分的参数。由于不可能知道人脑有多少个空间独立的成分,因此,在独立成 分分析中,模型阶数是无法准确确定的,所以只能是一个预设参数。
[0028] 步骤(8).对步骤出)、(7)得到的多个最相似大脑功能网络相对应的拟合优度 进行排序,得到最高拟合优度所对应的大脑功能网络;根据最高拟合优度所对应的大脑功 能网络,得到与该大脑功能网络相对应的模型阶数相同的次相似大脑功能网络,然后判断 是否需要合并,若是则将该最相似与该次相似的大脑功能网络合并为一个最佳大脑功能网 络,用于术前功能定位;若否则将该最相似的大脑功能网络作为最佳大脑功能网络,用于术 前功能定位;
[0029] 所述的达到合并要求是指次相似的大脑功能网络所对应的拟合优度值大于阈值, 该阈值可根据步骤(6)模板匹配方法来定义;
[0030] 步骤(9).对一组健康人做任务态和静息态功能磁共振扫描,然后执行步骤(2)? (8)操作,得到标准空间的脑功能网络模板;
[0031] 步骤(10).对无法接受任务态功能磁共振扫描的病患,进行静息态功能磁共振扫 描,得到静息态功能磁共振数据;然后将该病患的结构磁共振成像数据配准(即对齐)到标 准空间,得到配准的变换信息,并利用该变换信息,将步骤(9)中得到的标准空间的脑功能 网络模板反变换回病患的个体空间,得到该病患的解剖模板,最后重复步骤(5)?(8)。 [0032] 本发明的有益效果:
[0033] 本发明针对任务态功能磁共振术前功能定位复杂且不易实施,而静息态功能磁共 振和独立成分分析方法无法自动化的问题,通过模板匹配方法实现自动化确定最优参数并 生成最优结果。利用本发明所描述的技术,可以实现基于静息态功能磁共振数据定位多个 大脑功能网络。通过本发明所得到的功能定位结果,将更好的辅助神经外科手术计划的制 定,使手术医生更好的做到"最大限度保留神经功能"。
[0034] 本发明采用对模型阶数这一参数进行遍历取值的独立成分分析方法,克服了传统 独立成分分析结果极大地受到模型阶数的影响这一经典难题;不同于传统的基于数据和信 息论来模型阶数的方法,本发明根据分解结果去寻找最优模型阶数,因此对模型阶数估计 的更为准确;采用"被试数据连接顺序无关"独立成分分析方法(SOI-GICA),能够稳定的找 出大脑功能网络;本发明能够自动化地考量是否出现了成分分裂的情况,从而解决了传统 独立成分分析结果可能出现成分分裂,而给术前定位带来"假阴性"的隐患;该方法能够对 分解结果自动判断是否要将几个最佳成分合并在一起,从而避免了人工判断所带来的主观 误差。
[0035] 本发明可应用于实际临床中,建立一种自动而且可靠的术前功能定位方法,适合 包括癫痫手术、脑肿瘤切除手术在内的各种神经外科手术的术前综合评估,避免由于人为 参与所带来的功能定位主观误差。更重要的是,本发明还可应用于无磁共振任务刺激设备 的医院,以及病人无法配合完成任务时的术前功能定位。由于也可只用静息态功能磁共振 成像,因此无需让病人做任务,降低了病人的负担,可以对有偏瘫或者失语等术前功能损伤 症状的病人使用;扫描时只需安静闭眼休息即可,从而增加了临床应用的广泛性。

【专利附图】

【附图说明】
[0036] 图1是本发明提供的,当病患可配合任务态功能磁共振扫描进行术前脑功能网络 定位的方法流程图;
[0037] 图2是本发明提供的,当病患无法配合任务态功能磁共振扫描而只能进行静息态 功能磁共振扫描时进行术前脑功能网络定位的方法流程图;
[0038] 图3是本发明推荐使用的"被试数据连接顺序无关"独立成分分析方法 (SOI-GICA)流程图;
[0039] 图4是本发明所使用的核心计算方法一一用于辅助术前功能定位的基于辨别力指 标的自动化的成分识别方法详细流程图;
[0040] 图5是利用本发明所述的方法对一组健康志愿者的执行控制功能网络进行功能 定位的结果;
[0041] 图6是利用本发明所述的方法对一组健康志愿者的感觉运动功能网络进行功能 定位的结果;
[0042] 图7是利用本发明所述的方法对健康志愿者个体的感觉运动功能网络进行功能 定位的结果,并将此结果和这些志愿者个体的双侧握拳任务激活区做比较;
[0043] 图8是利用本发明所述的方法对另一批20个健康志愿者个体的感觉运动功能网 络进行功能定位的结果;
[0044] 图9是利用本发明所述的自动化判断成分是否需要合并的方法所得到的个体感 觉运动功能网络功能定位结果,当次相似大脑功能网络相对应的DICI值大于1. 5时,最相 似和次相似两个大脑功能网络应该合并在一起形成最终术前功能定位结果;反之,则无需 合并,只需将最相似大脑功能网络用于最终术前功能定位;
[0045] 图10是利用本发明所述的方法对病患进行的感觉运动功能网络功能定位结果, 该结果和对病患进行术中电生理功能定位所得到的感觉运动功能网络定位结果互相吻 合;
[0046] 图11是利用本发明所述的方法对健康志愿者个体的语言功能网络进行功能定位 的结果;
[0047] 图12是利用本发明所述的方法对病患进行的语言功能网络进行功能定位的结 果,该结果和对病患进行术中电生理功能定位所得到的语言功能网络定位结果互相吻合;

【具体实施方式】
[0048] 为使本发明的目的、技术方案和优点更加清楚明白,以下结合具体实施例,并参照 附图1-4,以感觉运动区和语言区功能定位为例,对本发明进一步详细说明。
[0049] 步骤(1).筛选病患:
[0050] 病患入组:由医院影像科,功能神经外科或者神经外科大夫通过临床常规影像资 料(如电子计算机断层扫描)共同确认为颅内肿瘤或者其他需要做开颅脑切除术的住院患 者;
[0051] 由影像科大夫确认并排除无需进行术前功能定位的病患,如脑膜瘤等脑外肿瘤和 非功能区病灶;
[0052] 由影像科和神经外科大夫共同确定并排除无需开颅手术的病患等;
[0053] 排除意识障碍或者严重并发症患者,或者其他无法自理需要监看护的病患。排除 不配合磁共振扫描或者有磁共振禁忌证的患者,如心脏起搏器植入,颅内动脉瘤夹或者血 管支架,人工电子耳蜗,无法卸除的金属假牙等情况;
[0054] 由神经外科大夫询问病患是否能够愿意接受功能磁共振扫描,通过神经心理学量 表和日常生活能力量表,语言量表以及运动功能量表来判断病患是否能够进行任务态功能 磁共振扫描。如是,则采用附图1所示的流程进行功能定位;如病患无法进行或者不愿配 合任务态功能磁共振扫描,或者愿意配合但是完成度差(如头动太大,或者任务执行不理 想),则不进行任务态功能磁共振扫描,采用一组健康人得到的解剖模板,利用病患的静息 态功能磁共振数据进行功能定位(定位流程见附图2)。
[0055] 对病患进行结构磁共振扫描,扫描参数推荐使用如下参数设置:
[0056] 3D Tl 参数:Sequence = SPGR,parallel acceleration = 2, sagittal slices,slice number = 180with 2slices in each end discarded(oversampling) to achieve 176, matrix size = 256*256, FOV = 256*256mm, TR/TE = 8100/3. lms, FA = 8deg, slice thickness = I, gap = 0 (isotropic voxel size = 1*1*1), TI (prepare time) =450ms, bandwidth = 31. 25kHz, total scan time = 5 分 05 秒。
[0057] 步骤(2).根据病灶所在位置确定用何种任务功能磁共振扫描:
[0058] 如病灶位于语言区周围(Broca区或者Wernicke区)或者外侧裂周围(如额叶、 岛叶、颞叶、顶叶),采用语言区定位任务实验范式:如动词产生、图片命名、或者默读;
[0059] 如病灶在中央区周围(包括中央前回,中央沟,中央后回的外侧面或者内侧面), 则视具体位置不同,采用动嘴(病灶在嘴运动区时),动手(病灶在手运动区时),或者动脚 任务(病灶在脚运动区时);
[0060] 如病患无法执行任务功能磁共振扫描,则招募一组健康志愿者(或者可以利用医 院已有的健康志愿者功能磁共振数据一在平时就可以完成健康志愿者任务态和静息态 功能磁共振数据的收集和储备);健康志愿者可在医院周围的学校和社区招募,选择大学 生年龄段群体,无任何脑内神经疾病以及精神问题,汉族中文母语,右利手。排除标准同步 骤(1)中对病患的排除标准;
[0061] 在功能磁共振成像前,病患(或者健康志愿者)填写磁共振安全筛查表,填写被试 知情同意书。在数据采集过程中,主试填写扫描情况表;
[0062] 在医院的磁共振中心,使用3特斯拉的磁共振机器,使用8通道或更多通道的头线 圈,正式的任务态功能磁共振扫描之前先做勻场,使磁场均勻稳定;
[0063] 任务态功能磁共振的扫描参数推荐按如下参数设置:Sequence = GRE-EPI,axial slices,scanning order = interleaved[1:2:432:2:42], slice number = 43, matrix size = 64*64, FOV = 220*220mm, TR/TE = 2000/30ms, FA = 90deg, slice thickness = 3. 2mm, gap = 0 (voxel size3. 4X 3. 4X 3. 2), dummy scan = 0, number of acquisitions = 240, NEX = I, parallel acceleration = 2, total scan time = 8 分钟;
[0064] 任务实验范式采用组块设计,通过磁共振任务刺激设备发送任务起始时刻点的标 记,和功能磁共振扫描同步。组块设计包含两种组块,一个为任务组块,一个为静息组块。 [0065] 步骤(3).静息态功能磁共振扫描:
[0066] 告知病患(或健康志愿者)在磁共振机器中安静闭眼休息,进行静息态功能磁共 振扫描,在扫描过程中,无需执行任务,无需启动磁共振任务刺激设备;但是,扫描结束后需 要询问病患(或健康志愿者)是否在静息态功能磁共振扫描时睡着,如睡着,重新扫描;
[0067] 静息态功能磁共振的扫描参数推荐按如下参数设置:Sequence = GRE-EPI,axial slices,scanning order = interleaved[1:2:432:2:42], slice number = 43, matrix size = 64*64, FOV = 220*220mm, TR/TE = 2000/30ms, FA = 90deg, slice thickness = 3. 2mm, gap = 0 (voxel size3. 4X 3. 4X 3. 2), dummy scan = 0, number of acquisitions = 240, NEX = I, parallel acceleration = 2, total scan time = 8 分钟。
[0068] 步骤(4).任务激活区检测和解剖模板制作:
[0069] 对任务态功能磁共振数据进行预处理,预处理步骤包括去除前5个任务态功能磁 共振数据的时间点,层获取时间校正,头动校正,任务态功能磁共振数据和结构磁共振数据 两种模态之间对齐,空间标准化(将任务态功能磁共振数据从个体空间配准到标准空间) 和空间平滑。对于同时有任务态和静息态功能磁共振数据的病患的术前功能定位,由于可 以在个体空间内进行数据分析,因此不做其中的空间标准化步骤;
[0070] 任务激活区检测采用统计参数图软件进行(Statistical Parametric Mapping, 简称SPM,http://www.fil. ion. ucl.ac. uk/spm/,推荐使用SPM8)进行,采用基于广义线性 模型(GLM)的多重回归分析方法得到个体空间的任务激活区,如下式:
[0071] Y = β 〇Χ〇+ β ^1+ ε ,
[0072] 其中Y是任务态功能磁共振数据,Xtl是常数项,X1是任务设计参考时间序列,由组 块设计的任务起始时刻点和任务组块持续时间确定,ε是残差项。β项是经过广义线性模 型模型估计得到的结果,是回归分析的回归子,其中β i决定了任务激活情况;
[0073] 任务激活区检测生成一个"激活脑",每个大脑的体素都有一个"激活值",将结果 二值化后形成解剖模板;
[0074] 对于一组健康志愿者,在做完上述激活区检测后,采用单样本T检验进行群组分 析,得到一组人的平均的任务激活区检测结果,将该结果二值化后,得到基于一组健康志愿 者的解剖模板。对于只有静息态功能磁共振数据的病患的术前功能定位,需要利用上面步 骤生成的基于一组健康被试的解剖模板,再利用SPM软件的"变形场应用(Deformation) " 功能,将"空间标准化"这一步骤得到的"标准空间一个体空间"的变形场信息应用在该解 剖模板上,将其变换到病患的个体空间,通过二值化形成适用于该病患的解剖模板,用于下 面步骤所述的功能定位。
[0075] 步骤(5).对静息态功能磁共振数据进行独立成分分析。
[0076] 采用受初始值影响小的"被试数据连接顺序无关"独立成分分析方法(SOI-GICA), 对病患的静息态功能磁共振数据进行独立成分分解。该SOI-GICA算法采用随机初始值的 方法,每次随机后进行一次独立成分分析;如此进行多次独立成分分析,对所有分析得到的 结果,通过聚类分析得到大脑功能网络在不同独立成分分析之间的匹配关系,然后对其进 行平均,得到最终的大脑功能网络分解结果。独立成分分析的公式见下式:
[0077] R = AS ;
[0078] 其中,R是静息态功能磁共振数据,S是独立成分分析分解得到的各个大脑功能网 络(即空间模式),A是该大脑功能网络所对应的时间序列(即时间活动模式);其中,各个 大脑功能网络之间,是两两空间独立的,即各个大脑功能网络之间空间位置不相互重叠;
[0079] 如需要对一组健康人的静息态功能磁共振数据进行独立成分分析,也可采用 SOI-GICA方法。和单个病患的数据分析不同的是,除了每次独立成分分析随机初始值以 夕卜,还将随机被试数据的连接顺序(Subject concatenation order),这样来进行多次独 立成分分析。同样,对所有分析得到的结果,通过聚类分析得到大脑功能网络在不同独立 成分分析之间的匹配关系,然后对其进行平均,得到最终的大脑功能网络分解结果。其中, SOI-GICA的算法流程如附图3。
[0080] 步骤(6).采用基于信号检测论的辨别力指标,对多个大脑功能网络进行和解剖 模板的相似度匹配,具体步骤见下(其流程图见附图4):
[0081] 将独立成分分析得到的所有大脑功能网络结果分别进行二值化;
[0082] 和解剖模板相比,计算击中率(Hit rate, HR):对每个二值化的大脑功能网络 (bICi),和解剖模板图(ICt)相比较,计算两者重叠的体素数目,除以解剖模板所包括的体 素总数,见下式;

【权利要求】
1. 一种基于静息态功能磁共振的术前脑功能网络定位方法,其特征在于该方法包括 以下步骤: 步骤(1).对无磁共振禁忌症的病患进行结构磁共振扫描,得到结构磁共振成像数据; 然后判断该病患是否可以接受任务态功能磁共振扫描,若是则进行步骤(2),若否则进行 步骤(9); 步骤(2).判断病患的病灶所在脑区位置,以及病灶所在脑区位置是否和某重要功能 区相邻,若是则对该病患进行该重要功能的任务功能磁共振扫描,得到任务态功能磁共振 数据;若否则无需术前功能定位; 步骤(3).对步骤(2)同一个病患进行静息态功能磁共振扫描,得到静息态功能磁共振 数据; 所述的静息态功能磁共振扫描是当病患处于安静闭眼休息的状态时进行的功能磁共 振扫描,在扫描过程中,病患无需执行任务; 步骤(4).通过对步骤(2)得到的任务态功能磁共振数据进行分析,得到任务激活区; 通过任务激活区制作解剖模板,用于步骤(6)对静息态功能磁共振数据的分析; 步骤(5).通过独立成分分析方法对步骤(3)得到的静息态功能磁共振数据进行分析, 提取大脑功能网络; 所述的独立成分分析方法是指基于空间独立假设的,多元数据分析的盲源分析方法; 它可将静息态功能磁共振数据分解为多个空间独立的大脑功能网络; 步骤¢).采用模板匹配方法对步骤(5)得到的多个大脑功能网络进行自动化的相似 度匹配,找出和步骤(4)制作出的解剖模板最相似与次相似的大脑功能网络; 步骤(7).对独立成分分析模型的模型阶数进行改变,遍历各模型阶数,进行步骤(6) 所述的分析,得到在不同模型阶数的取值下,和步骤(4)制作出的解剖模板最相似与次相 似的大脑功能网络; 步骤(8).对步骤(6)、(7)得到的多个最相似大脑功能网络相对应的拟合优度进行排 序,得到最高拟合优度所对应的大脑功能网络;根据最高拟合优度所对应的大脑功能网络, 得到与该大脑功能网络相对应的模型阶数相同的次相似大脑功能网络,然后判断该次相似 的大脑功能网络所对应的拟合优度值是否大于阈值,若是则将该最相似与该次相似的大脑 功能网络合并为一个最佳大脑功能网络,用于术前功能定位;若否则将该最相似的大脑功 能网络作为最佳大脑功能网络,用于术前功能定位; 步骤(9).对一组健康人做任务态和静息态功能磁共振扫描,然后执行步骤(2)?(8) 操作,得到标准空间的脑功能网络模板; 步骤(10).对无法接受任务态功能磁共振扫描的病患,进行静息态功能磁共振扫描, 得到静息态功能磁共振数据;然后将该病患的结构磁共振成像数据配准(即对齐)到标准空 间,得到配准的变换信息,并利用该变换信息,将步骤(9)中得到的标准空间的脑功能网络 模板反变换回病患的个体空间,得到该病患的解剖模板,最后重复步骤(5)?(8)。
2. 如权利要求1所述的一种基于静息态功能磁共振的术前脑功能网络定位方法,其特 征在于步骤(5)独立成分分析方法为受初始值影响小的"被试数据连接顺序无关"独立成分 分析方法。
【文档编号】A61B5/055GK104337518SQ201410592967
【公开日】2015年2月11日 申请日期:2014年10月29日 优先权日:2014年10月29日
【发明者】张寒, 路俊锋, 吴劲松, 臧玉峰 申请人:杭州师范大学, 复旦大学附属华山医院
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1