专利名称:使用高频起搏和肾神经消融治疗心房纤颤的利记博彩app
技术领域:
本发明涉及使用消融导管,单独采用肾神经切除或结合心脏组织消融治疗包括心房纤颤在内的心律失常的方法。具体地讲,所述方法使用高频起搏识别要消融的肾神经, 可以包括采用心脏组织消融实现心脏中的肺部静脉隔离,以便治疗药物难治性心房纤颤病例。
背景技术:
心律失常,尤其是指心房纤颤,一直是常见和危险的疾病,在老年人中尤为如此。 对于具有正常窦性心律的患者,由心房、心室和兴奋传导组织构成的心脏在电刺激的作用下可以同步、模式化方式搏动。对于心律失常的患者,心脏组织的异常区域不会像具有正常窦性心律的患者那样遵循与正常传导组织相关的同步搏动周期。相反,心脏组织的异常区域不正常地向相邻组织传导,从而将心脏周期破坏为非同步心律。之前已知这种异常传导发生于心脏的各个区域,例如窦房(SA)结区域中、沿房室(AV)结和希氏束的传导通道或形成心室和心房心腔壁的心肌组织中。包括房性心律失常在内的心律失常可以为多子波折返型,其特征在于电脉冲的多个异步环分散在心房腔室周围,并且这些环通常是自传播的。另一方面,或者除多子波折返型之外,心律失常还可以具有局灶性起源,例如当心房中孤立的组织区域以快速重复的方式自主搏动时。室性心动过速(V-tach或VT)是一种源于某一个心室的心动过速或快速心律。这是一种可能危及生命的心律失常,因为它可以导致心室纤颤和猝死。当窦房结产生的正常电脉冲被起源于心房和肺静脉、会导致不规则脉冲被传输至心室的紊乱电脉冲淹没时,会发生一种类型的心律不齐,即心房纤颤。从而产生不规则心跳,并会持续几分钟至几周,或甚至几年。心房纤颤(AF)通常是慢性病症,它会使通常由中风导致的死亡风险稍有增大。风险随年龄而增大。大约8%的80岁以上人群具有一定程度的AF。心房纤颤通常是无症状的,而且其自身一般不会危及生命,但它会引起心悸、虚弱、昏晕、胸痛和充血性心力衰竭。发生AF时中风风险增大,因为血液会在收缩乏力的心房和左心耳中汇集并形成凝块。AF的一线治疗是可减慢心率或使心律恢复正常的药物治疗。另外,患有AF的人通常会被给予抗凝剂,以防止他们有中风的风险。使用此类抗凝剂会伴随其自有的内出血风险。对于某些患者,药物治疗是不够的,他们的AF被视为药物难治性的, 即用标准药物干预是无法医治的。也可以采用同步电复律使AF恢复至正常心律。作为另外一种选择,可以用导管消融治疗AF患者。然而,此类消融不是对所有患者都有效。因此, 需要具有针对此类患者的替代治疗方法。外科手术消融是一种选择,但也具有通常与外科手术相关的额外风险。心律失常的诊断和治疗包括标测心脏组织(尤其是心内膜和心脏容量)的电性质,以及通过施加能量来选择性地消融心脏组织。此类消融可以终止或改变无用的电信号从心脏的一部分向另一部分的传播。消融方法通过形成不传导的消融灶来破坏无用的电通路。已经公开了多种用于形成消融灶的能量递送物理疗法,其中包括使用微波、激光和更常见的射频能量来沿心脏组织壁形成传导阻滞。在这个两步手术(标测,然后消融)中,通常通过向心脏中插入包含一个或多个电传感器的导管(或电极)并获取多个点处的数据来感应并测量心脏中各个点的电活动。然后利用这些数据来选择将要进行消融的目标区域。电极导管已普遍用于医疗实践多年。它们被用于刺激和标测心脏中的电活动,以及用于消融异常电活动的部位。使用时,将电极导管插入主静脉或动脉(例如股动脉),然后导入所关注的心室中。典型的消融手术涉及将在其远端具有顶端电极的导管插入心室中。提供了一种参比电极,其通常用胶带粘贴在患者的皮肤上,或者使用设置在心脏中或附近的第二导管来提供参比电极。RF(射频)电流被施加至消融导管的顶端电极,并通过周围介质(即,血液和组织)流向参比电极。电流的分布取决于与血液相比电极表面与组织接触的量,其中血液比组织具有更高的传导率。由于组织的电阻率出现组织的变热。组织被充分加热而使得心脏组织中的细胞破坏,导致在心脏组织中形成非导电的消融灶。在这个过程中,由于从被加热组织至电极本身的传导,还发生对电极的加热。如果电极温度变得足够高,可能高于60°C,则可在电极的表面上形成脱水血液蛋白的薄透明涂层。如果温度继续升高,则所述脱水层会变得越来越厚,导致在电极表面上发生血液的凝结。因为脱水生物材料与心内膜组织相比具有更高的电阻,所以对于进入心内膜组织的电能量流的阻抗也增大。如果阻抗充分地增大,则发生阻抗升高并且导管必须从身体移开并且对顶端电极进行清理。在美国专利No. 6,292,695中公开了一种用电生理学导管控制心房纤颤、心动过速或心律失常的方法,所述电生理学导管具有包含至少一个刺激电极的顶端部分,所述电极稳定放置在选定血管内位置处。该电极连接到刺激装置上,在血管壁上经血管以足以使神经去极化并影响心脏控制的强度对支配心脏的交感神经或副交感神经施加刺激。Demaris等人的美国专利公布No. 2007/1029671中公开了使用肾神经刺激治疗心律失常的方法。Demaris提出通过使用神经调节可实现不可逆转的电穿孔或电熔化、消融、 坏死和/或诱发细胞凋亡、改变基因表达、动作电位衰减或封锁、改变细胞因子上调以及目标神经纤维中的其他状况。在一些实施例中,通过施加神经调节剂、热能或高强度聚焦超声实现此类神经调节。在Deem等人的美国专利公布No. 2010/0222851中,提出通过监测肾神经调节的刺激作用识别肾神经,以便切除神经或进行调节。在神经调节之前刺激此类神经预期可以减少血流,但在神经调节之后进行刺激预期不会使血流减少至在神经调节之前使用相似状况参数和位置时达到的程度。
发明内容
本发明涉及对患者的治疗方法,尤其是心律失常的治疗方法,如单独采用肾消融或结合心脏消融的心房消融。本发明的患者治疗方法包括以下步骤将其上装有电极的消融导管插入患者的肾动脉中,其中肾动脉具有限定内腔的壁;刺激肾动脉内腔壁的一部分;监测患者的血压;识别肾组织壁上的通过刺激可导致患者血压降低的位置,从而表明该位置附近存在肾神经; 以及消融识别位置附近的肾神经。完成消融之后,重新刺激识别位置,以确定通过刺激是否可降低患者的血压,如果有所降低,则再次消融识别位置,以消融肾神经。使用的消融导管可以是一种能够用射频能量、超声能量、微波能量或低温冷却消融组织的消融导管。消融导管可以具有灌注电极,以便减小对除肾神经细胞(如内皮层)外的肾动脉壁的损害。灌注电极可以具有冷却流体能够流经的多个孔,或者可以被封闭系统中的冷却流体冷却。冷却流体可以是盐水,并优选地冷却至基本上低于患者的体温,更优选地冷却至大约20摄氏度。刺激肾动脉内腔壁的一部分的步骤包括使用高频脉冲,优选地以大于大约20KHz 的频率刺激肾神经,从而使患者的血压作出响应。可以沿着肾动脉壁将消融导管移至第二位置,并重复刺激、监测、识别和消融步骤。可以一直这么做,直到确信所有肾神经已被切除。根据权利要求1所述的方法,其中是对心律失常进行治疗。对于治疗心律失常而言,所述方法优选地包括以下步骤将消融导管插入患者的心脏,用消融导管消融心脏组织,以便校正心律失常。如果心律失常为心房纤颤,那么消融心脏组织的步骤会导致一条或多条肺静脉隔离。所述方法中使用的消融导管可以包括能够提供与消融导管顶端位置相关的信息的位置传感器,如磁性位置传感器。
通过参考以下与附图结合考虑的详细说明,将更好地理解本发明的这些和其他特征以及优点,其中图1为心导管插入术系统的示意性图解。图2为示出人类肾脏解剖的示意图。图3为肾动脉壁的一部分的横截面示意图。图4为本发明的导管的一个实施例的侧视图。图5为图4导管的远端段的透视图。图6为根据本发明的肾神经切除方法的流程图。
具体实施例方式图1为根据本发明实施例的肾和/或心导管插入术系统20的示意性图解。系统 20 可以基于例如由 Biosense Webster (Diamond Bar, California)制造的 CARTOTM 系统。 该系统包括导管观形式的侵入式探针和控制台34。在下文所述的实施例中,如本领域所已知,假设导管观用于消融心内组织。或者,加以必要的变通,可以将导管用于心脏或其他身体器官中的其他治疗和/或诊断用途。操作者沈(如心脏病学家)将导管洲穿过患者M的血管系统插入,以使得导管的远端30进入肾动脉或患者心脏22的心室。操作者推入导管,以使得导管的远端顶端在所需的一个或多个位置处接合心内组织。导管观通常由在其近端处的合适的连接器连接到控制台34。如下文进一步描述的,所述控制台包括射频(RF)发生器40,其借助导管提供高频电能来消融远端头接合位置处的心脏中的组织。作为另外一种选择,导管和系统能够通过本领域已知的其他技术进行消融,如冷冻消融、超声消融或用微波能量进行消融。控制台34利用磁性位置感测确定心脏22内的远端30的位置坐标。为了该目的,控制台34中的驱动电路38驱动磁场发生器32,以在患者M体内产生磁场。通常, 磁场发生器包括线圈,线圈在患者体外的已知位置处被置于患者躯干下方。这些线圈在包含心脏22在内的预定工作空间内产生磁场。导管观的远端30内的磁场传感器(如图2所示)在这些磁场作用下产生电信号。信号处理器36处理这些信号,以确定远端的位置坐标,通常包括位置和取向坐标。该位置感测方法在上述CARTO系统中实施并在美国专禾Ij 5,391,199,6, 690,963,6, 484,118,6, 239,724,6, 618,612 和 6,332,089 中、在 PCT 专利公布WO 96/05768中以及在美国专利申请公布2002/006Μ55Α1、2003/0120150Α1和 2004/0068178A1中有详细描述,它们的公开内容全部以引用方式并入本文。处理器36通常包括通用计算机,通用计算机具有合适的前端和接口电路,用于从导管观接收信号并控制控制台34的其他组件。处理器可以在软件内编程,以执行本文所述功能。例如,可经网络将软件以电子形式下载到控制台34中,或者可将软件设置在有形介质上,例如设置在光学、磁或电子存储介质上。作为另外一种选择,可通过专用或可编程数字硬件部件执行处理器36的一些或全部功能。根据从导管和系统20的其他组件接收的信号,处理器36驱动显示器42给操作者沈提供关于患者体内远端30的位置的视觉反馈, 以及关于正在进行的过程的状态信息和指导。作为另外一种选择或除此之外,系统20可以包括用于在患者M体内操纵和操作导管28的自动化机构。该机构通常能够控制导管的纵向运动(前进/后退)和导管的远端的横向运动(偏转/转向)。例如,该类型的一些机构将直流磁场用于此目的。在此类实施例中,处理器36根据导管中磁场传感器所提供的信号产生控制输入,用于控制导管的运动。如下文进一步所述,这些信号表征导管远端的位置和施加到远端上的力。图2为人类肾和泌尿系统的示意图,其包括由肾动脉RA提供含氧血液的左和右肾 K,肾动脉继而由腹主动脉AA提供含氧血液。虽然它们的尺寸相对较小,但肾可接纳心脏输出的总含氧血液的大约20%。每条肾动脉都分成节段动脉,其进一步分成叶间动脉,叶间动脉穿过肾小囊并延伸穿过肾锥体之间的肾柱。肾K将尿液排至输尿管U,进入泌尿系统的膀胱B。含氧血液一旦被肾使用,其就会从肾经由肾静脉RV和下腔静脉IVC流回心脏。肾和中枢神经系统通过肾丛连通,肾丛的纤维沿着肾动脉到达每个肾。肾神经通常在内皮层以下大约3mm的动脉壁的外膜内沿着肾动脉RA的长度在肾动脉RA周围延伸。图3示出了包括肾动脉在内的典型动脉的层,其包括内皮层E、平滑肌细胞SMC层和外膜A。肾神经RN 主要位于外膜内。图3和4示出了本发明方法中使用的导管观的一个实施例,其具有通过顶端消融电极17的改善的灌注流。该导管在提交于2010年4月四日的美国专利申请No. 12/770,582 中有更完整的描述,该专利以引用方式并入本文。顶端电极能够促使流体流入顶端电极并使流体在其中分散,从而提供更均勻的流体覆盖百分比,并促使流体在顶端电极外部的所有位置处流动。因此可以在对患者施加较低流体负载的较低流速下操作导管,同时顶端电极比以前的冷却电极具有更好的冷却性。此外,顶端电极处的高流体出口速率提供有助于在顶端电极周围形成流体边界层的“喷射”动作,这可以降低消融期间烧焦和/或血栓的发生率。可以将流体(例如生理盐水或肝素)从顶端电极输送到消融部位,以冷却组织、减弱凝结作用和/或促进更深消融灶的形成。应当理解,也可以输送其他流体,包括任何诊断和治疗流体,例如神经抑制剂和神经刺激剂。导管观具有带近端和远端的细长导管主体12、在导管主体12远端处的中间可偏转段14以及带灌注标测和消融顶端电极17的远端段15。该导管也包括在导管主体12近端处的控制手柄16,用来控制中间段14的偏转(单向或双向)。导管主体12包括具有单个轴上腔或中央管腔18的细长管状构造。导管主体12是柔韧的(即可弯曲),但沿其长度基本上是不可压缩的。导管主体12可为任何合适的结构, 并且可由任何合适的材料制成。目前优选的结构包括由聚氨酯或PEBAX制成的外壁。外壁包括由不锈钢等制成的嵌入式编织网,以增大导管主体12的抗扭刚度,使得当旋转控制手柄16时导管观的中间段14将以相应的方式进行旋转。导管主体12的外径并非决定性因素,但优选为不大于约8F,更优选不大于约7F。 同样,外壁20的厚度也不是决定性因素,但要足够薄,使得中央管腔18可容纳拉引构件 (例如,拉线)、导线和任何其他所需的金属线、电缆或配管。如果需要,外壁的内表面可衬有加强管,以得到改善的扭转稳定性。在控制手柄16和可偏转段14之间延伸的部件穿过导管主体12的中央管腔18。 这些部件包括用于远端段15上的顶端电极17和环电极22的导线、用于将流体输送到远端段15的灌注管、用于装入远端段中的位置定位传感器的电缆、用于使中间段14偏转的拉线以及用于感测远端顶端段15处的温度的一对热电偶线。远端顶端段15在中间段14的远端处,其包括顶端电极17以及在顶端电极17和中间段14之间的一段相对短的连接管或覆盖物M。在图4所示的实施例中,连接管M具有单一管腔,其允许顶端电极和环电极导线30、传感器电缆33、热电偶线41和42、拉线32 和灌注管38穿过进入顶端电极17中。连接管M的单一管腔允许这些部件根据需要从其在中间段14内的相应管腔向其在顶端电极17内的位置重新定向。在所公开的实施例中, 管M是保护性管,如PEEK管,其长度介于6mm和12mm之间,更优选为约11mm。需要注意的是,包括顶端电极和环电极导线30的选定部件为了顶端电极的其他部件和结构更清晰而未示出。外壳50由生物相容性金属(包括生物相容性金属合金)构造。合适的生物相容性金属合金包括选自不锈钢合金、贵金属合金和/或其组合的合金。在一个实施例中,外壳由含有约80重量%钯和约20重量%钼的合金构造。在一个替代实施例中,外壳由含有约90 重量%钼和约10重量%铱的合金构造。外壳可由深冲压制造工艺形成,该工艺生成足够薄但坚固的外壳壁,其适用于处理,穿过患者身体传送以及在标测和消融手术期间组织接触。 在所公开的实施例中,外壳壁具有大致均勻的厚度,其在介于约0. 003英寸和0.010英寸之间的范围内,优选在介于约0. 003英寸和约0. 004英寸之间的范围内,更优选为约0. 0035 英寸。尽管深冲压方法非常适于制造具有足够薄的壁的外壳,但应当理解,还可以使用其他方法,例如钻孔和/或浇注/模铸。在所公开的实施例中,有56个口,其排列在六个圆周行中,其中五行R1-R5各具有 10个口,远端行R6具有六个口。行R1-R5的口彼此大致等距,但邻行的口彼此错开,使得各口与四个或六个相邻口等距。最远端的具有十个口的行R5位于外壳的圆形远端部分处。 行(或圆)R6在外壳的平坦或几乎平坦的远端53上。行R6的六个口在圆上成等角。安装在连接管M上的环电极22可由任何合适的固体导电材料制成,例如钼或金,优选地为钼和铱的组合。环电极可用胶等安装到连接管M上。作为另外一种选择,可通过用导电材料(如钼、金和/或铱)涂覆管M来形成环电极。可采用溅射、离子束淀积或等同技术来涂敷涂层。可根据需要改变管M上环电极的数量。环可以为单极或双极。在图示实施例中,存在一个远端单极环电极和一对近端双极环电极。各环电极连接到各自的导线。顶端电极17通过导线电连接到消融能量源上。环电极21通过各自的导线电连接到适当的标测或监测系统。本发明的顶端电极可在瓦数低于30时以约8ml/分钟或更低的速率工作,在瓦数介于30和50之间时以约17ml的速率工作。因此,在五或六小时的手术中,患者身体上的流体负载会非常显著地减少。此外,如果通过可编程泵调节流速,则对于较低的瓦数,流速甚至可以更低。图5为示出根据本发明的双消融手术的流程图。在步骤100,内科医生将消融导管插入患者要治疗的肾动脉。可以通过肾动脉内的切口并将消融导管导入肾动脉中或通过另一种已知的方法完成该步骤。在步骤110,通过使用高频刺激,优选地以大于20KHZ的频率确定要施加射频消融能量的位置。如果肾神经在消融导管的附近,用高频刺激可以确定它的位置。对肾神经的高频刺激会使患者的血压下降,因此,要在步骤120监测患者的血压。 在步骤130,如果看到血压响应高频刺激而下降,则在步骤140可以对组织进行消融。用消融导管消融肾神经。例如,可使用上文所述的灌注射频消融导管,对肾动脉里面的该位点施加射频能量,从而消融肾神经。来自灌注消融导管的冷却流体可以防止内皮和平滑肌细胞受到过多的损害,从而避免肾动脉狭窄的可能性。冷却流体应足够凉,以便减小对内皮层的损害,它应当优选地冷于患者的体温,并更优选地低于大约20摄氏度。除了使用射频能量, 消融导管还可以使用本领域已知的超声或微波辐射或冷冻剂。在步骤150,通过用相同的高频刺激再次刺激相同的组织确定是否缺少迷走神经响应来证实成功消融,即,当以相同的方式刺激相同的区域时,患者未出现血压降低。通过在步骤150监测血压并在步骤170确定是否有响应,可以在步骤180确认该位置附近的肾神经的消融情况,或者,如果血压对刺激仍有响应,则可在步骤140重复消融。一旦在步骤 130或步骤170通过缺少迷走神经响应确认消融,如果存在包括需要消融的肾神经的其他肾动脉区域,则可在步骤190重新定位消融导管,以获得所需的结果。使用得自Grass Technologies的发生器以大于或等于20KHz的频率完成高频刺激。对于心律失常的具体治疗而言,方法的下一步是将消融导管插入患者的股动脉或肱动脉,并将消融导管导入心室进行心脏组织的消融。对于心房纤颤,执行消融以隔离一条或多条肺静脉。例如,根据Y. khwartz的名称为‘、tandardization of Catheter Based Treatments for Atrial Fibrillation”(基于导管标准化的心房纤颤治疗)美国专利公布No. 2007/003826的教导将消融导管插入切口,即患者股动脉中的插入导管,并将消融导管导入心房。肾神经切除和肺静脉隔离的组合可以进一步降低患者心房纤颤的复发,从而减少了重复手术。已结合本发明的当前的优选实施例进行了以上描述。本发明所属技术领域内的技术人员将会知道,在不有意背离本发明的原则、精神和范围的前提下,可对所述结构作出更改和修改。
因此,以上描述不应视为仅与所描述的和附图所示的精确结构有关,而应视为符合所附的具有最全面和合理范围的权利要求书,并作为权利要求书的支持。
权利要求
1.一种治疗患者的方法,所述方法包括以下步骤将其上装有电极的消融导管插入患者的肾动脉,其中所述肾动脉具有限定内腔的壁; 刺激所述肾动脉的内腔壁的一部分; 监测所述患者的血压;识别所述肾动脉的所述内腔壁上通过所述刺激引起所述患者的血压降低的位置,从而表明所述位置附近存在肾神经;以及消融所述识别位置附近的所述肾神经。
2.根据权利要求1所述的方法,还包括以下步骤再次刺激所述识别位置,以确定所述刺激是否使所述患者的血压降低; 如果所述患者的血压因所述再次刺激而降低,则重新消融所述识别位置,以消融所述肾神经;以及重复这些步骤,直到在所述识别位置处响应所述刺激的所述患者的血压极少降低或没有降低。
3.根据权利要求1所述的方法,其中所述消融导管能够使用射频能量消融组织。
4.根据权利要求3所述的方法,其中所述消融导管具有灌注电极。
5.根据权利要求1所述的方法,其中所述消融导管能够使用所述组织的低温冷却消融组织。
6.根据权利要求1所述的方法,其中所述消融导管能够使用超声消融组织。
7.根据权利要求1所述的方法,其中所述消融导管能够使用微波辐射消融组织。
8.根据权利要求1所述的方法,其中刺激所述肾动脉的所述内腔壁的一部分的步骤包括使用高频脉冲。
9.根据权利要求8所述的方法,其中所述高频刺激大于大约20KHz。
10.根据权利要求4所述的方法,其中所述灌注电极用于减小对所述肾动脉的所述内腔的壁中的内皮细胞的损害。
11.根据权利要求4所述的方法,其中所述灌注电极具有冷却流体能够流经的多个孔。
12.根据权利要求4所述的方法,其中所述灌注电极被封闭系统中的冷却流体冷却。
13.根据权利要求11或12所述的方法,其中所述冷却流体为盐水。
14.根据权利要求11或12所述的方法,其中所述冷却流体的温度基本上低于所述患者的体温。
15.根据权利要求14所述的方法,其中所述冷却流体的温度低于20摄氏度。
16.根据权利要求1所述的方法,其中所述治疗用于治疗心律失常。
17.根据权利要求16所述的方法,还包括以下步骤 将消融导管插入患者的心脏;用所述消融导管消融心脏组织,以便校正所述心律失常。
18.根据权利要求17所述的方法,其中所述心律失常为心房纤颤,并且消融心脏组织的步骤导致一条或多条肺静脉隔离。
19.根据权利要求1所述的方法,其中将所述消融导管移至第二位置,并重复刺激、监测、识别和消融的步骤。
20.根据权利要求1所述的方法,其中所述消融导管包括位置传感器。
21.根据权利要求1所述的方法,其中所述位置传感器为能够提供与所述消融导管的顶端位置相关的信息的磁性位置传感器。
22.—种治疗患者的方法,所述方法包括以下步骤将其上装有电极的灌注消融导管插入患者的肾动脉,其中所述肾动脉具有限定内腔的壁;通过所述电极刺激所述肾动脉的内腔壁的一部分; 监测所述患者的血压;识别所述肾动脉的所述内腔壁上通过所述刺激引起所述患者的血压降低的位置,从而表明所述位置附近存在肾神经;消融所述识别位置附近的所述肾神经。
23.根据权利要求22所述的方法,其中刺激所述肾动脉的所述内腔壁的一部分的步骤包括使用高频脉冲。
24.根据权利要求23所述的方法,其中所述高频刺激大于大约20KHz。
25.根据权利要求22所述的方法,其中所述灌注电极具有冷却流体能够流经的多个孔。
26.根据权利要求22所述的方法,其中所述灌注电极被冷却流体冷却。
27.根据权利要求沈所述的方法,其中所述冷却流体的温度基本上低于所述患者的体
28.根据权利要求27所述的方法,其中所述冷却流体的温度低于20摄氏度。
全文摘要
本发明公开了一种以降低血压和/或治疗心律失常,尤其是心房纤颤为目的而治疗患者的方法,所述方法包括将消融导管插入肾动脉的内腔。所述消融导管装有电极,所述电极可以刺激所述肾动脉中的壁组织,以帮助识别肾神经的位置。对所述肾神经进行高频刺激使所述患者的血压下降,从而表明肾神经就在附近。所述消融导管用于采用射频、超声、微波能能量或低温冷却消融所述肾神经。可以用灌注消融导管减小对除所述肾神经以外的所述肾动脉的所述内腔壁中的细胞,如内皮细胞的损害。为了治疗心房纤颤,可以用消融导管隔离一条或多条肺静脉,以便减少能够产生心房纤颤的异常电信号的传播。
文档编号A61B18/14GK102551878SQ20111041978
公开日2012年7月11日 申请日期2011年12月6日 优先权日2010年12月6日
发明者R·W·小派克 申请人:韦伯斯特生物官能公司