用于眼内近距离治疗的方法和器具的利记博彩app

文档序号:867658阅读:241来源:国知局
专利名称:用于眼内近距离治疗的方法和器具的利记博彩app
用于眼内近距离治疗的方法和器具本申请为国际申请PCT/US2006/044335于2008年5月15日进入中国国家阶段、 申请号为2006800似643. 6、发明名称为“用于眼内近距离治疗的方法和器具”的分案申请。
背景技术
已经建议,使用电离辐射(例如β -或X-射线辐射)来辐照与年龄相关性黄斑变性(AMD)有关的视网膜下的脉络膜新生血管(CNV),来治疗AMD。总的来说参见美国专利No. 6,875,165和美国公布申请No. 2003/0179854, 二者都在此引为参考。在共同待审的2005年2月11日提交的美国申请序号No. 11/056,763和2005年9月15日提交的 11/2 ,030中,公开了某些用于或在视网膜上或在视网膜下眼内递送辐射的器具,以及它们的使用方法,二者在此引为参考。正如在上面参考的专利和申请中所注意到,β辐射以及某些形式的X-线辐射对于治疗AMD是有利的,这是因为在与水的密度相似的材料(例如人体组织)中,这样的辐射源递送的剂量大致随着距离的平方衰减。因此,通过将辐射源或发射器紧邻靶组织精确定位(在CNV的情况下,和/或采取步骤避免辐照非靶组织,例如使用罩或衰减物质和滤波器,可以将治疗性辐射剂量递送到靶组织,同时对非靶组织递送很少或不递送(例如眼周围或非眼结构)。本发明公开了各种完成这种精确的治疗定位的方法和器具。发明简述在本发明的一个方面,提供了用于将辐射局部、定向地眼内递送到靶组织的装置。 该装置包括了大小适合于插入到眼睛中的插管,该插管具有近端和远端。辐射的发射源适合位于插管的远端,超声波传感器也位于插管的远端。在一个实施方案中,超声波传感器位于辐射发射源的近处,而在第二个实施方案中,超声波传感器位于插管中辐射发射源的远处。在本发明的另一个方面,提供了对上述包含超声波传感器的装置进行定位的方法。该方法包括根据插管的远端相对于靶组织的预定间距来校正超声波传感器,以便达到预定间离时产生信号。然后将插管通过眼睛表面的进入位点导入眼内部,并使插管的远端朝向靶组织移动,直到超声波传感器产生的信号被用户感知。在本方法的一个方面,超声波传感器产生的信号是听觉信号,而在本发明的另一个方面,信号是视觉信号。在本发明的另一个方面,提供了利用带有超声波传感器的第二插管在眼睛内部定位带有辐射发生器的第一插管的方法。首先,通过眼睛表面的进入位点将第一插管导入眼睛内部。然后,通过眼睛表面的进入位点将第二插管导入眼睛内部。然后,将第一插管的远端定位于与第二插管相连的超声波传感器与靶组织之间。然后,将第一插管的远部朝向靶组织移动,直到达到第一插管的远端与靶组织之间的预定间距,这时超声波传感器产生信号。同样地,信号可以是听觉信号,或是视觉信号。在本发明的另一个方面,提供了在眼睛内部定位插管以眼内递送对靶组织的治疗性处理的方法。首先,提供了具有可膨胀的球囊的插管,当膨胀到预定压力时该球囊得到预定的大小,该预定的大小对应于插管和靶组织之间为递送治疗性处理所需的间距。球囊可以是顺应性的或非顺应性的。将插管通过眼睛表面的进入位点导入眼睛内部,并将球囊膨胀到预定的压力。然后将插管朝向靶组织前进,直到靶组织与膨胀的球囊接触。球囊优选用密度低于被球囊的膨胀所替换的流体的密度的流体来膨胀,从而使治疗时间减少。在另一方面,选择球囊具有相应于靶组织形状的形状。在本发明的另一方面,提供了将插管定位于眼睛内部的方法,其中眼睛内部的流体被已知体积的第二流体所替换,第二流体的密度与第一流体的密度不同,从而在第一流体和第二流体之间产生可视的界面,该界面与靶组织相距预定的距离。然后将插管通过眼睛表面的进入位点导入眼睛内部,并朝向第一流体和第二流体的界面前进,直到插管的远端接触界面。插管可以任选在远端近处提供有可视的标记,在这种情况下,插管的远端朝向第一流体与第二流体的界面前进,直到插管上可视的标记与界面对齐。第二流体可以具有高于或低于第一流体密度的密度。在本发明的另一种方法中,提供了将用于治疗把组织的第一插管定位于眼睛内部的方法,其中插管的远端与靶组织相接触。第二个插管通过眼睛表面的进入位点导入眼睛内部,第二插管带有光源,将光束投向靶组织。通过眼睛表面的第二进入位点将第一插管导入眼睛内部,使得第一插管的远端位于第二插管和靶组织之间,从而处于第二插管投向靶组织的光束中。这样投射了落在靶组织上的第一插管的远端的影子,该影子可以通过眼睛的晶状体观察到。然后将第一插管的远端朝向靶组织前进,直到顶端与顶端投射的影子重合,从而表示第一插管的远端与靶组织接触。在本发明的另一个方面,提供了向靶组织局部、定向地眼内递送治疗性处理的装置,其包括插管;适合放置在插管远端的治疗性处理源,其预计放置到隔开靶组织预定的距离;以及至少一个光源,适合将两束可见光束投射到插管的远端以外。两束光束形成交叉, 使得当交叉与靶组织重合时,处理源隔开靶组织预定的距离。光源优选可以是光导管或激光。在本发明的另一个方面,提供了用于局部眼内递送靶组织的治疗性处理的装置, 该装置表面摩擦力降低。表面摩擦力降低可以通过插管表面的电抛光、插管表面的压窝、在插管的表面使用液体润滑剂例如甘油、或者为插管的表面提供耐辐射、低摩擦力的涂层来实现。在本发明的另一个方面,提供了从眼睛内部向眼中靶组织递送X-射线辐射的方法,其中连有X-射线发生器的X-射线探针通过眼睛表面的进入位点被导入眼睛内部。该探针相对于靶组织定位,将X-射线发生器间断起动,直到向靶组织递送了所需的辐射剂量。X-射线发生器也可以通过位于眼睛内部的热电偶来起动或停止,该热电偶优选与探针相连。X-射线探针也可以在其上连有热交换器,所述热交换器中包含有接受冷却流体的流体通路。此外,热交换器可以包括护套,它优选由导热系数低的材料制成。在本发明的另一方面,提供了用于向靶组织局部、定向地眼内递送辐射的装置,其包括具有适合插入眼睛的大小的探针,所述探针带有适合放置在探针远端的预定长度的辐射发射源。在探针的远端带有滤波器,它阻断了辐射发射源的远端大于近端的辐射量,使得当探针相对靶组织成一定角度取向时,递送到靶组织的剂量情况总的来说是对称的。在一个实施方案中,滤波器在邻近辐射发射源远端的厚度大于邻近近端的厚度。或者,滤波器邻近辐射发射源远端的密度可以高于邻近近端的密度。在本发明的另一方面,提供了用于局部、定向地眼内递送X-射线的装置,其中在用于衰减X-射线辐射的阳极附近,插管的远端带有高密度金属层。金属层中有开口,使得 X-射线基本上不受阻碍地通过它,开口以一定大小布置,使得能够将χ-射线辐射指引并限制到靶组织上。在本发明的另一个方面,提供了用于局部、定向地眼内递送X-射线辐射的装置, 其中插管的远端和阳极具有半球状。或者,插管的远端和阳极可以通常是平的,并通常垂直于插管远端的纵轴取向。在本发明的另一个方面,提供了用辐射和抗VEGF药物二者治疗眼睛内部的靶组织的方法。两种不同类型的疗法的施用在14天或更短的时期内进行,优选在4小时或更短的时期内进行,更加优选在同样的程序期间进行。药物可以在辐射靶组织之前或随后施用。 可以给予后续剂量的药物,优选在第一次治疗之后2到8周。附图简述

图1是用于在眼睛内部相对于靶组织定位治疗探针的超声波技术的示意图。图2是用于图1描述的超声波定位技术的视觉显示器的示意图。图3是用于校正图1描述的超声波定位系统的方法的示意图。图4和图5是用于将治疗探针定位到眼睛内部的方法的示意图,其中超声波传感器被设置与包含辐射发生器的探针分开的探针中。图6是在远端带有固定的间隔球囊的治疗探针的示意图。图7是图6的探针的横断面图。图8和9是施用的剂量对离辐射源的距离的图示,显示了使用小球囊(图8)产生的与辐射源的间距的剂量分布与使用相对较大球囊(图9)时的剂量分布之间的对比。图10和11图示了在眼睛内部定位探针的方法,其中密度与眼睛内流体的密度不同(较高)的流体被注入眼睛中。图12Α和12Β示意性地描述了使用分离的光源将递送探针定位于眼睛内部的方法。图13Α和1 示意性地显示了两种定位探针的可选择方案,其中探针上整合有一对光源。图14示意性地显示了连有热交换器的χ-射线辐射探针。图15示意性地显示了包括用于验证温度数据的热电偶的X-射线辐射探针。图16A-B和17A-C示意性地显示了辐射递送探针,包括用于确定辐射剂量场形态的工具(图16A、17A、17B),以及结合这些工具对剂量场的影响(图16B、17C)。图18A和18B示意性地说明了保护非靶组织的方法,其中在递送探针上附着有球
^ ο图19和20A-C显示了用于确定χ-射线辐射探针的剂量分布情况的形态的工具。
具体实施例方式用于靶向递送辐射剂量的各种方法和器具将在下面详细描述。辐射源的定位使辐射源与靶组织具有合适间距的一种方法是使用在现有技术中通常知道的各种距离反馈系统。例如,RF( “射频”)或超声波传感器可以连接在上面参考的专利和申请
5中公开的辐射递送探针/插管上。具体来说,参考图1,超声波传感器IOa或IOb可以设置在探针12辐射发生器14的近处,“传感器位置1”(用于传感器IOa),或远离辐射发生器14 的远处,“传感器位置2”(用于传感器10b)。传感器产生并感应超声波能量。传感器由外部的驱动开关起动,因此,当打开时,传感器交替地产生超声能量脉冲和收听反馈信号。然后将反馈转换到图2所示的视觉显示器15或针对使用者的听觉信号,从而提供了关于探针相对于靶组织16的位置的距离信息。超声波传感器的优选位置是辐射源或发生器14(即传感器IOb)的远处。如果传感器在辐射源或发生器的远处,则传感器可以较大,因为辐射源14在向治疗位置移动时不必通过或绕过传感器。传感器可以朝向靶组织或朝向探针顶端发射超声波。如果假设探针顶端与视网膜之间的间距来计算设定的剂量,则传感器被定向为朝向靶组织发射超声波,并且在治疗前需要进行校正。超声距离校正技术在本技术领域中是众所周知的,在此将不详细讨论。作为示例,如在图3中示意性的图示,假设辐射发射源15的中心与靶组织之间的最适距离“X”是 3. 0mm,在校正过程中,为了达到组织与源分开3. 0mm,传感器IOb和组织16之间的实际间隔是在眼外通过使用靶18来确定的,靶18通常是塑料材料,其密度与玻璃体液、盐水(玻璃体切除术后)或靶组织相当,基本上是水的密度。为了进行校正,将探针12装入固定装置, 将传感器IOb打开。使用系统的软件将目前的位置设定为“治疗位置”。校正可以在生产装置的地方进行,或在临床场所进行。超声波显示器,例如图2中显示的那样,优选可以通过外科显微镜的目镜观察,这将允许外科医生看到超声波输出,以确定何时探针定位适当。另选,或附加,当达到所需间距时可以提供听觉信号,如将在下面更详细的描述。在某些情况下,传感器可以朝向探针的顶端发射超声,例如,当辐射源将通过将探针接触靶组织的表面来定位时。在这样的情况下,校正是任选的。如果设定的剂量是假设探针的顶端与视网膜之间接触来计算的,外科医生可以通过目镜直接看到超声输出并确定何时进行接触。如果设定的剂量是假设探针顶端与视网膜之间的一定分离来计算的话,则系统必须如上所述在生产后或治疗前进行校正。如果超声指向顶端,则顶端可以从密度低于构成探针的金属的材料制成,例如有机硅或流体填充的球囊。这将防止高密度金属的阴影出现在超声波图像上,并且对组织更加无创伤。在另一种选择中(如图4所示),超声传感器20可以是与辐射递送探针完全分开的器械22的一部分。在这种情况下,超声传感器20可以导入眼内分开的开口,使它位于玻璃体腔中,或者它位于眼睛外部。带有发射器26的辐射探针M位于超声波传感器与靶组织16之间,如图5所示。在每种情况下,传感器的输出为外科医生提供了实时的位置反馈,使得外科医生可以调整探针的位置以确保递送设定的辐射剂量。例如当探针远离靶时可以以1秒的增量产生不连续的音调或蜂鸣声。当探针更接近靶时蜂鸣声的频率增加。如果探针与靶接触,蜂鸣声听起来是连续的。当靶组织发生暴露于辐射时,记录装置收集数据,这些数据描述了在治疗过程中探针的位置。该数据可以用于程序后的递送剂量分析。可以分析输出结果以确定源的位置以及它在每个位置的时间长度。当将该信息与辐射源的剂量比率组合起来时, 可以计算出递送到靶组织的准确剂量。或者,可以通过使用构成递送探针的一部分的顺应性球囊使辐射源与靶组织适当间隔开。具体来说,如图6中所示,用顺应性或半顺应性材料例如乳胶或有机硅制成的球囊观连接到辐射递送探针30的远端。球囊观以特定的压力/大小关系设计。参考图7,在探针上提供了用于膨胀球囊的腔32 (除了辐射源腔33之外)。膨胀腔32的近端以Iuer接头34终止于眼外,而膨胀腔32的远端终止于球囊观下面探针30的远端,所述球囊带有一个孔或口 36,用于流体流出以膨胀球囊。压力源例如充满了膨胀流体(气体或液体)的泵或膨胀注射器被连接到近处Iuer接头34。压力源包括了监测封闭系统压力的工具。用于膨胀球囊的流体可以是可压缩的(例如氮气、空气、二氧化碳)或不能压缩的(例如盐水、 甘油或油)。起动压力源,流体使球囊膨胀到所需的压力。球囊被设计成较低的压力与已知的较小球囊体积相关联,而较高的压力与已知的较大体积相关联。球囊被膨胀到所需的压力,用于将辐射源定位于离组织所需的距离。当球囊膨胀到所需压力时,将探针/膨胀的球囊朝向视网膜移动,使得辐射源位于靶组织上方,并且球囊与视网膜轻轻接触。在辐射递送后,将球囊放气,将系统从眼睛中抽出。辐射源放置得离组织越远,治疗场越广,源为了达到设定剂量必须在位置上留得越久。这种现象图示在图8和9中。因此,使用低密度流体(例如气体)膨胀球囊的一个优点是辐射没有被气体明显衰减,因此辐射源在单位时间内递送的剂量比率比如果用高密度材料充填球囊时更高。或者,使用低密度流体时剂量分布在空间上将更均勻。球囊几何形状可以是球形、圆柱形、立方形、金字塔形等,这取决于所需的性能特征。与直接用金属探针接触视网膜相比,球囊还具有产生与视网膜相对柔和的接触的额外好处。此外,当使用球囊与视网膜接触时,由外科医生的手产生并通过辐射递送探针传递到视网膜的负荷被分配在大得多的表面积上。作为使用顺应性球囊的替代方案,由例如PET的材料制成的非顺应性球囊可以连接到辐射递送探针的远端。使用任何上述的流体将非顺应性球囊膨胀至预定的压力,使其被膨胀至已知的不能调整的体积。已知的体积使探针定位于距靶组织已知的距离。该步骤与前述的使用顺应性球囊相同。参照图10和11,将治疗探针28相对靶组织适合地定位的另一种替代方法包括通过注射已知体积的流体在眼睛内部产生“泡”,该流体具有比眼内的盐水或玻璃体液更高的密度,或者具有比盐水或玻璃体液更低的密度,例如气体。要注射的流体体积是假定普通的眼睛几何或在测量患者的眼睛后计算的,并基于所需的流体深度。流体的深度决定了玻璃体液或盐水与新导入的流体之间的界面40。该深度在定位装置的顶端时被用作对外科医生的信号。通过显微镜,外科医生能够看到何时装置38的顶端接触到较高密度的流体,如图10所示。这对外科医生来说是已经达到装置38的顶端和靶组织之间合适的分离距离并可以递送辐射剂量的指示。在治疗期间,外科医生顶端维持在该准确位置。或者,如果探针 38的顶端要被放置在低和高密度流体之间的界面40的内部的位置,则探针38的外表面可以包括标志线42或其它视觉标记,以指示探针38前进得超出界面40的程度。然后,在显微镜观察之下,外科医生可以将该视觉指示与流体界面对准并递送源,如图11所示。在治疗后,可以使用标准玻璃体切除技术取出该致密的流体并用盐水取代。另一种定位探针顶端与靶组织轻柔接触的方法图示在图12A-B中,包括了从探针 44在眼睛内部产生阴影,该阴影在玻璃体视网膜外科手术期间可以由外科医生通过显微镜透过患者的晶状体观察到。为此,外科医生可以结合探针顶端使用标准内部照明器或光导管46。当光导管46相对于探针正确定位时,,它从探针投射阴影48到视网膜表面50上。通过观察阴影48的形状和位置,外科医生可以确定探针顶端相对于视网膜50的位置。随着外科医生朝向视网膜50移动探针44,阴影48的顶端和探针44会合并最终重叠,从而指示与视网膜50的接触。当外科医生远离视网膜50移动探针44时,阴影48的顶端和探针 44移动得分开更远。在图13A、i;3B显示的另一种定位探针的方法中,提供了带有1个或2个光导管或激光器讨的探针52,在探针52的远端有两个口 56,允许光源M逸出探针52。光M被聚焦,聚焦的方式使得它们在距离探针52预定距离处交叉,该预定距离对应于探针52应该距离靶组织上方的距离,使得源被定位在靶组织上方所需的高度。外科医生打开光M,朝向视网膜移动探针52,当两个光束的交点到达靶组织时,探针52位于距靶组织所需的距离上。减少探针与玻璃体液之间的摩擦玻璃体视网膜外科手术需要为眼睛的独特环境所设计的器械,它也可与现有的外科器械相容。用于本发明的辐射递送装置的探针优选具有与现有的20号外科器械包括套管针相容的横截面。大小大于20号的探针增加了并发症的可能性,例如由于牵拉产生的视网膜脱落。这是由于探针的表面积增加以及探针插入眼中时的置换体积。为了减少探针与玻璃体液之间的牵拉,探针的外表面如果由金属制成,可以被电抛光以提供光滑的表面,从而降低表面摩擦力。或者,探针的表面可以使用现有的表面精加工或机械技术在微观和宏观水平上进行压窝(类似高尔夫球)。探针外表面压窝减小了在流动条件下(例如插入和取出探针)的表面摩擦力。此外,液体润滑剂,例如甘油或无铰链器械润滑剂(可以从Meris Corporation 获得),可以应用到探针的外表面,以进一步降低探针/玻璃体液界面处的摩擦力。此外,为了达到同样的目的,可以给探针提供低摩擦力的涂层。用χ-射线发生器热调节在眼内产生χ-射线能够使眼内的温度上升到超过组织损伤的阈值。为了限制传递到眼中的热量,可以使用几种策略。首先,χ-射线发生器可以是脉冲式的,它以已知的频率在开和关之间自动交替,而不是连续开着。此外,脉冲的频率可以通过眼睛内的热电偶 (或者整合在X-射线探针中,或者通过不同的口插入)进行调节。此外,或可选的,可以使用冷却发生器的工具。例如,参考图14,可以在χ-射线探针60的电极外部整合热交换器 58,并将冷却的流体(气体或液体)利用泵或其它压力源62通过热交换器进行循环,以降低χ-射线探针60的总的热量负载。此外,χ-射线发射器60可以在热源(电极)和眼睛之间提供护套64,由具有导热系数低的材料制成。此外,如图15所示,可以将热电偶66或其它的温度感应器械放置在或靠近χ-射线探针68的阳极,以提供反馈给χ-射线控制器70的温度数据。当温度超过某个阈值时, 控制器70可以自动调整χ-射线系统的能量输出。剂量分布和对非靶组织的保护与γ辐射形式相比,β辐射和低能χ-射线辐射在通过水传播时都具有快速的剂量衰减。其它形式的外部辐射可以将穿透的深度控制在几厘米内;但是,剂量分布比β和低能X-射线辐射更难控制。本发明的探针具有的优点是与其它可选的辐射相比,提供了对剂量分布情况和穿透深度的精确控制。采用“靶向”辐射方式,使用对非靶组织进行屏蔽和/或使不是指向靶组织的辐射
8用滤波器衰减等,使得较高的总剂量被递送到靶组织,同时降低对周围眼结构的附带损伤的风险。当不采用靶向方式时(例如用或Y辐射源),由于对邻近眼结构的风险而总剂量受限。此外,当照射较小体积的组织时,辐射性视网膜病的风险被降低了,使用靶向方法改善了被照射的组织的愈合反应。保护视网膜的健康区域是希望的,因为它降低了辐射诱导的副作用的风险。可以通过在辐射源72的后面放置成形滤波器70 (如图16A所示)、通过在在源76和组织之间产生辐射窗口 74(如图17A、17B所示)、或通过在辐射源和组织之间导入低密度流体(例如上面讨论和图6所示的使用用于间隔球囊的膨胀流体的气体),来屏蔽剂量分布。成形滤波器70和辐射窗口 74由高密度的材料例如钼铱制成,用于对剂量分布成形,以便使分布更均勻、加宽分布和/或缩窄分布,如图16B和17C所示意性显示。参见例如WO 2005/049139, 在此引为参考。辐射窗口 74可以对剂量分布产生类似的更改。总的来说,添加成形滤波器 70或辐射窗口 74用来增加总体停留时间。由于视网膜大致半球形和辐射探针进入的多角度,可能需要具有将辐射导出探针的能力。β辐射被厚的和/或致密材料所阻断。通过使用致密材料,轫致辐射(次级Y辐射)的发射增加了。通过改变装置顶端的金属的密度和/或厚度,β剂量场的形状可以被改变,如图16Β所示。或者,参考图18Α和18Β,用比盐水密度更低的流体(例如气体)填充的球囊78可以被放置在源和组织之间。低密度的流体将不会使辐射衰减得与周围的玻璃体液或盐水衰减的那样多。与通过玻璃体液递送治疗相比,这将导致治疗时间减少。治疗时间越短,对被相当的高密度盐水或玻璃体液所屏蔽的其它眼部结构的保护越大。球囊可以相应靶组织的形状塑形,使得与球囊接触的组织将得以治疗,同时球囊接触面积之外的组织将被屏蔽。可以设想大量的球囊几何形状以匹配病变的形状。对球囊进行塑形使得接触区域对应于病变的形状,从而减小靶组织中缺血的可能性。程序步骤和基本的探针设计已经在前面公开。通过使用探针顶端的磁体(例如传感器位于图1中处,位置2)和外部磁体,可弯曲的X-射线或β辐射探针可以被立体定向行进和定位于眼睛的内部,使得辐射源的方向和距视网膜的距离可以被控制(参见例如Stereotaxis, Inc. of St. · Louis, MO的美国专利No. 6,755,816,在此引为参考)。将辐射探针插入眼中并起动装置。磁体可以以移动探针的方式交替供以能量,使得χ-射线或β辐射场扫过病变。磁体可以通过已经以所需的治疗计划方略预先编程的计算机进行控制。扫过视网膜可以对靶的不同区域递送不同的剂量,这依赖于外科医生对治疗主要疾病所需的剂量的评估。低能χ-射线辐射可以被薄层高密度金属80所阻断,如图19所示。此外,低能χ-射线辐射可以被阳极82和/或阴极的几何形状所塑形,如图20A-C所示。例如,如果χ-射线发射器的阳极82是半球形的(图20Α),χ-射线辐射将被发射成围绕发射器的顶端成180° 弧度(当从侧面观察时)。如果阳极82具有平面形状(图20Β或20C),χ-射线将被基本上纵轴方向发射出发射器的末端。聚焦的χ-射线束可以被特异地导向靶组织的一小部分。 这种选择性朝向视网膜治疗区域的方式在保护非靶组织时是特别有用的。另一种保护非靶组织免于不当暴露于辐射的方法是更精确地限定靶组织的边界。 治疗前的诊断检验,例如眼底彩色照相和荧光素血管造影,提供了使AMD病变的具体边界变得可视的方法。然后,剂量分布的聚焦本性允许外科医生特异性地靶定病变或部分病变,而不是普遍地对视网膜投量。眼底彩色照相提供了视网膜的图片或图像,显示了与外科医生通过外科显微镜看到的相同的解剖学特征。从眼底彩色照相,外科医生可以看见玻璃膜疣、主要的视网膜血管和其它的特征。但是,从这些照片(以及在手术期间)难以看到AMD病变和渗漏的程度。为了观察AMD病变和渗漏的程度,将不透射线的染料静脉注射到患者中。当染料通过血流循环并最终到达视网膜循环时,摄影师打开X-射线并捕捉到染料灌注视网膜和脉络膜循环时的帧。这些X-射线的图像显示了不能用眼底照相看到的AMD泄露的边界。在外科手术前使用Imagenet软件,可以相对于显微镜观察到的解剖结构例如血管、血管分支和视盘来定位病变的边界。使用该信息,可以制定出治疗计划方略,包括确定例如探针与靶组织的间距、辐射源的滞留时间、辐射源中心的位置、和/或手术期间使用的成形滤波器或窗口的类型。辐射剂量比率与源和靶之间距离的平方成反比,并且剂量场随着源与靶之间的分离增加而加宽。这些辐射物理学特点可以被用来控制剂量分布的形状。与上述的顺应性球囊协作,可以将剂量分布修改成与AMD病变特异性匹配。具体来说,可以测量病变的程度。 顺应性球囊可以被设计成对给定的膨胀体积提供预定的辐射源的间距。因此,根据病变的大小,将知道用来提供设计的辐射源间距以提供治疗辐射剂量的膨胀体积,并且可以将球囊膨胀至该体积。正如在上面引用的我们的共同待审申请中提出的那样,存在着对靶组织具有所需疗效并且没有不当副作用的治疗剂量范围。低于治疗范围的剂量不足以终止CNV渗漏。高于治疗范围的剂量终止CNV渗漏,但是可能引起副作用,使得治疗的风险超出了治疗益处。 治疗范围对于使用电离辐射的眼内近距离治疗来说是独特的。使用其它能量源或递送工具治疗范围可能改变。β辐射的治疗范围为大约7-50Gy (在CNV处测量)。优选的剂量位于 IOGy到30Gy之间。靶组织的联合疗法和/或再治疗将非电离辐射联合目前正在使用或开发的其它治疗物质治疗黄斑变性可能是有利的。例如,某些目前正在开发的药物物质作用于血管内皮生长因子(VEGF)级联反应。 VEGF是血管舒张和血管增殖性的。血管舒张特征导致血管壁渗漏,而血管增殖特征导致新血管的形成。抗VEGF药物例如Macugen 、Avastin .和Lucentis ,与VEGF结合,从而阻止血管舒张和血管增殖,并终止CNV渗漏。使用抗VEGF的药物Lucentis 进行的临床试验显示出它不仅减缓血管舒张和血管增殖效应有效,而且还对注射后非常快地减少渗漏有效。但是,效应不持久,必需每个月注射药物以获得最大疗效。相反,因为辐射治疗是通过在DNA水平上干扰细胞的分裂起作用的,辐射治疗的效果预计不是即时的。事实上,临床试验显示视觉敏锐性在术后第一周下降,到四周时少许上升,在两个月时有较大上升。因此,使用抗VEGF和辐射疗法的联合治疗可以具有主要由药物引起的早期效果和主要由辐射疗法引起的晚期效果。辐射治疗和用抗VEGF的治疗之间的时间间隔优选为两周或更短,更优选为5天或更短,更加优选为4小时或更短。最优选的时间间隔将是15分钟或更短。也就是说,辐射和抗VEGF 二者在同样的过程期间施用。这可以使用单个装置来完成,所述装置中用于递送辐射剂量的插管或探针还含有单独的腔,通过它能够注射抗VEGF,如在上面参考的共同待审申请中显示和描述的那样。辐射源可以是β发射器或小型χ-射线发射器,优选以5到 30cGy/秒的剂量速率向靶组织递送20到30Gy的辐射剂量,更优选剂量速率为8到15cGy/ 秒。抗VEGF药物可以在近距离治疗之前、之后或者之前和之后递送。也可以在眼内给靶组织施用后续剂量的抗VEGF药物,以增加联合疗法的良好效果。第二剂可以在第一剂之后2到8周给予,优选在第一剂之后3到5周,更优选在第一剂后25到35天。其它的治疗剂或用药程式也可以与辐射联合使用以治疗黄斑变性。作为示例而不是限制,它们可以包括下面任何组合的一种或多种小干扰RNA(" siRNA")、光动力疗法(“PDT",典型使用维替泊芬作为光敏剂)、皮质类固醇(例如曲安奈德和地塞米松)、血管生成抑制留醇(例如阿奈可他)、包囊的人类纤毛神经营养因子植入物 (“CNTF“ -NTC-201)、VEGF阱、膳食补充剂(例如二十二碳六烯酸)、抗炎药物(例如因福利美、西罗莫司、达克珠单抗或酮咯酸氨丁三醇)、干扰素、抗代谢物药物(例如氨甲蝶呤)、 乳酸鲨胺(氨基留醇)duboxistaurin甲磺酸盐(蛋白激酶C的β抑制剂)、醋酸氟轻松植入物、单克隆抗体(例如Sphingomab)和抗氧化物。这些药物可以以各种各样的途径使用,例如玻璃体内、静脉内、皮下(通过注射)、口服、局部(包括眼药水)和植入。靶组织的再辐射也被指出。组织对辐射的反应与递送的剂量成比例,组织对辐射一般有四种反应。在低剂量下(低于治疗阈值),只有很少或没有持续的组织反应。当剂量高于治疗阈值但低于毒性阈值时,获得所需的治疗效果。在剂量高于毒性阈值时,可能发生长期的纤维变性和瘢痕。在剂量明显高于治疗阈值时,将发生急性坏死和瘢痕。对AMD用外部辐射疗法的分段研究没有显示出任何可感知的优点。但是,使用不超过毒性阈值的辐射再治疗显示出AMD复发的病人提供了好处。文献提供了被辐射的组织经过多次治疗后积累效应的某些证据(即以前辐射过的组织可能比没有辐射过的组织对新的辐射治疗更敏感)。如果这个理论被证明,它可能影响第一、第二和第三次的剂量方略。 此外,在辐射治疗之间的时间组织可以恢复。
权利要求
1.用于局部地眼内递送辐射到靶组织的装置,包括 大小适合于插入眼中并具有近端和远端的探针;适合位于探针远端的具有预定长度的辐射发射源,所述辐射发射源具有近端和远端;以及与探针的远端相连的滤波器,其阻断了辐射发射源的远端大于辐射发射源近端的辐射量,使得当探针的远端相对于通常由靶组织限定的平面成一定角度取向时,通常对称的剂量分布由辐射发射源递送到靶组织。
2.权利要求1中的装置,其中滤波器邻近辐射发射源的远端的厚度大于邻近辐射发射源的近端。
3.权利要求1中的装置,其中滤波器邻近辐射发射源的远端的密度高于邻近辐射发射源的近端。
全文摘要
本发明涉及用于眼内近距离治疗的方法和器具。本发明公开了用于眼内近距离治疗的方法和器具,其中在眼中引入了插管,用于将辐射递送到靶组织。本发明公开了用于将插管相对于靶组织适当地定位的技术、保护非靶组织的技术、调节x-射线发射器产生的热量的技术、以及用于联合疗法的技术。
文档编号A61N5/00GK102512281SQ201110288620
公开日2012年6月27日 申请日期2006年11月15日 优先权日2005年11月15日
发明者埃伯哈德·弗里茨, 本杰明·W·伍德沃德, 查尔斯·A·拉森, 理查德·A·希尔斯泰德, 科里·S·安德森, 约翰·N·亨德里克, 赖纳尔·平泰斯克, 鲁洛夫·特里普 申请人:内奥维斯塔公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1