葛根提取物在2型糖尿病治疗中的应用的利记博彩app

文档序号:1094102阅读:504来源:国知局
专利名称:葛根提取物在2型糖尿病治疗中的应用的利记博彩app
技术领域
本发明涉及一种预防和/或治疗2型糖尿病的方法,同时,本发明涉及一种增强葡萄糖转运蛋白Glut4的磷酸化和Glut4易位到靶细胞膜来增强信号传导途径中胰岛素信号的方法;另外,本发明涉及一种简单、廉价的方法来获得提取物并选择性获取其活性正丁醇馏分和活性分子Lupinoside PA(LPA4),用于预防和/或治疗2型糖尿病;最后,本发明涉及葛根(Pueraria Tuberosa)提取物的药物组合物。
背景技术
2型胰岛素抗性性糖尿病是一种隐袭疾病,占糖尿病病例的95%以上。这种异质疾病在流行病中的比例正在增加,估计其世界范围的发病率每年增长6%以上1,2。该病主要表现为高血糖症,原因是葡萄糖对胰岛素的反应性降低或抵抗而使葡萄糖进入骨骼肌、脂肪和肝脏存在障碍3,4。大量证据表明游离脂肪酸(FFAs)对胰岛素无效负有责任。体内循环中升高的游离脂肪酸伴随着胰岛素功能损伤,并通常与肥胖和2型糖尿病相关联5-7。血浆游离脂肪酸浓度经脂类注入而升高,导致鼠和人骨骼肌中的胰岛素抗性7-9。分离的肌肉带或培养的肌肉细胞与游离脂肪酸的培养,或脂蛋白酶在骨骼肌中的表达,减少了胰岛素介导的葡萄糖吸收6-12。这些报道表明,胰岛素敏感组织中越多的脂类沉积促进了胰岛素的无效和抵抗。游离脂肪酸诱导的胰岛素活性损伤似乎与胰岛素信号传导缺陷有关。游离脂肪酸引起的葡萄糖转运降低与胰岛素刺激的胰岛素受体底物(IRS-1)磷酸化和IRS-1相关磷脂酰肌醇-3-激酶(PI3-K)活化的抑制有关13-15。噻唑烷二酮(TZD)的治疗减少了对抗靶组织中胰岛素作用的循环游离脂肪酸,从而提高了胰岛素活性16-18。经过氧化物酶增殖物激活受体γ(PPARγ)的活化来诱导脂肪细胞中甘油激酶基因的表达,TZD增进了甘油整合入甘油三酯,并因此降低了脂肪细胞对游离脂肪酸的分泌,这帮助了胰岛素的致敏作用19。

发明内容
本发明的主要目的是开发一种预防和/或治疗2型糖尿病的方法。
本发明的另外一个主要目的是开发一种增进葡萄糖转运蛋白Glut4的磷酸化和Glut4易位到靶细胞膜的方法,来增强信号传导途径中的胰岛素信号。
本发明的另外一个目的是开发一种简单、廉价的方法来获得葛根提取物并选择性获取其活性正丁醇馏分和活性分子Lupinoside PA(LPA4),用于预防和/或治疗2型糖尿病。
本发明还有一个目的是开发一种用于预防和/或治疗2型糖尿病的药物组合物。
本发明涉及一种预防和/或治疗2型糖尿病的方法,本发明还涉及一种增进葡萄糖转运蛋白Glut4的磷酸化及Glut4易位到靶细胞膜来增强信号传导途径中胰岛素信号的方法;另外,本发明涉及一种简单、廉价的方法来获得葛根提取物并选择性获取其活性正丁醇馏分和活性分子Lupinoside PA(LPA4),用于预防和/或治疗2型糖尿病;最后,本发明涉及葛根提取物的药物组合物。
具体实施例方式
因此,本发明涉及一种预防和/或治疗2型糖尿病的方法,同时,本发明也涉及一种增强葡萄糖转运蛋白Glut4的磷酸化和Glut4易位到靶细胞膜的方法,来增强信号传导途径中的胰岛素信号;另外,本发明涉及一种简单、廉价的方法来获得葛根提取物并选择性获取其活性正丁醇馏分和活性分子Lupinoside PA(LPA4),用于预防和/或治疗2型糖尿病;最后,本发明涉及葛根提取物的药物组合物。
本发明的另一个实施方式中,涉及预防和/或治疗有需要的受试者的2型糖尿病的方法,所述方法包括给该受试者注入药用有效量的植物葛根(Pureria tuberosa)提取物或提取物的正丁醇馏分或LupinosideA4(LPA4),可选的与一种或多种添加剂一起给药。
本发明的另外一个实施方式中,其中所述受试者是动物。
本发明的另外一个实施方式中,其中所述受试者是人。
本发明的另外一个实施方式中,其中所述馏分的给药浓度为1-40mg/kg体重。
本发明的另外一个实施方式中,涉及权利要求1所要求保护的方法,其中Lupinoside的给药浓度为1-40mg/kg体重。
本发明的另外一个实施方式中,涉及权利要求1所要求保护的方法,其中给药途径选自口服、静脉注射、肌肉注射和皮下给药。
本发明的另外一个实施方式中,涉及一种用于预防和/或治疗2型糖尿病的药物组合物,所述组合物包含植物葛根提取物或提取物的正丁醇馏分或Lupinoside A4(LPA4),和添加剂。
本发明的另外一个实施方式中,所述添加剂选自诸如蛋白质、碳水化合物、糖、滑石、硬脂酸镁、纤维素、碳酸钙、淀粉、明胶糊的营养素,可药用的载体、赋形剂、稀释剂和溶剂。
本发明的另外一个实施方式中,所述提取物从植物根中获得。
本发明的另外一个实施方式中,所述馏分浓度范围是1-40mg/kg体重。
本发明的另外一个实施方式中,其中Lupinoside的浓度范围是1-40mg/kg体重。
本发明的另外一个实施方式中,所述组合物的剂型选自胶囊、糖浆、浓缩剂、粉末和颗粒。
本发明的另外一个实施方式中,所述提取物是水提取物。
本发明的另外一个实施方式中,涉及一种增强葡萄糖转运蛋白Glut4的磷酸化和Glut4易位到靶细胞膜来增强有需要的受试者的信号传导途径中胰岛素信号的方法,所述方法包括给该受试者注入药用有效量的植物葛根提取物或提取物的正丁醇馏分或Lupinoside A4(LPA4),任选的与一种或多种添加剂一起给药。
本发明的另外一个实施方式中,所述添加剂选自诸如蛋白质、碳水化合物、糖、滑石、硬脂酸镁、纤维素、碳酸钙、淀粉、明胶糊的营养素,药物可接受的载体、赋形剂、稀释剂和溶剂。
本发明的另外一个实施方式中,所述馏分给药浓度是1-40mg/kg体重。
本发明的另外一个实施方式中,其中Lupinoside的给药浓度是1-40mg/kg体重。
本发明的另外一个实施方式中,其中所述方法帮助预防和/或治疗2型糖尿病。
本发明的另外一个实施方式中,其中所述方法显示了细胞对葡萄糖吸收的增加。
本发明的另外一个实施方式中,其中所述方法对细胞是无毒性的。
本发明的另外一个实施方式中,其中所述易位是从胰岛素反应细胞的细胞质转移到细胞膜。
本发明的另外一个实施方式中,其中所述Lupinoside A4(LP4)预防棕榈酸诱导的胰岛素信号传导缺陷。
本发明的另外一个实施方式中,其中所述Lupinoside A4(LP4)使胰岛素能够刺激胰岛素受体β(IRβ)和效应物激酶(Akt)的磷酸化。
本发明的另外一个实施方式中,涉及一种简单、廉价获取提取物及随后选择性获取其活性正丁醇馏分和活性分子Lupinoside PA(LPA4)用于预防和/或治疗2型糖尿病的方法,所述方法包括如下步骤●将植物部分切成小块,●用甲醇和水提取切后的小块,●将甲醇和水提取物在乙酸乙酯和水之间分层,●用正丁醇进一步萃取水层来获得丁醇馏分,和●用水和甲醇作为洗脱液将正丁醇馏分进行层析来获取Lupinoside PA4(LPA4)。
本发明的另外一个实施方式中,其中植物部分是根。
本发明的另外一个实施方式中,其中溶剂选自甲醇和水。
本发明的另外一个实施方式中,其中水和甲醇的比例为大约1∶1。
本发明的另外一个实施方式中,其中层析是柱层析。
胰岛素对靶组织敏感性降低或胰岛素抗性导致了2型糖尿病,该病目前正达到工业化社会中的流行性比例。目前还不清楚胰岛素是如何失去其敏感性的。大量证据表明游离脂肪酸(FFA)导致胰岛素抗性。我们已经证明棕榈酸(一种游离脂肪酸)干扰了胰岛素与3T3L1脂肪细胞细胞膜的210kDa受体蛋白结合。棕榈酸没有改变胰岛素结合的亲和力,因为Ka保持不变,但是它显著降低了胰岛素对受体的占有量,最大结合量(Bmax)从7.3pM(胰岛素)到3.46pM(胰岛素加棕榈酸)。棕榈酸对胰岛素和胰岛素受体(IR)之间相互作用的抑制与IRβ酪氨酸磷酸化水平的下降同时发生,这是一种主要靶细胞响应,随后是胰岛素-IR复合。随后,我们检查了胰岛素刺激的下游信号,它们随着IRβ的酪氨酸磷酸化而相应的被磷酸化。用棕榈酸培养3T3L1细胞24小时,致使胰岛素增强的IRS1、PI3激酶和Akt的磷酸化水平下降了约2倍,并完全阻断了胰岛素诱导的Glut4易位。所有这些都表明了棕榈酸引起的胰岛素信号下降,这导致了胰岛素无效。从植物根中分离的LupinosideA4(LPA4)防止了棕榈酸诱导的胰岛素信号传导缺陷。LPA4与棕榈酸的共培养使胰岛素能够刺激IRβ和AKt的磷酸化以及经胰岛素诱导的Glut4易位。因此,LPA4证明了其作为治疗剂在胰岛素抗性和2型糖尿病中的应用。
这些报道促使我们关注引起胰岛素抗性和2型糖尿病的主要化合物一游离脂肪酸。早期报道显示在游离脂肪酸中,棕榈酸是胰岛素活性的最强抑制剂12,20-23,但是我们面对的问题是它如何导致这样的缺陷。用棕榈酸、十四酸、丁酸盐、辛酸盐、硬脂酸、月桂酸和亚油酸对3T3L1脂细胞预处理24小时,随后用胰岛素培养30分钟,然后测定3H-2-脱氧葡萄糖(2-DOG)的吸收,结果表明棕榈酸可被选为最强大的抑制剂(未显示数据)。这促使我们探索抑制棕榈酸诱导的、胰岛素刺激的葡萄糖吸收的潜在机理。棕榈酸诱导的脂肪细胞经裂解,分离细胞膜,溶解,进行不变性的SDS-PAGE(十二烷基硫酸钠聚丙烯酰胺凝胶电泳),然后进行放射自显影。125I-胰岛素结合蛋白能够被定位在210kDa的凝胶区域,这证实了关于非变性条件下的洗涤剂溶解的胰岛素受体和3T3L1脂细胞的早期报道24-26。图1a表明棕榈酸有效降低了胰岛素与受体的结合。正如有关β-肾上腺素受体的报道27-29,棕榈酸的结合或IR的酯化没有改变胰岛素与受体的亲和力但是却导致受体占有量下降两倍,Bmax从7.3降低到3.6pM(图1b)。由于硬脂酸和十四酸不能降低125I-胰岛素与受体的结合(未公开数据),我们假定这是棕榈酸特有的作用。有趣的是,放射性标记的棕榈酸与相似分子大小的蛋白质(1a)结合,表明IR的棕榈酸酰化。在一个模型的帮助下,该假定背后的逻辑在图1c中得到了解释。为了识别棕榈酸酰化的可能位点,基于近期被确定的1型胰岛素样生长因子受体的晶体结构,同源模拟了鼠胰岛素受体首选3个结合域的三维结构。丙氨酸扫描突变结果有力表明了胰岛素受体上的这一区域(在图1c中的氰基环内)是胰岛素结合的最可能的位点31。共有氨基酸序列27的缺乏意味着棕榈酸酰化的优先选择取决于三维结构,而正电和/或中性表面将有利于其酰化。模拟结构表面电势的计算、半胱氨酸残基可溶性及近似测定已经帮助我们从IR的L1-富含Cys-L2区域中的16个电势对中识别出用于酰化的两个半胱氨酸电势对(Cys-8&Cys-26 and Cys-266&Cys-274)。由于仅仅是棕榈酸与IR结合并不意味着生物学上的相关性,所以我们研究了棕榈酸对胰岛素刺激的信号的影响,来证明其结合与功能的重要关联。我们首先观察了胰岛素受体β(IRβ)的棕榈酸酰化,通过使用棕榈酸或不使用棕榈酸对3T3L1培养24小时并随后用胰岛素培养。棕榈酸显著降低了胰岛素刺激的IRβ磷酸化,而硬脂酸没有表现出这样的抑制作用(图1d)。这些结果表明棕榈酸结合或受体的棕榈酸酰化具有生理学上的相关性,因为IRβ的磷酸化是来自胰岛素靶细胞的主要反应。
为获得进一步证据,我们检查了胰岛素增强的下游信号,它们随着受体酪氨酸激酶的磷酸化而得到相应的磷酸化。使用磷酸特异抗体,我们发现胰岛素对IRS-1磷酸化和PI3K活化的刺激作用被棕榈酸显著抑制。棕榈酸也降低了胰岛素对其他下游分子的刺激作用,即Akt活化。然而,用硬脂酸培养没有显示这样的抑制作用(图2a)。关于胰岛素对IRS相关的磷酸化和IRS1相关的PI3K活化的刺激作用的下降之前已经有报道13,15,20,这里,我们表明了棕榈酸能够单独导致这种缺陷。我们在研究中的另外一个有趣发现是棕榈酸诱导的抑制作用的范围窄。Western杂交的光密度分析表明IRβ、PI3 K和Akt磷酸化的胰岛素刺激的磷酸化水平下降了2倍(未显示数据)。胰岛素和棕榈酸对IRβ、PI3 K和Akt的蛋白质构型都没有任何改变(图2a)。我们的发现给出这样的印象棕榈酸对胰岛素信号的干扰可能源于IR水平,随后抑制波流经下游的信号传导分子。这限制了PI3激酶的募集,导致PIP3与Akt结合的抑制,这将对Glut4转运产生负面影响。最后,Glut4易位支持了这一观点,Glut4易位对葡萄糖进入细胞是必要的。胰岛素诱导的GFP-Glut4从脂肪细胞的细胞质到细胞膜的易位完全被棕榈酸所抑制(图2b)。
在寻找具有抗糖尿病活性的印度药用植物过程中,发现葛根根部的甲醇-水(1∶1)提取物改善了胰岛素活性的棕榈酸损伤,依据3T3L1细胞对3H-2DOG的吸收。使用Diaion HP-20色谱仪,我们获得了5个馏分(A-E),其中馏分E表现出所需要的活性。通过葡聚糖凝胶色谱仪LH20对E进行分离,得到3个馏分(F-H),其中F表现出棕榈酸诱导的损伤的改善。因此,馏分F经HPLC纯化得单一分子,经二维核磁共振和质谱分析被确认为Lupinoside PA432(图3a)。LPA4对棕榈酸诱导的胰岛素传导分子损伤的保护性在3T3L1脂细胞中进行了检验。图3b说明了LPA4能够防止棕榈酸诱导的脂细胞对胰岛素刺激的3H-2DOG吸收减少。棕榈酸对胰岛素刺激的IRβ酪氨酸磷酸化和Akt磷酸化的减弱作用被LPA4解除(图3c)。已知Akt是一种非常重要的下游信号,它激活Glut4的过程对Gult4易位到胰岛素靶细胞的细胞膜是必需的33,34。在响应胰岛素时,Akt2被聚集到含有载体的Glut4上并对组成蛋白质进行磷酸化35。因此,LPA4在免除棕榈酸诱导的对胰岛素刺激的Akt磷酸化的抑制作用是非常有意义的,因为这个途径的损伤导致了胰岛素抗性。这一点通过我们对Glut4易位中棕榈酸抑制的胰岛素刺激的观察而得到进一步支持。LPA4与棕榈酸的共培养允许胰岛素刺激GFP-Glut4从细胞质易位到细胞膜(图3d)。Glut4是胰岛素响应细胞中至关重要的葡萄糖转运体,它构成性的通过细胞表面循环。胰岛素积极将Glut4隔离在细胞内部,增加了Glut4转运到细胞膜的速度32。尽管Glut4转运的细胞机制还有很大疑团,但是Glut4易位缺陷牵涉到胰岛素抗性34。我们对GFP-Glut4易位的测定结果说明,棕榈酸引起胰岛素刺激的Glut4易位的完全阻断,而LPA4则全部抵消了这种阻断作用。这些结果在胰岛素抗性或2型糖尿病中显得特别有趣,因为(i)大量研究表明游离脂肪酸,特别是棕榈酸,在胰岛素抗性的形成中的作用20-23;(ii)棕榈酸是循环系统和骨骼肌细胞中发现最多的游离脂肪酸10,12;(iii)液体提取物的甘油二酯馏分中最普遍的酰基链是棕榈酸36;(iv)棕榈酸的消耗降低了胰岛素的敏感性37,38;和(v)胰岛素抗性肌肉表现出对棕榈酸更高速率的吸收39。所有这些报道都关注棕榈酸是导致胰岛素抗性的主要游离脂肪酸。然而,有几项研究表明棕榈酸诱导的胰岛素作用缺陷是由神经酰胺介导的12。可能存在多种有效的胰岛素失效途径,神经酰胺可能是其中一种,而我们所观察到的是另外一种,其中棕榈酸直接导致胰岛素无作用。LPA4免除了棕榈酸引起的胰岛素失效。由于LPA4在所有重要阶段防止了缘于棕榈酸的胰岛素信号传导缺陷,包括Glut4从细胞质易位到细胞膜的阶段,这样的Luponoside极具作为胰岛素抗性和2型糖尿病治疗剂的可能性。


图1.(a)棕榈酸诱导的对胰岛素与受体结合和受体酪氨酸激酶磷酸化的抑制作用。放射性标记胰岛素和棕榈酸结合溶解的胰岛素受体制剂的放射自显影。3T3 L1脂细胞在不存在或存在棕榈酸条件下培养24小时,受体制剂用0.1%的聚乙二醇辛基苯基醚(TritonX-100)溶解。25μg蛋白与2ng125I-胰岛素(特异活性30.55μCi/μg蛋白)4℃培养过夜。培养结束后,105g下高速离心1小时进行压片,125I-胰岛素必然成为溶解的受体制剂。胰岛素受体制剂和125I-胰岛素在冷的棕榈酸(PA)或硬脂酸(SA)存在下以相同方式培养。溶解的受体制剂中的25μg蛋白与[1-14C]-棕榈酸于4℃培养过夜后进行放射自显影(14C-PA)。
(b)通过Scatchard分析来确定结合亲和力和受体占据量。计算胰岛素结合溶解受体的最大结合量(Bmax)和Ka分别为7.3pM和0.16×1010M-1。但是,当存在棕榈酸时,胰岛素结合的Ka几乎保持不变,即为0.158×1010M-1,而Bmax降低为3.46pM。
(c)(i)展示了胰岛素受体三个结构域(L1-富含半胱氨酸-L2)的同源模拟。由氰基标记的L1结构域是最可能的胰岛素结合位点。结合常数降低300倍的丙氨酸突变残基用红色标记;结合常数降低10-100倍的突变用粉色标记,其余结合降低3-9倍的用黄色标记。半胱氨酸残基用绿色标记,其Cys-8&Cys-26(在红圈内标记为ii)和Cys-266&Cys-274(在红圈内标记为iii)是最可能的棕榈酸酰化位点。(ii)和(iii)显示了两个可能的半胱氨酸对Cys-8&Cys-26和Cys-266&Cys-274的周围静电势,由于具有优势的正向静电势(蓝色)和中性静电势(白色)环境,Cys-8&Cys-26和Cys-266&Cys-274被选为棕榈酸酰化位点。(iv)显示了Cys-192&Cys-201的静电势环境,尽管具有正确的(正向或中性)环境,但因其完全包埋在表面之下而没有被选为潜在的酰化位点。(v)显示了Cys-126&Cys-155周围的静电势,代表了那些主要是负电的放弃位点(红色)。
(d)对照和游离脂肪酸处理的3T3L1脂肪细胞在裂解缓冲液中超声裂解,10000g离心10分钟,从对照和被处理细胞中取200μg上清蛋白,加入2μgIRβ抗体,4℃培养过夜。抗原抗体复合物与蛋白A-琼脂糖一起沉淀,充分洗涤沉淀,悬浮于SDS-PAGE样品缓冲液中并煮沸,电泳。将凝胶中的蛋白转到PVDF膜,与抗p-Tyr抗体免疫印迹。I-胰岛素;P-棕榈酸;S-硬脂酸。
图2.(a)3T3L1与棕榈酸和硬脂酸共培养,如图1描述。培养结束时,在裂解缓冲液中超声裂解细胞,10000g离心10分钟。上清液蛋白(各50μg)于SDS-PAGE样品缓冲液中煮沸5分钟,12%胶浓度的SDS-PAGE电泳,转PVDF膜,使用碱性磷酸酶偶联的二抗与p-IRS-1(1∶1000)、p-PI3激酶p 85α(1∶1000)和p-Akt 1/2(1∶1000)抗体进行免疫测定。抗IRS 1、PI-3K和Akt 1/2的抗体被用来检测缘于处理的蛋白结构。
(b)棕榈酸对胰岛素的作用诱导了Glut4在3T3L1脂肪细胞中的易位。涂布于盖玻片上的3T3L1细胞经GFP-Glut4质粒(2μg)转染48小时,使用lipofectamine试剂。稳定,细胞在存在或缺乏棕榈酸条件下培养24小时,然后用胰岛素培养30分钟。在缺乏脂肪酸条件下培养经GFP-Glut4转染的细胞,胰岛素作为对照(Con)。培养结束后,使用激光扫描聚焦显微镜检查GFP-Glut4的位置。
图3.(a)LPA4的结构和纯化。使用Diaion HP-20色谱仪,获得五个馏分(A-E),其中馏分E表现出所需要的活性。通过葡聚糖凝胶Sephadex LH 20色谱仪对E进行分级分离,生成3个馏分(F-H),其中F显示了对棕榈酸诱导的受损胰岛素活性的改善。馏分F随后经HPLC纯化成单一分子,通过2D NMR和质谱确定为Lupinoside PA432。
(b)在棕榈酸或棕榈酸加LPA4或LPA4存在下对脂肪细胞处理24小时,随后用胰岛素培养30分钟。培养结束前5分钟加入3H-脱氧葡萄糖。用冰预冷的含有0.3mM 2-对羟苯丙酰基-1,3,5-苯三酚(phloretin)的KRP(克-林二氏磷酸盐)缓冲液洗涤细胞三次,目的是校正从单纯扩散和非特异性的放射性捕获中得来的葡萄糖吸收数据。用1%NP-40溶解细胞,并在液体闪烁计数器中计算放射活性。
(c)在不含棕榈酸或棕榈酸加LPA4或LPA4条件下培养3T3L1脂细胞24小时,随后用胰岛素培养30分钟。每种条件下都取50μg细胞裂解液进行变性凝胶电泳,转PVDF膜,与抗P-Akt抗体免疫印迹。50μg细胞裂解液与抗IR3抗体免疫沉淀并与抗p-Tyr抗体免疫印迹。
(d)以图2b描述的相同方式来确定被处理细胞的Glut4易位。
方法细胞培养和处理3T3L1细胞系从国家细胞科学中心(Pune,印度)获得,并在37℃、95%O2/5%CO2条件下培养于含有25mM葡萄糖和10%胎牛血清的达尔伯克改良伊格尔培养基(DMEM)中。本文任何地方提到的融合细胞都经过0.75mM游离脂肪酸(FFAs,棕榈酸和硬脂酸)处理24小时。
放射性标记胰岛素结合溶解的受体制剂对照和游离脂肪酸处理的3T3L1脂细胞首先用0.02M含有0.14MNaCl的磷酸盐缓冲液(pH-7.4)洗涤三次,然后悬浮于裂解缓冲液(20mMTris-HCl,40mM NaCl,5mM EDTA,5mM碘乙酰胺,pH-8.4),裂解缓冲液中添加了蛋白酶抑制剂(1μg/ml抑肽酶,1μg/ml抑肽素,1μg/ml亮肽素,2mM苯甲基硫酰氟化物和1μg/ml胰岛素抑制剂)。然后,这些细胞于-70℃冷冻-溶解三次,4℃下10000rpm离心15分钟。收集的沉淀悬浮于裂解缓冲液,超声处理,再次于4℃下10000rpm离心15-20分钟。上清液于10mM Tris-HCl(pH-7.4)缓冲液中透析过夜,冷冻干燥减小溶液体积。然后,将膜制剂与0.1M二碘水杨酸锂混合至膜蛋白浓度约为5mg/ml,混合物经电动玻璃-聚四氟乙烯树脂组织匀浆器匀浆处理,35000g离心20分钟,上清液于20mM、pH-9.4的碳酸氢钠溶液中透析12小时。在匀速搅拌下在该溶液中加入0.1%TritonX-100(v/v)和25%甘油。经冷冻干燥来减小溶液体积,于10mM Tris-HCl缓冲液(pH-8.4)中透析。重组人胰岛素经125I放射性标记,使用葡聚糖凝胶柱Sephadex-G15分离游离碘中的125I-胰岛素,凝胶柱经含有0.14M NaCl和1%(w/v)BSA的0.01M磷酸盐缓冲液(pH-7.2)平衡处理。125I-胰岛素的放射比活性是30.55μCi/μg蛋白。
对照和游离脂肪酸处理的3T3L1脂肪细胞(每次培养25μg)的溶解的胰岛素受体制剂,用终体积为500μl的含有125I标记的重组人胰岛素2ng的0.02M磷酸缓冲液(含有0.15M NaCl和0.25%BSA(PBS))于4℃下培养过夜。培养结束后,经105g高速离心(Sorvall Ultra-80)沉淀1小时。每个离心管中的沉淀溶解于1X样品缓冲液(63mMTris-HCl pH6.8,10%甘油,2%SDS,and 0.025%溴酚蓝),进行非变性SDS-PAGE(4%浓缩胶铺于6.5%分离胶上)。制干胶,Kodak X-OMATAR放射自显影(参见图1a)。
Scatchard分析为确定125I-胰岛素与受体蛋白的最佳结合条件,结合培养以不同的温度和时间周期进行,同时改变溶解的受体制剂量。结果发现,在pH8.4和4℃下过夜培养产生最大量的放射性标记胰岛素结合。受体制剂(15μg蛋白)4℃下于终体积为500μl的缓冲液(0.02M磷酸盐缓冲液,pH8.4,含有0.15M NaCl和0.25%BSA(PBS))中培养过夜,在不含未标记胰岛素(总结合)或含有10000倍过量的未标记胰岛素(非特异结合)条件下,具有变化的125I-胰岛素浓度(0.18-0.72nmoles/L)。另一组实验中,受体制剂同时与125I-胰岛素和未标记的胰岛素(而不含0.08mM未标记的棕榈酸)进行培养。培养结束后,加入500μl预冷的0.5%聚乙二醇(PEG,分子量6000)来分离游离的和结合的放射活性。样品经涡旋振荡充分混合,冰浴10分钟,冷冻离心机20000g离心15分钟。吸出上清液,洗涤缓冲液(0.02M磷酸盐缓冲液,含有0.15M NaCl和0.25%BSA)洗涤沉淀三次。125I-γ计数器检测最终沉淀的放射活性。通过从总结合中减去非特异性结合来计算特异性结合。然后用Scatchard分析数据,来确定在含有或不含棕榈酸条件下胰岛素受体结合的亲和力和结合量(参见图1b)。
分子模拟通过使用InsightII 98.0(Accelrys Inc.,San Diego,CA,USA),在IGF-1R的X射线衍射结构之上(PDBlIGR.ENT,具有59%的氨基酸一致性)建立了胰岛素受体的同源模拟。在Silicon Graphics OCTANE工作站上,通过InsightII的DISCOVER模型,使用cff91力场进行能量最小化和分子动力。通过最陡下降法(steepest descent)和共轭梯度法(conjugate gradient)(每次100步)的结合运用,以0.001kcal/mol的收敛标准完成了能量最小化;重复这些步骤,直至得到满意的结构参数。通过用于100步平衡(100 steps of equilibration)和1000步动力(1000steps of dynamics)的千万亿分之一秒的时间步长(time step)来进行分子动力模拟。在运行最小化和动力对选择部分进行调整时,对分子的其他部分进行距离限制(参见图1c)。
免疫沉淀200μg对照和游离脂肪酸处理的细胞裂解物(于裂解缓冲液[1%NP-40,20mM HEPES(pH 7.4),2mM EDTA,100mM NaF,10mM焦磷酸钠,1mM原钒酸钠,1μg/ml亮肽素,1μg/ml抑肽酶,1μg/ml抑肽素和1mM PMSF]冰浴超声处理10分钟)与2μg胰岛素受体β抗体于4℃下培养过夜。每管加入50μl蛋白A-琼脂糖,4℃下培养2小时。4℃下10000g离心2分钟,沉淀加入500μl含0.1%CHAPS的PBS溶液,悬浮后于4℃下10000g离心2分钟。沉淀经充分洗涤后进行SDS-PAGE,然后用抗磷酸酪氨酸抗体进行Western杂交(抗鼠;1∶1000)(参见图1d)。
电泳和免疫杂交对照和处理的细胞裂解物(60g)在10%SDS-PAGE上分离,4℃、90V条件下于转移缓冲液(25mM Tris,193mm甘氨酸,20%甲醇,pH8.5)中转PVDF膜(Millipore,Bedford,MA 01730)1.5小时。用含有5%脱脂奶粉的TBST缓冲液(20mM Tris碱,137mM NaCl,1mM HCl,0.1%吐温20)封闭膜,与抗p-IRS(抗羊;1∶1000)、p-PI3K(抗羊;1∶1000)和p-Akt(抗兔;1∶2000)培养过夜。用联有二抗的碱性磷酸酶检测免疫反应条带(参见图2a)。
转染和Glut4易位将3T3L1细胞涂布于含有coverslips的60mm平皿中,在添加了10%(v/v)FBS和100μg/ml青霉素/链霉素的DMEM中通气(空气/CO2(19∶1))培养。24小时后,用不含FBS和抗生素的DMEM洗涤细胞。依照生产商(Life Technologies)的说明书,通过Lipofectamine试剂,用GFP-Glut4(2μg)的质粒DNA转染2×105个细胞。转染48小时后,细胞经含有0.75mM棕榈酸处理或不含棕榈酸的处理24小时,然后在不含或含有100nM的胰岛素条件下培养30分钟。Coverslips上的细胞被固定于多聚甲醛(3.5%)中并涂布于载玻片。Coverslips于激光扫描聚焦显微镜下检查GFP-Glut4的易位(Leica Corp.,Rockleigh,NJ)(参见图2b)。
从葛根中提取和分离lupinoside PA4葛根的根部(1kg,切碎并用甲醇(3x1.5L)提取)。提取液经真空干燥,得到90g残渣,估测其生物活性。甲醇提取液被分入乙酸乙酯和水层。水层经正丁醇进一步萃取。真空去除乙酸乙酯、正丁醇和水溶解部分的溶剂,分别生成2.5g、12g和64g馏分。检测每一馏分的生物活性,发现正丁醇馏分中存在活性。将正丁醇馏分上Diaion HP-20色谱仪,以水和甲醇为洗脱剂。甲醇洗脱剂经蒸发至干品(2.4g),进一步上Sephadex LH-20色谱仪,使用甲醇-水(1∶1)和甲醇为洗脱剂。甲醇-水馏分经减压蒸发生成表现出生物活性的固体(1.4g)。该固体经制备型HPLC(μ-Bondapak C-18反向柱,甲醇-1%含水(1%)乙酸(7∶3),流速12mm/min,紫外检测器,检测波长210nm),得到单一化合物,确认为lupinoside PA4(L PA4)32(0.28g),经1D,2D NMR和Q-TOF-MS以及其他化学反应确定了其化学结构(参见图3a)。
LPA4对棕榈酸诱导的葡萄糖吸收抑制的治疗效果3T3L1脂细胞在不含和含有LPA4(2011g/ml)和棕榈酸(0.75mM)的条件下被处理24小时,接着用含有100nM胰岛素并添加了0.2%牛血清蛋白的Kreb′s Ringer Phosphate(KRP)缓冲液(12.5mM HEPES,pH7.4,120mM NaCl,6mM KCl,1.2mM MgSO4,1mM CaCl2,0.4mMNaH2PO4,0.6mM Na2HPO4)培养30分钟,在培养结束前5分钟于各培养液中加入3H-2-DOG(0.4nmoles)。3T3L1细胞经冰预冷的含有0.3mM根皮素的KRP缓冲液洗涤三次,来校正从简单扩散和非特异性放射性捕获而获得的葡萄糖吸收数据。细胞溶解于1%NP-40,用液体闪烁计数器检测(Packard,Tricarb 2100 TR)[3H]-脱氧葡萄糖(参见图3b)。
在不含或含有LPA4和棕榈酸条件下,采用同样方法培养的3T3L1细胞经超声裂解,如上述方法检测裂解液中p-IR和p-Akt(参见图3c)。
在另一组实验中,细胞被上述GFP-Glut4转染后,经不含或含有LPA4和棕榈酸条件下培养24小时。然后,细胞经100nM胰岛素培养,聚焦显微镜下监测Glut4易位(参见图3d)。
参考文献1.Amos,A.F.,McCarty,D.J.,&Zimmet,P.The rising global burden ofdiabetes and its complicationsestimates and projections to the year 2010.Diab Med.14,S1-85(1997).
2.Kopelman,P.G.,Obesity as a Medical Problem.Nature 404,635-643(2000).
3.Klip,A.&Paquet,M.R.Glucose transport and glucose transporters inmuscle and their metabolic regulation.Diabetes Care 13,228-243(1990).
4.DeFronzo,R.A.The triumvariatebeta cell,muscle,livera collusionresponsible for NIDDM.Diabetes 37,667-687(1988).
5.Kelley,D.E.,Mokan,M.,Simoneau,J.A.,&Mandarino,L.J.Interaction between glucose and free fatty acid metabolism in humanskeletal muscle.J.Clin.Invest.92,91-98(1993).
6.Boden,G.,Chen,X.,Ruiz,J.,White,J.V.,&Rossetti,L.Mechanismsof fatty acid-induced inhibition of glucose uptake.J.Clin.Invest.93,2438-2446(1994).
7.Shulman,G.I.Cellular mechanisms of insulin resistance.J.Clin.Invest.106,171-176(2000).
8.Dresner,A.,Laurent,D.,Marcucci,M.,Griffin,M.E.,Dufour,S.,Cline,G.W.,Slezak,L.A.,Andersen,D.K.,Hundal,R.S.,Rothman,D.L.,Petersen,K.F.,&Shulman,G.I.Effects of free fatty acids on glucosetransport and IRS-1-associated phosphatidylinositol 3-kinase activity.J.Clin.Invest.103,253-259(1999).
9.Pan,D.A.,Lillioja,S.,Kriketos,A.D.,Milner,M.R.,Baur,L.A.,Bogardus,C.,Jenkins,A.B.&Storlien,L.H.Skeletal muscle triglyceridelevels are inversely related to insulin action.Diabetes 46,983-988(1997).
10.Boden,G.A.Role of fatty acids in the pathogenesis of insulinresistance and NIDDM.Diabetes 46,3-10(1997).
11.Itani,S.I.,Ruderman,N.B.,Frank,S.,&Boden,G.Lipid inducedinsulin resistance in human muscle is associated with changes indiacylglycerol,Protein kinase C,and Ikb-a..Diabetes 51,2005-2011(2002).
12.Chavez,J.A.Knotts,T.A.,Wang Li-Ping,Li.G.,Dobrowsky,R.T.,Florant,G.L.,&Summers,S.A.Role of ceramide but not diacylglycerol,in the Antagonism of Insulin Signal Transduction by Saturated Fatty Acids.J.Biol.Chem.278,10297-10303(2003).
13.Griffin,M.E.,Marcucci,M.J.,Cline,G.W.,Bell,K.,Barucci,N.,Lee,D.,Goodyear,L.J.,Kraegen,E.W.,White,M.F.,&Shulman,G.I.Free fatty acid-induced insulin resistance is associated with activation ofprotein kinase C theta and alterations in the insulin-signalling cascade.Diabetes 48,1270-1274(1999).
14.Beeson,M.,Sajan,M.P.,Dizon,M.,Grebenev,D.,Gomez-Daspet,J.,Miura,A.,<BR>Kanoh,Y.,Powe,J.,Bandyopadhyay,G.Standaert,M.L.,Farese,R.V.Activation of Protein Kinase C-zeta by Insulin andPhosphatidylinositol-3,4,5-(PO(4))(3)Is Defective in Muscle in Type 2Diabetes and Impaired Glucose ToleranceAmelioration by Rosiglitazoneand Exercise.Diabetes 52,1926-34(2003).
15.Yu,C.,Chen,Y.,Cline,G.W.,Zhang,D.,Zong,H.,Wang,Y.,Bergeron,R.,Kim,J.K.,Cushman,S.W.,Cooney,G.J.,Atcheson,B.,White,M.F.,Kraegen,E.W.,Shulman,G.I.Mechanisms by which fattyacids inhibit insulin activation of insulin receptor substrate-1(IRS-1)-associated phosphatidylinositol 3-kinase activity in muscle.J.Biol.Chem.27,50230-50236(2002).
16.Lehmann,J.M.,Moore,L.B.,Smith-Oliver,T.A.,Wilkison,W.O.,Willson,T.M.,&Kliewer,S.A.An Antidiabetic Thiazolidinedione Is aHigh Affinity Ligand for Peroxisome Proliferator-activated Receptor y(PPARy).J.Biol.Chem,270,12953-12956(1995).
17.Martin,G.,Schoonjans,K.,Lefebvre,A.M.,Staels,B.& Auwerx,J.Coordinate Regulation of the Expression of the Fatty Acid TransportProtein and Acyl-CoA Synthetase Genes by PPARa and PPARy Activators.J.Biol.Chem,272,28210-28217(1997).
18.Stumvoll,M.,& Haring,H.U.Glitazones.Clinical effects andmolecular mechanisms.Ann.Med.34,217-224(2002).
19.Guan,H.P.,Li,Y.,Jensen,M.V.,Newgard,C.B.,Steppan,C.M.&Lazar,M.A.A futile metabolic cycle activated in adipocytes byantidiabetic agents.Nat.med.8,1122-1128(2002).
20.Reynoso,R.,Salgado,L.M.,& Calderon,V.High levels of palmiticacid lead to insulin resistance due to changes in the level ofphosphorylation of the insulin receptor and insulin receptor substrate-1.Mol.Cell.Biochem,246,155-162(2003).
21.Storz,P.,Doppler,H.,Wernig,A.,Pfizenmaier,K.,&Muller,G.Cross-talk mechanisms in the development of insulin resistance of skeletalmuscle cells Palmitate rather than tumour necrosis factor inhibitsinsulin-dependent protein kinase B(PKB)/Akt stimulation and glucoseuptake.Eur.J.Biochem.266,17-25(1999).
22.Chavez,J.A.,& Summers,S.A.Characterizing the effects of saturatedfatty acids on insulin signaling and ceramide and diacylglycerolaccumulation in 3T3-L1 adipocytes and C2C12 myotubes.Arch.Biochem.Biophys.15,101-9(2003).
23.Weigert,C.,Klopfer,K.,Kausch,C.,Brodbeck,K.,Stumvoll,M.,Hans,U.H,&Erwin D.S.Palmitate-Induced Activation of theHexosamine Pathway in Human Myotubes Increased Expression ofGlutamineFructose-6-Phosphate Aminotransferase.Diabetes 52,650-656(2003).
24.Salzman,A.,Wan,C.F.,&Rubin,C.S.Biogenesis,transit,andfunctional properties of the insulin proreceptor and modified insulinreceptors in 3T3-L1 adipocytes.Use of monensin to probe proreceptorcleavage and generate altered receptor subunits.Biochemistry 23,6555-65(1984).
25.Velicelebi,G.,&Aiyer,R.A.Identification of the alpha beta monomerof the adipocyte insulin receptor by insulin binding andautophosphorylation.Proc.Natl.Acad.Sci.USA.81,7693-7(1984).
26.Kohanski,R.A.&Lane,M.D.Homogeneous functional insulinreceptor from 3T3-L1 adipocytes.Purification using N alpha B1-(biotinyl-epsilon-aminocaproyl)insulin and avidin-sepharose.J.Biol.Chem.,260,5014-5025(1985).
27.Belanger,C.,Ansanay,H.,Qanbar,R.&Bouvier,M.Primarysequence requirements for S-acylation of B-adrenergic receptor peptides.FEBS Letters,499,59-64(2001).
28.Kennedy,M.E.&Limbird,L.E.Palmitoylation of the alpha2A-adrenergic receptor.Analysis of the sequence requirements for and thedynamic properties of alpha 2A-adrenergic receptor palmitoylation.J.Biol.Chem.,269,31915-31922(1994).
29.Moffett,S.,Rousseau,G,Lagace,M.&Bouvier,M.Thepalmitoylation state of the B2-adrenergic receptor regulates the synergisticaction of cyclic AMP-dependent protein kinase and B-adrenergic receptorkinase involved in its phosphorylation and desensitization.J.Neurochem.76,269-279(2001).
30.Garrett,T.P.J.,McKern,N.M.,Lou,M.Z.,Frenkel,M.J.,Bentley,J.D.,& Lovrecz,G.O.Crystal structure of the rst three domains of thetype-1 insulin-like growth factor receptor.Nature 394,395-399(1998).
31.Adams,T.E.,Epa,V.C.,Garrett,T.P.J.&Ward,C.W.Structure andfunction of the type 1 insulin-like growth factor receptor.Cell.Mol.Life Sci.57,1050-1093(2000).
32.Kinjo,J.,Kishida,F.,Watanable,K.,Hashimoto,F.&Nohara,T.Fivenew triterpene glycosides from Russell lupine.Chem.Pharm.Bull.42,1874-1878(1994).
33.Martin,S.,Millar,C.A.,Lyttle,C.T.,Meerloo,T.,Marsh,B.J.,Gould,G.W.,&James,D.E.Effects of insulin on intracellular GLUT4vesicles in adipocytesevidence for a secretory mode of regulation.J.CellSci.113,3427-3438(2000).
34.Pessin,J.E.,Thurmond,D.C.,Elmendorg,J.S.,Coker,K.J.,&Okada,S.Molecular Basis of Insulin-stimulated GLUT4 VesicleTrafficking.J.Biol.Chem,274,2593-2596(1999).
35.Kupriyanova,T.A&.Kandror,K.V.Akt-2 Binds to Glut4-containingVesicles and Phosphorylates Their Component Proteins in Response toInsulin.J.Biol.Chem.,274,1458-1464(1999).
36.Gorski,J.,Nawrocki,A.,&Murthy,M.Characterization of free andglyceride-esterified long chain fatty acids in different skeletal muscle typesof the rat.Mol.Cell.Biochem,178,113-118(1998).
37.Vessby,B.,Aro,A.,Skarfors,E.,Berglund,L.,Salminen,I.,&Lithell,H.The risk to develop NIDDM is related to the fatty acidcomposition of the serum cholesterol esters.Diabetes 43,1353-1357(1994).
38.Ho,R.C.,Davy,K.P.,Hickey,M.S.,Summers,S.A.,&Melby,C.L.Behavioral,metabolic,and molecular correlates of lower insulin sensitivityin Mexican-Americans.Am.J.Physiol.Endocrinol.Metab,283,799-808(2002).
39.Turcotte,L.P.,Swenberger,J.R.,Zavitz Tucker,M.,and Yee,A.J.Increased Fatty Acid Uptake and Altered Fatty Acid Metabolism inInsulin-Resistant Muscle of Obese Zucker Rats.Diabetes 50,1389-1396,(2001).
权利要求
1.一种预防和/或治疗2型糖尿病的方法,所述方法包括对受试者给入药用有效量的植物葛根提取物或所述提取物的正丁醇馏分或Lupinoside A4(LPA4),任选的与添加剂一起给药。
2.权利要求1所述方法,其中所述受试者是动物。
3.权利要求1所述方法,其中所述受试者是人。
4.权利要求1所述方法,其中所述提取物是从所述植物根中获得的。
5.权利要求1所述方法,其中所述添加剂选自诸如蛋白质、碳水化合物、糖、滑石、硬脂酸镁、纤维素、碳酸钙、淀粉、明胶糊的营养素,可药用的载体、赋形剂、稀释剂和溶剂。
6.权利要求1所述方法,其中所述馏分的给药浓度为1-40mg/kg体重。
7.权利要求1所述方法,其中所述Lupinoside的给药浓度为1-40mg/kg体重。
8.权利要求1所述方法,其中给药途径选自口服、静脉注射、肌肉注射和皮下给药。
9.用于预防和/或治疗2型糖尿病的药物组合物,所述组合物包括植物葛根提取物或所述提取物的正丁醇馏分或Lupinoside A4(LPA4),和一种或多种添加剂。
10.权利要求9所述药物组合物,其中所述添加剂选自诸如蛋白质、碳水化合物、糖、滑石、硬脂酸镁、纤维素、碳酸钙、淀粉、明胶糊的营养素,可药用的载体、赋形剂、稀释剂和溶剂。
11.权利要求9所述药物组合物,其中所述提取物是从所述植物的根中获得的。
12.权利要求9所述药物组合物,其中所述馏分的浓度范围为1-40mg/kg体重。
13.权利要求9所述药物组合物,其中所述Lupinoside的浓度范围为1-40mg/kg体重。
14.权利要求9所述药物组合物,其中所述组合物的剂型选自胶囊、糖浆、浓缩剂、粉末和颗粒。
15.权利要求9所述药物组合物,其中所述提取物是水提取物。
16.一种增强Glut4磷酸化和Glut4易位到靶细胞膜来增强受试者体内信号传导途径中胰岛素信号的方法,所述方法包括为受试者给入药用有效量的植物葛根提取物或所述提取物的正丁醇馏分或Lupinoside A4(LPA4),任选的与添加剂一起给药。
17.权利要求16所述方法,其中受试者是动物。
18.权利要求16所述方法,其中所述受试者是人。
19.权利要求16所述方法,其中所述提取物是从所述植物根中获得的。
20.权利要求16所述方法,其中所述添加剂选自诸如蛋白质、碳水化合物、糖、滑石、硬脂酸镁、纤维素、碳酸钙、淀粉、明胶糊的营养素,可药用的载体、赋形剂、稀释剂和溶剂。
21.权利要求16所述方法,其中所述馏分的给药浓度为1-40mg/kg体重。
22.权利要求16所述方法,其中所述Lupinoside的给药浓度为1-40mg/kg体重。
23.权利要求16所述方法,该方法帮助预防/治疗2型糖尿病。
24.权利要求16所述方法,该方法显示细胞对葡萄糖吸收的提高。
25.权利要求16所述方法,该方法对细胞是非毒性的。
26.权利要求16所述方法,其中所述易位是从胰岛素响应细胞的细胞质到细胞膜。
27.权利要求16所述方法,其中所述Lupinoside A4(LP4)预防棕榈酸诱导的胰岛素信号传导缺陷。
28.权利要求16所述方法,其中所述Lupinoside A4(LP4)使胰岛素能够刺激IRβ和Akt磷酸化。
29.一种简单、廉价的获得植物葛根提取物和随后选择性获取其活性正丁醇馏分和活性分子Lupinoside PA(LPA4)用于预防和/或治疗2型糖尿病的方法,所述方法包括如下步骤a)将植物部分切成小块,b)用甲醇和水提取切后的小块,c)将甲醇和水提取物在乙酸乙酯和水之间分层,d)用正丁醇进一步萃取水层来获得丁醇馏分,和e)用水和甲醇作为洗脱液将正丁醇馏分进行层析来获取Lupinoside PA4(LPA4)。
30.权利要求29所述方法,其中所述植物部分是根。
31.权利要求29所述方法,其中所述溶剂选自甲醇和水。
32.权利要求29所述方法,其中水和甲醇的比例是1∶1。
33.权利要求29所述方法,其中所述色谱分离是柱层析。
全文摘要
本发明涉及一种预防和/或治疗2型糖尿病的方法,同时,本发明涉及一种增强葡萄糖转运蛋白Glut4的磷酸化和Glut4易位到靶细胞膜来增强信号传导途径中胰岛素信号的方法;另外,本发明涉及一种简单、廉价的方法来获得提取物并选择性获取其活性正丁醇馏分和活性分子Lupinoside PA(LPA
文档编号A61K36/488GK1997379SQ200480042340
公开日2007年7月11日 申请日期2004年12月27日 优先权日2004年1月9日
发明者S·巴哈塔查亚, D·戴伊, S·K·曼达尔, M·慕克吉, B·C·帕尔, T·比斯瓦, M·达塔, S·S·罗伊, A·班底奥帕迪亚伊, S·班多帕迪亚伊, A·库纳尔, B·B·吉芮 申请人:科学与工业研究委员会
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1