专利名称:整联蛋白靶向的影像剂的利记博彩app
技术领域:
本发明涉及基于纳米微粒的乳液,其能通过αvβ3特异的靶向剂,特异性地靶向至整联蛋白。更具体的,本发明涉及使用基于非抗体的组合物来进行这种靶向。
背景技术:
由包被有表面活性剂层的全氟碳纳米微粒组成的、可促进所需组分结合的、用于不同类型影像的纳米微粒组合物的价值是众所周知的。可参见比如U.S.专利5,690,907、5,780,010、5,989,520、5,958,371,以及PCT出版物WO 02/060524,这些专利中所述的内容在这里引用作为参考。这些文献描述了将全氟碳纳米微粒连接到不同的靶向剂以及所需组分,如MRI影像剂、放射性核素、和/或生物活性剂,获得乳液。其他的已经用于靶向影像的组合物包括公开于PCT出版物WO 99/58162、WO 00/35488、WO 00/35887、以及WO 00/35492中的物质。这些公开文本中的内容也在这里引用作为参考。
可结合到玻连蛋白的整联蛋白αvβ3被作为一种新血管生成的标记物,其可相对地选择活化的内皮细胞,并且在成熟、静止细胞上基本不表达。基于该特性,人们已经尝试了将该整联蛋白的拮抗剂作为抗肿瘤剂。Kerr,J.S.,et al.,AnticancerRes.(1999)19959-968描述了可降低小鼠模型系统中新血管生成的肽模拟物。U.S.专利6,153,628描述了1,3,4-噻二唑和1,3,4-噁二唑的应用,它们是αvβ3拮抗剂,据称其在与血管生成相关的紊乱的治疗中有作用,所述血管生成相关的紊乱包括炎症、骨退化、肿瘤、转移、血栓、以及细胞凝集相关的状态。U.S.专利6,130,231和6,322,770公开了作为αvβ3拮抗剂的稠合杂环,其与PCT出版物WO01/97848中所公开的一样,都用于相同的目的。
WO01/97848出版物公开了特异性的化合物,可任选地通过连接基结构连接到附属物质上,其中,所述附属物质可包括放射性核素、用于磁共振影像的物质、以及X-射线影像剂。该专利也公开了将这些化合物偶联到某些超声影像剂上的应用,典型地是含有气体泡的超声造影剂。
除了表达在活化的内皮细胞中,αvβ3还表达在血管平滑肌细胞上,包括位于血管壁上的巨噬细胞。该复合物可将细胞结合到周围基质中,在细胞迁移过程中起作用。同时,αvβ3通过协助细胞移动进入管腔,在血管再狭窄中起作用。血管再狭窄的一个关键组成部分涉及血管平滑肌细胞活化、增殖和迁移。整联蛋白异二聚体,特别是αvβ3整联蛋白,通过将细胞粘连到细胞外基质,诱导细胞外金属蛋白酶表达,以及促进平滑肌细胞迁移而被认为是这些过程的关键因素。αvβ3整联蛋白广泛分布在内皮细胞、受激的单核细胞、T-淋巴细胞、成纤维细胞、血管平滑肌细胞、以及血小板中,并且结合到各种细胞外基质蛋白配体,包括骨桥蛋白、玻连蛋白、血小板反应蛋白、以及变性胶原蛋白上。
在球囊-扩张的血管壁上,整联蛋白介导的细胞-基质相互作用产生的对抗作用抑制了炎症细胞补充到损伤部位,限制平滑肌细胞增殖和迁移,并且减少细胞外基质蛋白的合成。在一些再狭窄动物模型中,选择和非选择的用环RGD肽拮抗剂阻断整联蛋白已经限制了内膜的增生。
再狭窄经常与血管成形术相关,为了使用球囊导管来扩张血管系统,血管系统被破坏,暴露出血管平滑肌细胞,产生的裂缝需要将细胞移动到管腔中;αvβ3起到了协助胶原蛋白和纤维蛋白穿过基质进行转移的作用以达到此目的。因此,靶向αvβ3的组合物也可用于靶向平滑肌细胞,并且用于再狭窄影像,特别是那些与球囊血管成形术相关的再狭窄,并可用于递送抗增殖剂,如紫杉醇、纳巴霉素、以及其他治疗成分,如放射性核素、小分子、肽和核酸。
基于支架的递送系统提供了集中治疗药物作用的可能性,使治疗只在动脉中膜中进行,不至于因全身系统的药物施加而产生反作用,制造高度局部的内膜药物浓度,使药物靠近支架-网架-动脉壁接触位点,但是在内膜中持续保持高的抗增殖药物浓度可削弱动脉血管壁愈合和再内皮化,其可促进内腔层的炎症反应和再狭窄。本发明的组合物避免了这些问题。
据显示,大多数多肽模拟物和中和性抗体αvβ3拮抗剂具有短的半衰期,并且只能瞬时占据到αvβ3受体上。本发明的整联蛋白特异的纳米微粒可以靶向并阻止由于动脉过度扩张损伤,而暴露在平滑肌细胞表面上的整联蛋白的结合,并直接向细胞递送多种可抑制炎症和再狭窄的治疗剂,提供用于与随后的再狭窄球囊损伤的程度和严重性相关的新的、预后数据的分子影像。本发明的化合物避免了这些问题。
对αvβ3整联蛋白特异的抗体在U.S.专利6,171,588中已有描述。在Sipkins,D.A.,et al.,Nature Med.(1998)4623-626中,抗体被用于靶向的磁共振影像(MRI);在该种情况下,通过抗生物素连接蛋白偶连到脂质体表面。
在Aderson,S.A.et al.,Magn.Reson.Med.(2000)44433-439,以及前述提及的PCT出版物WO02/060524的专利中,描述了使用带螯合钆的全氟碳化物乳液、将αvβ3的抗体作为MRI靶向剂的应用。靶向于整联蛋白的肽配体也已经被用作拮抗剂,并被Storgard,C.M.,et al.,J.Clin.Invest.(1999)10347-53提出作为类风湿关节炎的治疗策略,其使用已知可与整联蛋白反应的包含RGD型序列的环肽。
在Haubner,R.,et al.,J.Nucl.Med.(1999)401061-1071中,类似的环肽通过直接偶联到放射性核素上,被用于肿瘤影像。另外,在Hauber,R.,et al.,J.Nucl.Med.(2001)42326-336中,使用糖基化形式的环肽来同时进行放射性标记和PET。
根据申请人所知,除了抗体,其他αvβ3特异的物质还没有被提出用作靶向剂,递送辅助影像的纳米微粒乳液或递送包含生物活性剂的乳液到具有活化内皮细胞的区域,如炎症、肿瘤、动脉粥样硬化斑、以及再狭窄位点。
发明公开的内容本发明涉及用于影像和药物递送的组合物和方法,其中,非抗体的、αvβ3特异的结构被用作靶向剂,递送纳米微粒乳液到具有高水平血管新生的区域,如肿瘤、炎症区域、动脉粥样硬化区域和再狭窄区域。在纳米微粒乳液的影像过程中,使用这些试剂的结果提高了影像质量,并提供了靶向药物的递送机会。
因此,在一个方面,本发明涉及一种递送纳米微粒乳液到靶组织的方法,其中,所述的靶组织是以具有高水平的αvβ3为特征的,该方法包括给包含所述组织的受试者施加一种纳米微粒感光乳液,其中,所述的纳米微粒被偶联到一种αvβ3特异的配体上,但是所述的配体不是抗体或其片段。
在另一方面,本发明涉及在本发明的方法中有用的组合物,以及包含该组合物组分的试剂盒,其经过一定组装后可用于实现本发明的方法。典型地,该试剂盒提供了包含反应基团的感光乳液,可结合到分开提供的靶向剂上,或可结合到对于影像和药物递送有用的附属物质上。
附图简述
图1显示了αvβ3靶向和非靶向的纳米微粒的微粒尺寸分布。
图2显示了一种植入性Vx-2肿瘤的T1-加权的磁共振影像的放大的切片。
图3显示了用H&E染色(低倍率放大)和αvβ3染色(见嵌入图,高倍率放大)的Vx-2肿瘤的组织学切片。
图4显示了接受靶向或非靶向纳米微粒的受试者中,肿瘤(上)以及肌肉(下)的ROI增强的坐标图。
图5A-5C显示了在肿瘤切片中,不同放大水平的炎症组织切片图。
图6显示了用αvβ3靶向的纳米微粒定靶的肿瘤的T2-加权和T1-加权的MRI。
图7A显示了在加入αvβ3标记的微粒之前和之后主动脉切片的自旋回波影像;图7B显示了在施用过胆固醇、未施用过胆固醇、以及施用过胆固醇但施用了非靶向的纳米微粒的受试动物中,主动脉影像的增强。
图8A和8B分别显示了使用靶向的和非靶向的微粒,在主动脉和肌肉中MRI信号增强的百分数。
图9显示了在使用αvβ3靶向的顺磁性纳米微粒进行血管成形术之后,家猪颈动脉的三维血管影像,图解了球囊过度扩张损伤的方式。
实现本发明的方式本发明提供了一种方法,通过该方法可实现活化内皮细胞集中位点的优质影像。可使用在影像中有用的不同乳液。当单独使用时,包含纳米微粒的乳液可用作超声影像的影像剂。在磁共振影像或X-射线影像中,可能需要过渡金属元素用作影像剂;但如果纳米微粒包含氟碳化合物,该氟碳化合物本身也可用于获得影像。放射性核素也可同时用作诊断剂和治疗剂。并且,光学影像的试剂,如荧光团也可与纳米微粒结合使用。并且,或可选择的,乳液中的纳米微粒可包含一种或多种生物活性剂。
可使用任何纳米微粒乳液。比如,PCT出版物WO95/03829中描述了油性乳液,药物分散或溶解在油滴中,油滴通过配体被靶向到特异位置。U.S.专利5,542,935描述了使用充气的全氟碳微球体进行位点特异性的药物递送。该药物递送通过使微球体进入靶点并使它们裂开来实现。低沸点全氟化合物可用于制作微粒,以便于形成气泡。
然而,更优选使用基于高沸点的全氟碳液体的纳米微粒的乳液,如前述的U.S.专利5,958,371中所描述的。液体乳液含有纳米微粒,所述纳米微粒含有相对高沸点的全氟碳,其被一层由脂质和/或表面活性剂组成的被膜所包围。包围的被膜可直接偶联到靶向结构上,或俘获可共价连接到靶向结构的中间介质组分,任选地,可通过一种连接基,或可包含一种非特异性偶联剂如生物素来实现。可选择的,被膜可以是阳离子性的,便于携带阴性电荷的靶向剂如(一般说来)核酸或(具体说来)适体可特别地被吸附到表面上。
除了靶向αvβ3配体,纳米微粒的表面可连接一种用于影像和/或治疗的“附属剂”,如放射性核素、用于磁共振影像(MRI)或X-射线影像的影像剂、荧光团和/或生物活性化合物。纳米微粒本身能够作为影像剂用于超声影像。
优选的乳液是一种包含高沸点全氟碳作为核芯并且外层包被有脂质/表面活性剂混合物的纳米微粒系统,便于将多拷贝的一种或多种所需组分结合到纳米微粒上。除了结合到外层表面的组分,基础微粒的构建以及乳液的形成包含描述在前面引用的U.S.专利5,690,907、5,780,010,以及作为子专利的5,989,520、5,958,371的内容,在这里引用作为参考。
高沸氟化物液体是那些沸点高于体温(即37℃)的液体。因此,优选具有至少30℃沸点的氟化合物液体,更优选37℃的,进一步更优选高于50℃的,最优选高于90℃的液体。在本发明中有用的“氟化物液体”包括直链、支链以及环状的全氟碳化物,包括具有其他功能基团的全氟化物。“全氟化物”包括不纯的全氟碳,但更好的是存在其他卤代基团的化合物。这些化合物包括如全氟辛基溴化物和全氟二氯辛烷。
这样定义的全氟化物是优选的。
有用的全氟碳乳液公开在U.S.专利号4,927,623、5,077,036、5,114,703、5,171,755、5,304,325、5,350,571、5,393,524和5,403,575,引用于此作为参考,并且包括那些全氟碳化物是全氟萘烷、全氟辛烷、全氟二氯辛烷、全氟-正-辛基溴化物、全氟庚烷、全氟癸烷、全氟环己烷、全氟吗啉、全氟三丙胺、全氟三丁胺、全氟二甲基环己烷、全氟三甲基环己烷、全氟二环己基醚、全氟-正-丁基四氢呋喃,以及结构上与这些化合物相似的化合物,以及部分或完全卤化的(包括至少一些氟取代基)、或者部分或完全氟化的物质,包括全氟烷化醚、多聚醚或冠醚。
用于在纳米微粒(其将包含偶联的配体或捕获剂,用于使所需组分结合到表面)上形成外层被膜的脂质/表面活性剂包括天然的或合成的磷脂、脂肪酸、胆固醇、水解脂、鞘磷脂以及类似物,包括脂质缀合的聚乙二醇。可使用各种不同的商品化的阴离子、阳离子和非离子型表面活性剂,包括Tweens、Spans、Tritons以及类似物。一些表面活性剂本身是氟化的,例如全氟化的烷酸如全氟己酸和全氟辛酸、全氟烷基磺酰胺、烯烃季铵盐以及类似物。并且,也可使用全氟化醇磷酸酯。外层中包括的阳离子脂质可以是有利于捕获配体如核酸的物质,尤其是适体。典型的阳离子脂质可包括DOTMA,N-[1-(2,3-二油酰氧基)丙基]-N,N,N-三甲基氯化铵;DOTAP,1,2-油酰氧基-3-(三甲基氨)丙烷;DOTB,1,2-二油酰-3-(4’-三甲基氨)丁酰-sn-丙三醇,1,2-二酰基-3-三甲基铵-丙烷;1,2-二酰基-3-二甲基铵-丙烷;1,2-二酰基-sn-丙三醇-3-乙基磷酸胆碱;以及3β-[N’,N’-二甲基氨基乙烷]-氨基甲酰]胆固醇-HCl。
在一个优选的实施方案中,包含在脂质/表面活性剂被膜中的是具有反应基团的组分,所述反应基团可用于偶联αvβ3配体和/或对影像或治疗有效的附属物质。正如以下将要叙述的,脂质/表面活性剂组分可以通过包含在其中的功能团偶联到这些反应基团上。比如,磷脂酰乙醇胺可以通过其氨基直接偶联到所需的结构上,或可以偶联到一种连接体如短肽上,其可提供羧基、氨基、或巯基基团,如下文所述。可选择的,可使用的标准的偶联剂如马来酰亚胺。可采用不同的方法将靶向配体和附属物结合到纳米微粒上;这些策略可包括使用间隔基,如聚乙二醇或肽。
脂质/表面活性剂包被的纳米粒子通常通过微流化下述混合物来制备形成核芯的氟碳脂质、形成外层的脂质/表面活性剂混合物,悬浮在水中形成乳液。在这个过程中,当包被到纳米微粒上时,脂质/表面活性剂可事先偶联到附属配体上,或可只含有用于进行偶联反应的反应基团。可选择的,要包含在脂质/表面活性剂层的组分可借助附加成分的溶解度特性简单地溶于层中。声波法或其他技术可用于获得脂质/表面活性剂在水中的悬浮液。典型的,当制备乳液的时候,在脂质/表面活性剂外层中至少有一种物质包含连接体或功能基团,其可有效结合其他所需组分,或者该组分事先已被偶联到相应物质上。
为了通过共价结合将靶向配体或其他有机结构(如用于顺磁性金属的螯合剂)偶联到外层组分中,可使用多种类型的键和连接剂。形成这种偶联的典型方法包括使用碳二酰胺形成酰胺化合物、或通过使用不饱和组分如马来酰亚胺形成硫化物键合。其他的偶联剂包括比如戊二醛、丙二醛或丁二醛、盐酸2-亚氨基硫杂环戊烷、双官能N-羟基琥珀酰亚胺酯如二琥珀酰亚氨基辛二酸酯、二琥珀酰亚氨基酒石酸酯、双[2-(琥珀酰亚氨氧羰氧基)乙基]砜、杂双官能试剂如N-(5-叠氮基-2-硝基苯甲酰氧基)-琥珀酰亚琥珀酰亚胺、琥珀酰亚氨基4-(N-马来酰亚氨甲基)环己烷-1-羧酸酯、以及琥珀酰亚氨基4-(p-马来酰亚氨基苯基亚醯胺)丁酸酯,同双官能试剂如1,5-二氟-2,4-二硝基苯、4,4’-二氟-3,3’二硝基苯基砜、4,4’-二异硫氰基-2,2’-二磺酸芪、p-亚苯基二异硫氰酸酯、羰基双(L-甲硫氨酸p-硝基苯基酯)、4,4’-二硫代二叠氮基苯、二碳酸赤藻糖醇酯,以及双官能亚氨基酯如盐酸己二亚氨酸二甲酯、辛二亚氨酸二甲酯、二盐酸3,3’-二硫代双丙亚氨酸二甲酯以及类似物。连接也可通过酰化作用、磺化作用、还原性胺化作用以及类似作用来实现。许多现有技术已知的方法可使所需配体共价地偶联、结合到一种或多种外层组分上。如果其性质相容的话,配体自身可包含在表面活性剂层中。例如,配体包含高亲脂性部位,它自身可被包埋在脂质/表面活性剂被膜中。进一步的,如果配体能够直接吸附到被膜上,也将实现偶联。比如核酸,由于它们带有负电荷,直接吸附到阳离子表面活性剂上。
配体可直接结合到纳米微粒上,即配体与纳米微粒本身连接。可选择的,间接结合如通过生物素/抗生物素蛋白的作用也可典型地用于αvβ3特异性配体。比如,在生物素/抗生物素蛋白介导的靶向过程中,αvβ3配体并非偶联到乳液,而是以生物素化的形式偶联到靶组织上。
可通过被膜层中的捕获过程偶联到纳米微粒上的附属剂包括放射性核素。放射性核素既可以是治疗剂又可以是诊断剂;使用这种核素进行诊断影像的技术是公知的,并且通过将放射性核素靶向到不需要的组织中,同样也能获得治疗效果。典型的可用于诊断的放射性核素包括99mTc,95Tc,111In,62Cu,64Cu,67Ga和68Ga,可用于治疗的核素包括186Re,188Re,153Sm,166Ho,177Lu,149Pm,90Y,212Bi,103Pd,109Pd,159Gd,140La,198Au,199Au,169Yb,175Yb,165Dy,166Dy,67Cu,105Rh,111Ag和192Ir。核素可通过不同的方法加入到预制的乳液中,比如可将99Tc-pertechnate与过量氯化亚锡混合,并加入到预制的纳米微粒感光乳液中。8-羟基喹啉亚锡可以取代氯化亚锡。另外,可使用商购的试剂盒,如可使用Nycomed Amersham生产的商标为Ceretek的HM-PAO(依沙美肟)试剂盒。本发明使用的将不同的放射性配体附着到纳米微粒上的方法是本技术领域所能理解的。
用于磁共振成像的包含顺磁性金属的螯合剂也可用作附属剂。典型的,包含顺磁性金属的螯合剂结合到纳米微粒被膜的脂质/表面活性剂上,并且混合到被超声作用的起始混合物中。螯合剂可直接偶合到被膜层的一个或多个组分上。合适的螯合剂包括多种多齿化合物,包括EDTA、DPTA、DOTA以及类似物。这些螯合剂可以直接偶联到包含在如磷脂酰乙醇胺、二油酸以及类似物中的官能基团,或可通过连接基团实现偶联。
本发明中,在MRI影像剂中有用的顺磁性金属包括稀土金属,典型的为锰、镱、钆、铕等。也可使用铁离子。
其他的附属剂包括荧光团,如荧光素、丹磺酰、量子点等。
在本发明的一些实施方案中,在纳米微粒表面还包含生物活性剂,这些生物活性剂可以是多种多样的,包括蛋白质、核酸、药物等。合适的药物包括抗肿瘤剂、激素、止痛剂、麻醉剂、神经肌肉阻断药、抗微生物剂或抗寄生虫剂、抗病毒剂、干扰素、抗糖尿病剂、抗组胺剂、止咳药、抗凝血剂等。
在前述所有状况中,不管连接结构是αvβ3靶向配体或是附属剂,特定的结构可以非共价地与脂质/表面活性剂层结合,可以直接偶联到脂质/表面活性剂层的组分上,或可以通过间隔基结构偶联到所述组分。
靶向配体本发明的乳液使用的靶向剂是对αvβ3整联蛋白特异的配体,而不是抗体或其片段。在一种实施方案中,配体是非-肽有机分子,如U.S.专利6,130,231、6,153,628、6,322,770以及前述PCT出版物WO01/97848中所描述的,引用于此作为参考。“非-肽”结构通常是除了简单的氨基酸聚合物,既可以是基因编码也可以是非基因编码的化合物以外的那些。因此,“非肽配体”是那些通常被认为是“小分子”的结构,它们缺乏聚合体的特性,被描述为需要核芯结构而不是氨基酸聚合物。本发明中有用的非肽配体可以偶联到肽,或可以包含偶联到配体上某些部位的肽,所述肽负责对αvβ3结构的亲和性,但是发挥结合作用的是该配体的非肽区域。
在本发明的方法和组合物中,一组αvβ3特异的配体特别有用,它们具有结构式(I)的结构 包括其立体异构体形式,或其立体异构体形式的混合物,或其药学可接受盐或前体药物形式,其中Hc包含胍基或包含一个带N的杂环;L1是连接基;G是N或CRB;
RA是除了H以外的非干扰性取代基;每一个RB独立地是H或非干扰性取代基;和M包含可任选取代的羧基、磺酸基、或者是磷酸基团或其酯或酰胺,或是四元或五元的环;其中,环A和环B各自可任选地被非干扰性取代基进一步取代。
在适当的情况下,该合物可以以盐的形式存在。
当结构式(I)的化合物包含一个或多个手性中心时,本发明包含光学纯的形式,以及立体异构体或对映异构体的混合物。
在结构式(I)的化合物中,M所包括的羧基、磺酸基、或者磷酸基团或其酯或酰胺可以根据分子定位在任一方向,即磺胺可以为SO2N-或NSO2-;另外,多个羧基、磺酸基、或者磷酸基团或其酯或酰胺可以串联排列,包含在化合物中。这些残基还可进一步被取代,并可通过不同的连接基团偶联到纳米微粒组分上,所述连接基团包括PEG以及那些包含肽的连接结构。
M优选自以下基团-CORB、-SO3H、-PO3H、-CONHNHSO2CF3、-CONHSO2RB、-CONHSO2NHRB、-NHCOCF3、NHCONHSO2RB、-NHSO2RB、-OPO3H2、-OSO3H、-PO3H2、-SO2NHCORB、-SO2NHCO2RB、 和 “非干扰性取代基”是指一种不破坏结构式(I)的化合物结合到αvβ3的能力的取代基。该取代基可以改变结合的强度,但必需保证使用标准的方法仍然能够检测到所述结合,所述方法如测定结合到固体支持物的标记,其中固体支持物被偶联到αvβ3上。结构式(I)的化合物的必要特征体现在结构式中,很清楚,其可进一步包括多种取代基,但实质上不改变化合物的结合能力。熟练的技术人员应能评估出任何具体的Rb实施方案,以保证与αvβ3的结合特性足够能被测定出。因此,对于任何已选择的实施方案,它是一种确定取代基干扰或不干扰的直接的方式。
因此,分子的必要特性是严格限定的。本技术领域应理解,被“非干扰性取代基”占据的位置能够被常规的无机或有机结构所取代。在取代基限定范围以外的测定是与本发明不相关的。所述化合物的必要特性是这里所特别指出的。
此外,L1在这里描述为连接基。这种连接体的性质不太重要,但它在分子的各部分之间造成的距离更为重要。典型的连接体包括亚烷基即(CH2)n、亚烯基即包含双键的亚烷基结构,包括末端的双键。其他合适的连接体包括比如取代的亚烷基或亚烯基、羰基以及类似物。
“烃基残基”是指一种只包含碳和氢的残基。该残基可以是脂肪族或芳香族、直链、环状、支链、饱和或非饱和的。然而这里所指的烃基残基还可包含杂原子,或者取代残基的碳和氢成员被杂原子所取代。因此,当具体指定包含所述杂原子时,烃基残基也可包含羰基基团、氨基基团、羟基基团以及类似物,或在烃基残基的主链中包含杂原子。
“烷基”、“烯烃基”和“炔基”包括直链、支链和环状单价取代基。例如包括甲基、乙基、异丁基、环己基、环戊基乙基、2-丙烯基、3-丁炔基等。典型地,烷基、烯烃基和炔基取代基包含1-10C(烷基)或2-10C(烯烃基或炔基)。优选的,它们包含1-6C(烷基)或2-6C(烯烃基或炔基)。一些包含杂原子的结构定义是相似的,但是在主链中可能包含1-2个O、S、P1Si或N杂原子或其组合。
“酰基”包含了烷基、烯烃基、炔基和相关的杂合形式,其通过羰基基团偶联到别的残基上。
“芳香族”或“芳基”结构是指单环或稠合双环结构,如苯基或萘基。“杂芳香族杂环”也指包含一个或多个杂原子的单环或稠合双环系统,所述杂原子选自O、S和N。五-元环和六-元环允许包含一个杂原子。因此,典型的芳香族系统包括吡啶基、嘧啶基、吲哚基、苯并咪唑基、苯并三唑基、异喹啉基、喹啉基、苯并噻唑基、苯并呋喃基、噻吩基、呋喃基、吡咯基、噻唑基、噁唑基、咪唑基等。任何的环系统电子分布具有芳香族化合物特性的单环或稠合双环都包括在所述定义中。典型的,环系统包括5-12元环。
典型的“非干扰性取代基”是指卤素、OH、SH、NH2、NO2或其他无机取代基,或包含0-6杂原子的烃基残基(1-20C),所述杂原子选自O、S、P、Si和N。优选的,所述杂原子是O、S和/或N。烃基残基可以是例如烷基、烯烃基、炔基、芳基、芳烷基,这些取代基可包含前述杂原子和/或可自身被1-6个取代基取代。在芳基结构或适当的杂原子上的取代基包括烷基、烯烃基、炔基、另外的芳基、或芳烷基、芳烯烃基以及芳炔基。在非环碳链上的取代基包括适当的杂原子,包括这些结构的取代的形式和/或其含杂原子的形式以及卤代基团、OR、NR2、SR、SOR、SO2R、OCOR、NRCOR、NRCONR2、NRCOOR、OCONR2、RCO、COOR、SO3R、CONR2、SO2NR2、NRSO2NR2、CN、CF3、R3Si和NO2。其中每一个R立是烷基、烯烃基、芳基等,或其杂合形式。两个取代基可以形成环或=O。
在相邻位置或者在相同C或N上的两个RB可以连接,形成稠合的任选地取代的包含3-8元的芳香族或非芳香族饱和或不饱的环,或2个RB可以是=O或肟、肟醚、肟酯或其缩酮。
在本发明的一个实施方案中,具有结构式(I)的化合物中,Hc是一种可任取代的五或六元环,包含1或2个氮。优选的取代基包括氨基。
在一个实施方案中,L1包括1-4个原子的亚烷基链,其中1或2个非相邻成员可以是杂原子N、S或O,优选N。优选的G的实施方案包括N和CH。
优选的RB的实施方案包括H、烷基(1-10C)、烯烃基(2-10C)、酰基(1-10C)、芳烷基或芳酰基,其中,烷基和酰基如前面所描述的一样,并且芳基包含5-12元环,包括任选的选自N、O和S的杂原子。当RB取代到碳上时,RB可以是COOR(其中R是H或烷基(1-10C));或CONR2,其中R与前述定义相同;OOCR或NROCR,其中R与前述定义相同;卤素;CF3等。
作为结构式(I)的实施方案,一组在本发明中有用的αvβ3特异的配体是如结构式(II)的化合物。
包括其立体异构体形式,或其立体异构体形式的混合物,或其药学可接受盐或前体药物形式,其中,R1e选自
和 Ae是-CH2-或-N(R10e)-;A1e和Be独立是的-CH2-或-N(R10e)-;De是-N(R10e)-或-S-Ee-Fe是-C(R2e)=C(R3e)或-C(R2e)2C(R3e)2-;Je是-C(R2e)-或-N-;Ke、Le和Me独立是-C(R2e)-或-C(R3e)-;R2e和R3e各选自以下基团H、C1-C4烷氧基、NR11eR12e、卤素、NO2、CN、CF3、C1-C6烷基、C3-C6烯烃基、C3-C7环烷基、C3-C7环烷基(C1-C4烷基)、芳基(C1-C6烷基)-、(C1-C6烷基)羰基、(C1-C6烷氧基)羰基、芳羰基、和被0-4个R7e取代的芳基;可选择的,当R2e和R3e是相邻原子上的取代基时,它们可与和它们相连接的碳原子一起形成5-7元的碳环或5-7元的杂环芳香族或非芳香族环系统,所述的碳环或杂环由0-2个基团取代,所述基团选自C1-C4烷基、C1-C4烷氧基、卤素、氰基、氨基、CF3和NO2;R2ae选自H、C1-C10烷基、C2-C6烯烃基、C3-C11环烷基、C3-C7环烷基(C1-C4烷基)、芳基、芳基(C1-C4烷基)-、(C2-C7烷基)羰基、芳羰基、(C2-C10烷氧基)羰基、C3-C7环烷氧羰基、C7-C11双环烷氧羰基、芳氧羰基、芳基(C1-C10烷氧基)羰基、C1-C6烷基羰氧基(C1-C4烷氧基)羰基、芳基羰氧基(C1-C4烷氧基)羰基;和C3-C7环烷氧羰基(C1-C4烷氧基)羰基;R7e选自
H、羟基、C1-C4烷基、C1-C4烷氧基、芳基、芳基(C1-C4烷基)-、(C1-C4烷基)羰基、CO2R18ae、SO2R11e、SO2NR10eR11e、OR10e、和N(R11e)R12e;其中Ue选自-(CH2)ne-、-(CH2)neO(CH2)me-、-(CH2)neN(R12)(CH2)me-、-NH(CH2)ne-、-(CH2)neC(=O)(CH2)me-、-(CH2)neS(O)pe(CH2)me-、-(CH2)neNHNH(CH2)me-、-N(R10e)C(=O)-、-NHC(=O)(CH2)ne-、-C(=O)N(R10e)-、和-N(R10e)S(O)pe-;其中Ge是N或CR19e;其中We是-C(=O)-N(R10e)-(C1-C3亚烷基)-,其中亚烷基团被R8e和R9e取代R8e和R9e各选自H、CO2R18be、C(=O)R18be、CONR17R18be、用0-1个R6e取代的C1-C10烷基、用0-1个R6e取代的C2-C10烯烃基、用0-1个R6e取代的C2-C10炔基、用0-1个R6e取代的C3-C8环烷基、用0-1个R6e取代的C5-C6环烯烃基、(C5-C10烷基)羰基、C3-C10环烷(C1-C4烷基)-、用0-3个R6e取代的苯基、用0-3个R6e取代的萘基,5-10元的包含1-3个N、O或S杂原子的杂环,其中所述的杂环可以是饱和、部分饱或完全不饱和的,所述的杂环被0-2个R7e取代,被0-2个R7e取代的C1-C10烷氧基、羟基、硝基、-N(R10e)R11e、-N(R16e)R17e、芳基(C0-C6烷基)羰基、芳基(C3-C6烷基)、杂芳基(C1-C6烷基)、CONR18aeR20e、SO2R18ae和SO2NR18aeR20e,条件是上述任何烷基、环烷基、芳基或杂芳基可以是非取代的或单独地被1-2个R7e取代;R6e选自H、C1-C10烷基、羟基、C1-C10烷氧基、硝基、C1-C10烷羰基、-N(R11e)R12e、氰基、卤素、CF3、CHO、CO2R18be、C(=O)R18be、CONR17eR18be、OC(=O)R10e、OR10e、OC(=O)NR10eR11e、NR10eC(=O)R10e、NR10eC(=O)OR21e、NR10eC(=O)NR10eR11e、NR10eSO2NR10eR11e、NR10eSO2R21e、S(O)pR11e、SO2NR10eR11e,芳基被0-3个选自卤素、C1-C6烷氧基、C1-C6烷基、CF3、S(O)meMe、和-NMe2的基团取代,芳基(C1-C4烷基)-,所述的芳基被0-3个基团取代,选自卤素、C1-C6烷氧基、C1-C6烷基、CF3、S(O)peMe、和-NMe2,以及包含1-3个N、O或S杂原子的a5-10元杂环,其中,所述的杂环可以是饱和、部分饱和或完全不饱和的,所述的杂环被0-2个R7e取代;
R10e选自H、CF3、C3-C6烯烃基、C3-C11环烷基、芳基、(C3-C11环烷基)甲基、芳基(C1-C4烷基)、和被0-2个R6e取代的C1-C10烷基;R11e选自H、羟基、C1-C8烷基、C3-C6烯烃基、C3-C11环烷基、(C3-C11环烷基)甲基、C1-C6烷氧基、苄氧基、芳基、杂芳基、杂芳基(C1-C4烷基)-、芳基(C1-C4烷基)、金刚烷基甲基、和被0-2个R4e取代的C1-C10烷基;R4e选自H、C1-C6烷基、C3-C7环烷基、C3-C7环烷基(C1-C4烷基)-、(C1-C10烷基)羰基、芳基、杂芳基、芳基(C1-C6烷基)-、和杂环(C1-C6烷基)-,其中所述的芳基或杂芳基单独地被0-2个取代基取代,所述取代基选自C1-C4烷基、C1-C4烷氧基、F、Cl、Br、CF3和NO2,可选择的,当R10e和R11e是相同氮原子的取代基时(如在-NR10eR11e中),它们可以与和它们连接的氮原子一起形成杂环3-氮杂二环壬基、1,2,3,4-四氢-1-喹啉基、1,2,3,4-四氢-2-异喹啉基、1-哌啶基、1-吗啉基、1-吡咯烷基、硫杂吗啉基、噻唑烷基和1-哌嗪基;所述的杂环被0-3个基团取代,所述基团选自C1-C6烷基、芳基、杂芳基、芳基(C1-C4烷基)-、(C1-C6烷基)羰基、(C3-C7环烷基)羰基、(C1-C6烷氧基)羰基、芳基(C1-C4烷氧基)羰基、C1-C6烷基磺酰基、和芳基磺酰基;R12e选自H、C1-C6烷基、三苯基甲基、甲氧基甲基、甲氧基苯基二苯基甲基、三甲基甲硅烷基乙氧基甲基、(C1-C6烷基)羰基、(C1-C6烷氧基)羰基、(C1-C6烷基)氨基羰基、C3-C6烯烃基、C3-C7环烷基、C3-C7环烷基(C1-C4烷基)-、芳基、杂芳基(C1-C6烷基)羰基、杂芳基羰基、芳基(C1-C6烷基)-、(C1-C6烷基)羰基、芳羰基、C1-C6磺烷基酰基、芳基磺酰基、芳基(C1-C6烷基)磺酰基、杂芳基磺酰基、杂芳基(C1-C6烷基)磺酰基、芳氧羰基、和芳基(C1-C6烷氧基)羰基,其中,所述的芳基基团被0-2个取代基取代,所述取代基团选自C1-C4烷基、C1-C4烷氧基、卤素、CF3和硝基。
R16e选自-C(=O)OR18ae、-C(=O)R18be、-C(=O)N(R18be)2、-C(=O)NHSO2R18ae、-C(=O)NHC(=O)R18be、-C(=O)NHC(=O)OR18ae、-C(=O)NHSO2NHR18be、-SO2R18ae、-SO2N(R18be)2、和-SO2NHC(=O)OR18be;
R17e选自H、C1-C6烷基、C3-C7环烷基、C3-C7环烷基(C1-C4烷基)-、芳基、芳基(C1-C6烷基)、和杂芳基(C1-C6烷基);其中,R18ae选自任选地被一根连接到Ln的键取代的C1-C8烷基、任选地被一根连接到Ln的键取代的C3-C11环烷基、任选地被一根连接到Ln的取代的芳基(C1-C6烷基)、选择性地被一根连接到Ln的键取代的杂芳基(C1-C6烷基)-、任选地被一根连接到Ln的键取代的(C1-C6烷基)杂芳基、任选地被一根连接到Ln的键取代的二芳基(C1-C6烷基)、任选地被一根连接到Ln的键取代的、被3-4个R19e取代并且任选地被一根连接到Ln的键取代的苯基、被0-4个R19e取代并且任选地被一根连接到Ln的键取代的萘基,以及连接到Ln的键,其中所述的芳基或杂芳基任选地被0-4个R19e取代;R18be是H或R18ae;其中R19e选自H、卤素、CF3、CO2H、CN、NO2、-NR11eR12e、QCF3、C1-C8烷基、C2-C6烯烃基、C2-C6炔基、C3-C11环烷基、C3-C7环烷基(C1-C4烷基)-、芳基(C1-C6烷基)-、C1-C6烷氧基、C1-C4烷氧羰基、芳基、芳基-O-、芳基-SO2-、杂芳基、和杂芳基-SO2-,其中所述的芳基和杂芳基基团被0-4个基团取代,所述基团选自氢、卤素、CF3、C1-C3烷基、和C1-C3烷氧基;R20e选自羟基、C1-C10烷氧基、C3-C11环烷氧基、芳氧基、芳基(C1-C4烷基)氧、C2-C10烷基羰氧基(C1-C2烷基)氧-、C2-C10烷氧基羰氧基(C1-C2烷基)氧-、C2-C10烷氧羰基(C1-C2烷基)氧-、C3-C10环烷基羰氧基(C1-C2烷基)氧-、C3-C10环烷氧基羰氧基(C1-C2烷基)氧-、C3-C10环烷氧基羰基(C1-C2烷基)氧-、芳氧羰基(C1-C2烷基)氧-、芳氧基羰氧基(C1-C2烷基)氧-、芳基羰氧基(C1-C2烷基)氧-、C1-C5烷氧基(C1-C5烷基)羰氧基(C1-C2烷基)氧、(5-(C1-C5烷基)-1,3-二氧杂-环戊烯-2-酮-基)甲氧基、(5-芳基-1,3-二氧杂-环戊烯-2-酮-基)甲氧基,和(R10e)(R11e)N-(C1-C10烷氧基)-;R21e选自C1-C8烷基、C2-C6烯烃基、C3-C11环烷基、(C3-C11环烷基)甲基、芳基、芳基(C1-C4烷基)-、和被0-2个R7e取代的C1-C10烷基。
R22e选自-C(=O)-R18be、-C(=O)N(R18be)2、-C(=O)NHSO2R18ae、-C(=O)NHC(=O)R18be、-C(=O)NHC(=O)OR18ae、和-C(=O)NHSO2NHR18be;其中Ye选自-COR20e、-SO3H、-PO3H、-CONHNHSO2CF3、-CONHSO2R18ae、-CONHSO2NHR18be、-NHCOCF3、NHCONHSO2R18ae、-NHSO2R18ae、-OPO3H2、-OSO3H、-PO3H2、-SO2NHCOR18ae、-SO2NHCO2R18ae、 和 上面提供的配体可以通过一个连接基偶联到包含在微粒脂质/表面活性剂被膜中的材料上。在一个实施方案中,连接基具有以下的结构式((W)h-(CR6R7)g)x-(Z)k-((CR6aR7a)g’-(W)h’)x’;在各种状况下,W单独的选自以下基团O、S、NH、NHC(=O)、C(=O)NH、NR8C(=O)、C(=O)NR8、C(=O)、C(=O)O、OC(=O)、NHC(=S)NH、NHC(=O)NH、SO2、SO2NH、(OCH2CH2)20-200、(CH2CH20)20-200、(OCH2CH2CH2)20-200、(CH2CH2CH20)20-200’和(aa)t’;在各种状况下,aa单独的是指一种氨基酸;Z选自以下被0-3个R10取代的芳基、被0-3个R10取代的C3-10环烷基、包含1-4个杂原子的5-10元的杂环系统(所述杂原子选自N、S和O)并被0-3个R10取代;在各种状况下,R6、R6a、R7、R7a和R8单独的选自H、=O、COOH、SO3H、PO3H、被0-3个R10取代的C1-C5烷基、被0-3个R10取代的芳基、被0-3个R10取代的苯基、以及被0-3个R10取代的C1-C5烷氧基、NHC(=O)R11、C(=O)NHR11、NHC(=O)NHR11、NHR11、R11、以及一根连接到附加组分上的键;在各种状况下,R10单独的选自一根连接到Sf的键、COOR11、C(=O)NHR11、NHC(=O)R11、OH、NHR11、SO3H、PO3H、-OPO3H2、-OSO3H、被0-3个R11取代的芳基、被0-1个R12取代的C1-5烷基、被0-1个R12取代的C1-5烷氧基、以及包含1-4个杂原子(单独的选自N、S和O)的5-10元的杂环系统并被0-3个R11取代;在各种状况下,R11单独的选自H、被0-1个R12取代的烷基、被0-1个R12取代的芳基、包含1-4个杂原子(单独的选自N、S和O)的5-10元的杂环系统并被0-1R12取代、被0-1个R12取代的C3-10环烷基、被0-1个R12取代的聚亚烷基二醇、被0-1个R12取代的碳水化合物、被0-1个R12取代的环糊精、被0-1个R12取代的氨基酸、被0-1个R12取代的聚羧烷基、被0-1个R12取代的多氮杂烷基、被0-1个R12取代的肽(其中所述肽包含2-10个氨基酸)、3,6-O-二磺基-B-D-半乳吡喃糖基、双(膦酰基甲基)甘氨酸、以及一根连接到附属组分上的键;R12是一根键连接到附属组分上;k选自0、1和2;h选自0、1和2;h’选自0、1和2;g选自0、1、2、3、4、5、6、7、8、9和10;g’选自0、1、2、3、4、5、6、7、8、9和10;t’选自0、1、2、3、4、5、6、7、8、9和10;x选自0、1、2、3、4和5;x’选自0、1、2、3、4和5;在一些实施方案中,在纳米微粒中包含的附加取代基包括放射性核素的螯合剂或X-射线磁共振影像的金属。所述的螯合剂具有以下的结构式 and A1、A2、A3、A4、A5、A6、A7和A8单独地选自NR13、NR13R14、S、SH、S(Pg)、O、OH、PR13、PR13R14、P(O)R15R16、以及一根连接到配合物的剩余部分的键;E是键、CH、或间隔基,在各种情况下单独的选自被0-3个R17取代的C1-C10亚烃基、被0-3个R17取代的芳基、被0-3个R17取代的C3-10环亚烃基、被0-3个R17取代的杂环-C1-10亚烃基(其中,杂环基团是包含1-4个杂原子的5-10元的杂环系统,所述杂原子单独的选自N、S和O)、被0-3个R17取代的C6-10芳基-C1-10烷基、被0-3个R17取代的C1-10烷基-C6-10芳基-、以及包含1-4个杂原子(单独的选自N、S和O)的5-10元的杂环系统并被0-3个R17取代;R13和R14各自独立地选自一根连接到Ln的键、氢、被0-3个R17取代的C1-C10烷基、被0-3个R17取代的芳基、被0-3个R17取代的C1-10环烷基、被0-3个R17取代的杂环-C1-10烷基(其中,杂环基团是包含1-4个杂原子的5-10元的杂环系统,所述杂原子单独的选自N、S和O)、被0-3个R17取代的C6-10芳基-C1-10烷基、被0-3个R17取代的C1-10烷基-C6-10芳基-、包含1-4个杂原子(单独的选自N、S和O)的5-10元的杂环系统并被0-3个R17取代、以及电子、条件是当R13或R14之一是电子时,那么另外一个也是电子;可选择的,R13和R14结合形成=C(R20)(R21);R15和R16各自独立的选自一根连接到Ln的键、-OH、被0-3个R17取代的C1-C10烷基、被0-3个R17取代的C1-C10烷基、被0-3个R17取代的芳基、被0-3个R17取代的C3-10环烷基、被0-3个R17取代的杂环-C1-10烷基(其中,杂环基团是包含1-4个杂原子的5-10元的杂环系统,所述杂原子单独的选自N、S和O)、被0-3个R17取代的C6-10芳基-C1-10烷基、被0-3个R17取代的C1-10烷基-C6-10芳基、以及包含1-4个杂原子(单独的选自N、S和O)的5-10元的杂环系统并被0-3个R17取代;在各种情况下,R17单独的选自一根连接到Ln的键、=O、F、Cl、Br、I、-CF3、-CN、-CO2RU、-C(=O)R18、-C(=O)N(R18)2、-CHO、-CH2OR18、-OC(=O)R18、-OC(=O)OR18a、-OR18、OC(=O)N(R18)2、-NR19C(=O)R18、-NR19C(O)OR18a、NR19C(=O)N(R18)2、NR19SO2N(R18)2、-NR19SO2R18a、-SO3H、-SO2R18a、-SR18、-S(=O)R18a、-SO2N(R18)2、-N(R18)2、-NHC(=S)NHR18、=NOR18、NO2、-C(=O)NHOR18、-C(=O)NHNR18R18a、-OCH2CO2H、2-(1-吗啉子基)乙氧基、C1-C5烷基、C2-C4烯烃基、C3-C6环烷基、C3-C6环烷基甲基、C2-C6烷氧基烷基、被0-2个R18取代的芳基、以及包含1-4个杂原子(单独的选自N、S和O)的5-10元的杂环系统;在各种情况下,R18、R18a和R19单独的选自一根连接到Ln的键、H、C1-C6烷基、苯基、苯甲基、C1-C6烷氧基、卤化物、硝基、氰基、和三氟甲基;Pg为硫醇保护基团;R20和R21单独的选自H、C1-C10烷基、-CN、-CO2R25、-C(=O)N(R25)2、被0-3个R23取代的C2-C101-烯烃、被0-3个R23取代的C2-C101-炔、被0-3个R23取代的芳基、不饱和的包含1-4个杂原子(单独的选自N、S和O)的5-10元的杂环系统并被0-3个R23取代、以及被0-3个R23取代的不饱和的C3-10碳环;可选择的,R20和R21与和它们连接的二价碳基团一起,形成以下结构
R22和R23单独的选自H、R24、被0-3个R24取代的C1-C10烷基、被0-3个R24取代的C2-C10烯烃基、被0-3个R24取代的C2-C10炔基、被0-3个R24取代的芳基、包含1-4个杂原子(单独的选自N、S和O)的5-10元的杂环系统并被0-3个R24取代、以及被0-3个R24取代的C3-10碳环;可选择的,R22、R23结合在一起形成稠合的芳香族,或包含1-4个杂原子的5-10元的杂环系统,所述杂原子单独的选自N、S和O;a和b表示任选的双键的位置,n是0或1;在各种情况下,R24单独的选自=O、F、Cl、Br、I、-CF3、-CN、-CO2R25、-C(=O)R25、-C(=O)N(R25)2、N(R25)3+、-CH2OR25、-OC(=O)R25、-OC(=O)OR25a、-OR25、-OC(=O)N(R25)2、-NR26C(=O)R25、-NR26C(O)OR25a、NR26C(=O)N(R25)2、NR26SO2N(R25)2、-NR26SO2R25a、-SO3H、-SO2R25a、-SR25、-S(=O)R25a、-SO2N(R25)2、-N(R25)2、=NOR25、NO2、-C(=O)NHOR25、-OCH2CO2H、2-(1-吗啉子基)乙氧基;以及,在各种情况下,R25、R25a和R26各自单独的选自以下组氢和C1-C6烷基;及其药物可接受的盐。
在本发明的实施方案中,αvβ3靶向的结构可以是3-[7-[(咪唑啉-2-基氨基)甲基]-1-甲基-6,8-二氟喹啉-4-酮-3-基羰基氨基]-2-(3,5-二甲基异噁唑-4-基磺酰氨基)丙酸,3-[7-[(咪唑啉-2-基氨基)甲基]-1-甲基-6,-二氟喹啉-4-酮-3-基羰基氨基]-2-(苄氧羰基氨基)丙酸,3-[7-[(咪唑啉-2-基氨基)甲基]-1-甲基-6,8-二氟喹啉-4-酮-3-基羰基氨基]-2-(正-丁氧羰基氨基)丙酸,3-[7-[(咪唑啉-2-基氨基)甲基]-1-甲基-6,8-二氟喹啉-4-酮-3-基羰基氨基]-2-(正-丁基磺酰氨基)丙酸,3-[7-[(四氢嘧啶-2-基氨基)甲基]-1-甲基-6,8-二氟喹啉-4-酮-3-基羰基氨基]-2-(苄氧羰基氨基)丙酸,3-[7-[(四氢嘧啶-2-基氨基)甲基]-1-甲基-6,8-二氟喹啉-4-酮-3-基羰基氨基]-2-(正-丁氧羰基氨基)丙酸,
3-[7-[(四氢嘧啶-2-基氨基)甲基]-1-甲基-6,8-二氟喹啉-4-酮-3-基羰基氨基]-2-(苯磺酰氨基)丙酸,3-[7-[(四氢嘧啶-2-基氨基)甲基]-1-甲基-6,8-二氟喹啉-4-酮-3-基羰基氨基]-2-(正-丁基磺酰基)丙酸,3-[7-[(2-氨基噻唑-4-基)甲基]-1-甲基-6,8-二氟喹啉-4-酮-3-基羰基氨基]-2-(苄氧羰基氨基)丙酸,3-[7-[(咪唑啉-2-基氨基)甲基]-1-甲基-6,8-二氟喹啉-4-酮-3-基羰基氨基]-2-((2,4,6-三甲基苯基)磺酰氨基)丙酸,3-[7-[(四氢嘧啶-2-基氨基)甲基]-1-甲基-6,8-二氟喹啉-4-酮-3-基羰基氨基]-2-((2,4,6-三甲基苯基)磺酰氨基)丙酸,3-[7-[(咪唑-2-基氨基)甲基]-1-甲基-6,8-二氟喹啉-4-酮-3-基羰基氨基]-2-(3,5-二甲基异噁唑-4-磺酰氨基)丙酸,3-[7-[(咪唑-2-基氨基)甲基]-1-甲基-6,8-二氟喹啉-4-酮-3-基羰基氨基]-2-(苄氧羰基氨基)丙酸,3-[7-[(咪唑-2-基氨基)甲基]-1-甲基-6,8-二氟喹啉-4-酮-3-基羰基氨基]-2-((2,4,6-三甲基苯基)磺酰氨基)丙酸,3-[7-[(咪唑-2-基氨基)甲基]-1-甲基-6,8-二氟喹啉-4-酮-3-基羰基氨基]-2-((联苯基)磺酰氨基)丙酸,3-[7-[(咪唑-2-基氨基)甲基]-1-甲基-6,8-二氟喹啉-4-酮-3-基羰基氨基]-2-(萘磺酰氨基)丙酸,3-[7-[(苯并咪唑-2-基氨基)甲基]-1-甲基-6,8-二氟喹啉-4-酮-3-基羰基氨基]-2-((2,4,6-三甲基苯基)磺酰氨基)丙酸,3-[7-[(4-甲基咪唑-2-基氨基)甲基]-1-甲基-6,8-二氟喹啉-4-酮-3-基羰基氨基]-2-((2,4,6-三甲基苯基)磺酰氨基)丙酸,3-[7-[(4,5-二甲基咪唑-2-基氨基)甲基]-1-甲基-6,8-二氟喹啉-4-酮-3-基羰基氨基]-2-((2,4,6-三甲基苯基)磺酰氨基)丙酸,3-[7-[(4,5,6,7-四氢苯并咪唑-2-基氨基)甲基]-1-甲基-6,8-二氟喹啉-4-酮-3-基羰基氨基]-2-((2,4,6-三甲基苯基)磺酰氨基)丙酸,3-[7-[(吡啶-2-基氨基)甲基]-1-甲基-6,8-二氟喹啉-4-酮-3-基羰基氨基]-2-((2,4,6-三甲基苯基)磺酰氨基)丙酸,3-[7-[(2-氨基吡啶-6-基)甲基]-1-甲基-6,8-二氟喹啉-4-酮-3-基羰基氨基]-2-((2,4,6-三甲基苯基)磺酰氨基)丙酸,3-[7-[7-氮杂苯并咪唑-2-基)甲基]-1-甲基-6,8-二氟喹啉-4-酮-3-基羰基氨基]-2-((2,4,6-三甲基苯基)磺酰氨基)丙酸,3-[7-[(苯并咪唑-2-基氨基)甲基]-1-(2-苯乙基)-6,8-二氟喹啉-4-酮-3-基羰基氨基]丙酸,3-[7-[(吡啶-2-基氨基)甲基]-1-(2-苯乙基)-6,8-二氟喹啉-4-酮-3-基羰基氨基]丙酸,3-[7-[(咪唑啉-2-基氨基)甲基]-1-(2-苯乙基)-6,8-二氟喹啉-4-酮-3-基羰基氨基]丙酸,3-[7-[(咪唑-2-基氨基)甲基]-1-(2-苯乙基)-6,8-二氟喹啉-4-酮-3-基羰基氨基]丙酸,3-[7-[(咪唑啉-2-基氨基)甲基]-1-(2-苯乙基)-6,8-二氟喹啉-4-酮-3-基羰基氨基]-2-(苄氧羰基氨基)丙酸,3-[7-[(咪唑啉-2-基氨基)甲基]-1-(2-苯乙基)-6,8-二氟喹啉-4-酮-3-基羰基氨基]-2-(正-丁氧羰基氨基)丙酸,3-[7-[(咪唑啉-2-基氨基)甲基]-1-(2-苯乙基)-6,8-二氟喹啉-4-酮-3-基羰基氨基]-2-(苯磺酰氨基)丙酸,3-[7[(咪唑啉-2-基氨基)甲基]-1-(2-苯乙基)-6,8-二氟喹啉-4-酮-3-基羰基氨基]-2-(正-丁基磺酰氨基)丙酸,3-[7-[(四氢嘧啶-2-基氨基)甲基]-1-(2-苯乙基)-6,8-二氟喹啉-4-酮-3-基羰基氨基]-2-(苄氧羰基氨基)丙酸,3-[7-[(四氢嘧啶-2-基氨基)甲基]-1-(2-苯乙基)-6,8-二氟喹啉-4-酮-3-基羰基氨基]-2-(正-丁氧羰基氨基)丙酸,3-[7-[(四氢嘧啶-2-基氨基)甲基]-1-(2-苯乙基)-6,8-二氟喹啉-4-酮-3-基羰基氨基]-2-(苯磺酰氨基)丙酸,3-[7-[(四氢嘧啶-2-基氨基)甲基]-1-(2-苯乙基)-6,8-二氟喹啉-4-酮-3-基羰基氨基]-2-(正-丁基磺酰氨基)丙酸,3-[7-[(2-氨基噻唑-4-基)甲基]-1-(2-苯乙基)-6,8-二氟喹啉-4-酮-3-基羰基氨基]-2-(苯磺酰氨基)丙酸,3-[7-[(2-氨基噻唑-4-基)甲基]-1-(2-苯乙基)-6,8-二氟喹啉-4-酮-3-基羰基氨基]-2-(苄氧羰基氨基)丙酸,
3-[7-[(2-咪唑啉-2-基氨基)甲基]-1-(2-苯乙基)-6,8-二氟喹啉-4-酮-3-基羰基氨基]-2-((2,4,6-三甲基苯基)磺酰氨基)丙酸,3-[7-[(四氢嘧啶-2-基氨基)甲基]-1-(2-苯乙基)-6,8-二氟喹啉-4-酮-3-基羰基氨基]-2-((2,4,6-三甲基苯基)磺酰氨基)丙酸,3-[7-[(咪唑-2-基氨基)甲基]-1-(2-苯乙基)-6,8-二氟喹啉-4-酮-3-基羰基氨基]-2-(苄氧羰基氨基)丙酸,3-[7-[(咪唑-2-基氨基)甲基]-1-(2-苯乙基)-6,8-二氟喹啉-4-酮-3-基羰基氨基]-2-(苯磺酰氨基)丙酸,3-[7-[(咪唑-2-基氨基)甲基]-1-(2-苯乙基)-6,8-二氟喹啉-4-酮-3-基羰基氨基]-2-((2,6-二氯苯基)磺酰氨基)丙酸,3-[7-[(咪唑-2-基氨基)甲基]-1-(2-苯乙基)-6,8-二氟喹啉-4-酮-3-基羰基氨基]-2-((2,4,6-三甲基苯基)磺酰氨基)丙酸,3-[7-[(咪唑-2-基氨基)甲基]-1-(2-苯乙基)-6,8-二氟喹啉-4-酮-3-基羰基氨基]-2-((4-联苯基)磺酰氨基)丙酸,3-[7-[(苯并咪唑-2-基氨基)甲基]-1-(2-苯乙基)-6,8-二氟喹啉-4-酮-3-基羰基氨基]-2-((2,4,6-三甲基苯基)磺酰氨基)丙酸,3-[7-[(4-甲基咪唑-2-基氨基)甲基]-1-(2-苯乙基)-6,8-二氟喹啉-4-酮-3-基羰基氨基]-2-((2,4,6-三甲基苯基)磺酰氨基)丙酸,3-[7-[(4,5-二甲基咪唑-2-基氨基)甲基]-1-(2-苯乙基)-6,8-二氟喹啉-4-酮-3-基羰基氨基]-2-((2,4,6-三甲基苯基)磺酰氨基)丙酸,3-[7-[(4,5,6,7-四氢苯并咪唑-2-基氨基)甲基]-1-(2-苯乙基)-6,8-二氟喹啉-4-酮-3-基羰基氨基]-2-((2,4,6-三甲基苯基)磺酰氨基)丙酸,3-[7-[(吡啶-2-基氨基)甲基]-1-(2-苯乙基)-6,8-二氟喹啉-4-酮-3-基羰基氨基]-2-((2,4,6-三甲基苯基)磺酰氨基)丙酸,3-[7-[(2-氨基吡啶-6-基)甲基]-1-(2-苯乙基)-6,8-二氟喹啉-4-酮-3-基羰基氨基]-2-((2,4,6-三甲基苯基)磺酰氨基)丙酸,或3-[7-[7-氮杂苯并咪唑-2-基)甲基]-1-(2-苯乙基)-6,8-二氟喹啉-4-酮-3-基羰基氨基]-2-((2,4,6-三甲基苯基)磺酰氨基)丙酸。
制备方法在一个典型的用于制备本发明的乳液的方法中,氟化合物液体和脂质/表面活性剂被膜中的组分在水性介质中流化,形成乳液。表面层中的功能性组分可以包含在最初的乳液中,或可以在形成纳米微粒乳液以后再共价偶联到表面层中。在一个特别的例子中,比如,当需要包含核酸靶向剂或药物时,被膜可以用阳离子表面活性剂,从而使核酸在微粒形成后被吸附到微粒表面上。
如果制备的适当,包含附属剂的纳米粒子的外层表面上存在多种功能性试剂,典型的纳米微粒包含成千上万个分子的生物学活性剂、靶向配体、放射性核素和/或MRI影像剂。对于MRI影像剂,偶联到纳米微粒的一种组分的拷贝数一般每微粒超过5,000拷贝,优选每微粒10,000拷贝,更优选每微粒30,000拷贝,进一步更优选每微粒50,000-100,000拷贝或更多。每微粒中靶向剂的量通常较少,一般在数百,而荧光团、放射性核素和生物活性剂的浓度也是可变的。
纳米微粒不是必需包含附属剂的。通常,靶向的颗粒,直接偶联到αvβ3特异的配体上,自身可用于作为超声影像剂。此外,由于由于微粒具有一个氟碳核芯,可使用19F磁共振影像来跟踪微粒的位置,并且同时还伴随有如前所述的其他功能。然而,其他组分以多拷贝的加入赋予它们其他方面的作用。比如,加入包含顺磁性离子的螯合剂使乳液可用作磁共振影像的影像剂。加入生物学活性材料使它们可作为药物递送系统发挥作用。加入放射性核素使它们或可发挥放射治疗的治疗作用,或可用于诊断显影。其他的影像剂包括荧光团,如荧光素或丹磺酰。也可包括生物学活性剂,它们的活性是多种多样的。因此,在活性物质被递送到靶点组织的同时,可以获得靶点组织的影像。
乳液可以用多种方法来制备,根据包含在被膜中的组分的不同性质,制备方法也不同。在这里提供一个典型的方法作为例证准备好全氟辛基溴化物(40%w/v,PFOB,3M)、表面活性剂共混合物(2.0%w/v)和丙三醇(1.7%,w/v),其中表面活性剂共混合物包含64mol%卵磷脂(Pharmacia公司)、35mol%胆固醇(SigmaChemical公司)和1mol%二棕榈酰-L-α-磷酯酰-乙醇胺(Pierce公司),溶解在氯仿中。将一种药物悬浮在甲醇中(~25μg/20μl),并且以0.01和5.0mol%之间的滴定量加入到2%的表面活性剂层中,优选的量在0.2%和2.0mol%之间。接着将氯仿脂质混合物进行减压蒸发,在50℃真空箱中过夜干燥,使用声波法将产物分散在水中,悬浮液转移到混合杯(美国Dynamics公司)中,杯中还装有存在于蒸馏水或去离子水中的全氟辛基溴化物,乳化30至60秒。乳化的混合物转移到微流化乳化器中(Microfluidics公司),并且连续地在20,000PSI下处理3分钟。获得的乳剂装入小瓶中,充入氮并且用塞子螺口密封,直至需要使用时打开。对照乳液可以同样地进行制备,但是在表面活性剂共混合物中不放入药物。微粒的尺寸在37℃用激光散射亚微米粒径分析仪(Malvern Zetasizer4,Malvern Instruments公司)测定,其显示紧密和高度再现性的尺寸分布,平均直径小于400nm。未结合的药物可以通过透析或超滤技术来除去。为了获得靶向配体,αvβ3配体通过一种双官能连接基共价偶联到磷酯酰乙醇胺,如以上方法所述。
试剂盒在本发明的方法中,本发明的乳液可以直接制备和使用,或者乳液中的组分可以以试剂盒的形式提供。试剂盒可包含预先-制备的靶向组合物,其包含所有所需的附属材料,存在于缓冲液中或以冻干形式存在。可选择的,试剂盒可以包含一种缺少αvβ3配体形式的乳剂,其是分离存在的。在这些状况下,通常,乳液将包含一个反应基团,如马来酰亚胺基团,其能在乳液与靶向剂混合时,促进靶向剂结合到乳液上。一个另外的容器还可提供附加的对进行偶联有用的试剂。可选择的,乳液可以包含反应基团,其能结合偶联到所需的组分上的连接基,由于其自身带有反应基团,因此需分别地提供。有许多不同的方法来构建一种合适的试剂盒。可制备成最终的乳液的各个组分可以放置在不同的容器中,或该试剂盒可只包含用于结合其他材料的试剂,这些材料和试剂盒本身分开提供。
一种并非完整无缺的组合方式概括如下乳液制剂,它在脂质-表面活性剂层中含有一种附属成分如荧光团或螯合剂和用于偶联到αvβ3靶向试剂的反应结构;相反,乳液被偶联到靶向剂,并包含可用于偶联到附属材料上的反应基团;乳液,它同时包含靶向剂和螯合剂但要被螯合的金属或者在试剂盒中提供或者由使用者另外提供;纳米微粒制剂,包含表面活性剂/脂质层,脂质层中的材料包含不同的反应基团,一套反应基团用于αvβ3配体而另一套反应基团用于附属剂;乳液的预备剂包含任何前述的组合,而活性基团通过连接剂来提供。
应用在本发明的方法中,乳液和试剂盒是有用的,能够对包含高表达水平αvβ3整联蛋白的组织进行影像,对不需要这种高表达水平的组织实施治疗。αvβ3的高表达是内皮细胞活化的典型特征,可用于诊断是否存在新血管生成。
可通过静脉内注射施加诊断性放射药物,药物通常加入到盐水溶液中,剂量为每70Kg体重1至100mCi,或优选5至50mCi。使用已知的方法进行影像。
可通过静脉内注射施加治疗性放射药物,药物通常加入到盐水溶液中,剂量为每Kg体重0.01至5mCi,或优选每Kg体重0.1至4mCi。现在临床使用的可资比较的治疗性放射药物包括剂量范围0.3至0.4mCi/Kg的ZevalinTM及1-2mCi/Kg的OctreoTherTM,其为标记的生长激素抑制素肽。对于这些治疗性放射药物,在肿瘤细胞杀伤和正常器官毒性之间有一个平衡,尤其是用于放射肾炎时。在这些水平,平衡通常偏向于对肿瘤细胞的影响。使用的剂量高于相应的影像同位素。
本发明的磁共振影像剂的使用方式与U.S.专利5,155,215、U.S.专利5,087,440、Margerstadt,et al.Magn.Reson.Med.(1986)3808、Runge,et al.,Radiology(1988)166835以及Bousquet,et al.,Radiology(1988)166693中描述的其它MRI剂相似。其他可使用的试剂为公开在U.S.专利出版物2002/0127182中的试剂,其是pH敏感的,可以根据脉冲来改变影像特性。通常,影像剂的无菌溶液以每Kg体重0.01至1mmol的剂量施加给患者。
一套特别优选的MRI螯合剂包括1,4,7,10-四氮杂环十二烷-1,4,7,10-四乙酸(DOTA)以及它的衍生物。特别的,其包含硫氰酸酯官能团的甲氧苄基衍生物(DOTA-NCS),可以偶联到磷酯酰乙醇胺的氨基基团上,或偶联到其肽衍生的形式上。这种类型的衍生物描述在U.S.专利5,573,751中,引用在这里作为参考。其他合适的螯合剂公开在U.S.专利6,056,939中,也引用在这里作为参考。
DOTA异硫氰酸酯衍生物也可以直接或通过肽间隔基偶联到脂质/表面活性剂上,使用gly-gly-gly作为间隔基的方法将列举在下面的反应式中。为了直接偶联,DOTA-NCS简单地与PE反应来获得偶联产物。当使用肽时,比如使用三甘氨酸连接时,磷酯酰乙醇胺(PE)首先偶联到t-boc保护的三甘氨酸上。标准的偶联技术,如使用二异丙基碳二亚胺(或与其相当的试剂)与N-羟基琥珀酰亚胺(NHS)或羟基苯并三唑(HBT),形成t-boc-三甘氨酸的游离酸的活化性酯,并且,将t-boc-三甘氨酸-PE纯化。
用三氟醋酸处理t-boc-三甘氨酸-PE产生三甘氨酸-PE,它然后在50℃、DMF/CHCl3中与过量的DOTA-NCS反应。除去溶剂,分离出最后产物,接着用过量的水冲洗剩余固体以除去过量的溶剂以及任何未反应的或水解的DOTA-NCS。
为了用作X-射线影像剂,本发明的组合物通常应具有浓度为1mM至5M的重原子,优选0.1M至2M。静脉内注射的剂量通常在0.5mmol/kg至1.5mmol/kg,优选0.8mmol/kg至1.2mmol/kg。使用已知的技术进行影像,优选X-射线计算机体层成像。
本发明的超声影像剂的静脉内注射用量为每kg体重10至30μl回响性气体,或以3μl/kg/min的速率输注如体内。使用已知的声波学技术进行影像。
本发明的纳米微粒乳液的使用方法是本技术领域的人员所熟悉的。典型的,相关需要影像或治疗的组织包括炎症区域,主要可描述为包括类风湿关节炎的各种紊乱;刺激性区域,如因受累于血管成形术,导致再狭窄、肿瘤;以及受累于动脉硬化的区域。
以下提供的实施例将对本发明进行进一步的举例说明,但并不限制本发明。
制备AA部分-DSPE-PEG(2000)马来酰亚胺-巯基乙酸加合物
1,2-二硬脂酰-sn-丙三醇-3-磷酸乙醇胺-N-[马来酰亚胺(聚乙二醇)2000]溶解在DMF内,用氮或氩吹扫脱气。该无氧的溶液使用DIEA调节到pH7-8,并且用巯基乙酸处理。在室温下连续搅拌,直到分析显示起始原料完全耗尽为止。溶液直接用于后续的反应。
B部分-DSPE-PEG(2000)马来酰亚胺-巯基乙酸加合物与2-[({4-[3-(N-{2-[(2R)-2-((2R)-2-氨基-3-磺丙基)-3-磺丙基]乙基}氨基甲基)丙氧基]-2,6-二甲基苯酰}磺酰)氨基](2S)-3-({7-[(咪唑-2-基氨基)甲基]-1-甲基-4-氧代-(3-氢醌基)}羰基氨基)丙酸的缀合物 前述A部分的产物溶液通过加入HBTU预活化,加入充足的DIEA以达到pH8-9。在该溶液中加入2-[({4-[3-(N-{2-[(2R)-2-((2R)-2-氨基-3-磺丙基)-3-磺丙基]乙基}氨基甲酰)丙氧基]-2,6-二甲基苯酰}磺基)氨基](2S)-3-({7-[(咪唑-2-基氨基)甲基]-1-甲基-4-氧代-(3-氢醌基)}羰基氨基)丙酸,并且将溶液在室温、氮气条件下搅拌18小时。在真空下除去DMF,粗产物用制备性HPLC纯化,以获得B部分标题化合物。
实施例1肿瘤影像
A.肿瘤模型和纳米微粒的制备雄性新西兰白兔(~2.0kg)用克他命和甲苯噻嗪(分别为65和13mg/kg)进行肌肉内麻醉。把每一动物的左后腿剃干净并灭菌,并渗入MarcaineTM后在腿后弯小窝内割开一个小切口。将刚从供体动物体内取出的2×2×2mm3的Vx-2瘤肿瘤片段以约0.5cm的深度移植到切口处。解剖切口用单股的可吸收的缝合线进行缝合。最后,皮肤切口用Demabond皮胶涂覆密封。在肿瘤移植步骤之后,用育亨宾来作用于甲苯噻嗪,使动物苏醒。
在植入Vx-2的12天后,兔子用1%至2%的IsofluraneTM进行麻醉,插入管子、通气,并在孔内置入MRI扫描仪进行研究。静脉内和动脉内插入导管,放置在每只兔子的耳朵背面的位置,用于如下文所述的系统的注入纳米微粒和动脉血取样。在研究过程中,对动物的生理学测定根据华盛顿大学医学院的动物研究委员会认可的方案和步骤来进行。
在植入12天后,接受αvβ3靶向的(130±39mm3)或αvβ3非靶向的(148±36mm3)纳米微粒的动物的Vx-2肿瘤体积没有不同(p>0.05)。
如前所述的12只植入了Vx-2新的西兰兔被随机的分成三个治疗组1)施用αvβ3-整联蛋白靶向的顺磁性纳米微粒(αvβ3靶向的,n=4),2)施用非靶向的顺磁性纳米微粒(即对照组,n=4),或3)先施用αvβ3-整联蛋白靶向的非-顺磁性纳米微粒,接着施用αvβ3-整联蛋白靶向的顺磁性纳米微粒(即竞争组,n=4)。
在组1)和组2)中,在基线MR影像获得后,兔子接受0.5ml/kg的αvβ3-整联蛋白靶向的或对照的顺磁性纳米微粒。在组3)中,所有兔子在MR影像前2小时接受0.5ml/kg的αvβ3-整联蛋白靶向的非-顺磁性纳米微粒,之后接受0.5ml/kg的αvβ3-整联蛋白靶向的顺磁性纳米微粒。每一动物的在注射时及每隔30分钟进行动态MR影像,为时2小时,以便监测肿瘤和肌肉区域中信号增强的初始变化。所有的肿瘤被切除并冷冻,用于组织学分析,验证MR分子影像的结果。
顺磁性纳米微粒的制备如Flacke,S.,et al.,Circulation(2001)1041280-1285中所描述的。简单的说,纳米微粒乳液包含40%(v/v)的全氟辛基溴化物(PFOB)、2.0%(w/v)的表面活性剂共混合物和1.7%(w/v)的丙三醇,余量为水。
对照即非靶向顺磁乳液的表面活性剂包含60mol%卵磷脂(Avanti Polar Lipids公司,Alabaster,AL)、8mol%胆固醇(Sigma化学公司,Louis,MO)和2mol%二棕榈酰-L-α-磷酯酰乙醇胺(DPPE)(Avanti Polar Lipids公司,Alabaster,AL)和30mol%钆二乙三胺五乙酸-二油酸盐(Gd-DTPA-BOA,Gateway Chemical Technologies,St.Louis,MO)。Gd-DTPA-BOA的制备由Cacheris,W.P.等在U.S.专利5,571,498和5,614,170中作过描述,同时引用于此作为参考。
αvβ3-靶向的顺磁性纳米微粒如前进行制备,其表面活性剂共混合物包括60mol%卵磷脂,0.05%molN-[{w-[4-(p-马来酰亚氨基苯基)丁酰]氨基}聚(乙二醇)2000]1,2-二硬脂酰-sn-丙三醇-3-磷酸乙醇胺(MPB-PEG-DSPE)共价地偶联到αvβ3-整联蛋白模拟肽拮抗剂上(Bristol-Myers Squibb Medical Imaging公司,NorthBillerica,MA),8mol%胆固醇,30mol%Gd-DTPA-BOA,以及1.95mol%DPPE。
αvβ3-靶向的非磁性纳米微粒以与前述靶向剂相同的方式来制备,但是,不加入亲脂的Gd3+螯合剂,用提高浓度的卵磷脂(70mol%)和胆固醇(28mol%)取代它,加入表面活性剂共混合物中。
用于每一种纳米微粒配方的组分在M110S微流化乳化器(Microfluidics,Newton,MA)中进行乳化,在20,000PSI进行4分钟。获得的乳液置于螺口密封的小瓶中,并充入氮。
微粒的尺寸在37℃下、使用激光散射亚微米粒径分析仪(Malvern Instruments公司,Malvern,Worcestershire,UK)进行测定,纳米微粒的浓度根据公称微粒尺寸(即微粒的球体积)进行计算。微粒尺寸分布显示在图1中,大多数的微粒的直径都小于400nm。
全氟碳浓度用气相色谱法测定,使用火焰离子化检出器(Model 6890,AgilentTechnologies,Inc.,Wilmington,DE)。1ml的全氟碳乳液与10%溶解在乙醇中的氢氧化钾、2.0ml内标准液(0.1%溶解在Freon中的辛烷)混合,剧烈振荡,然后在摇床上连续搅拌30分钟,下抽提层通过在硅胶柱过滤,保存在4-6℃下备用。起始柱温度是30℃,每分钟上升10℃,直至145℃。
乳液的钆含量用中子激活分析来测定,在一个300KW的核反应器中进行(Landsberger,S.,Chemical Analysis By Nuclear Methods,pp.122-140,Z.B.Alfassi(ed.),New YorkWiley(1994))。每个纳米微粒中Gd3+复合物的数量从Gd3+的浓度和估算的乳液中纳米微粒的数量之比计算。此外,每一种顺磁性纳米微粒配方的驰豫率在0.47Tesla和40℃下,用Minispec分析仪(Bruker公司,Milton,ON,Canada)测定。
微粒的特性显示在表1中。
浓度以相对于乳液总体积(以升表示)报告。驰豫率值(r1和r2)在0.47Tesla测定,以相对于[Gd3+]或[纳米微粒]来计算。
表1αvβ3-靶向的和非靶向的纳米微粒的物理和化学特性
B.磁共振影像和组织学分析方法在肿瘤移植12天后,动物用1.5Telsa临床扫描仪(NT Intera with MasterGradients,Philips Medical System,Best,Netherlands)进行MRI扫描,每一动物被放入一个正交头/颈鸟笼式线圈,11cm直径的圆表面线圈放置在后腿靠近肿瘤的位置。正交体线圈被用于所有的放射-频率传送中。鸟笼式线圈被用于搜索影像过程中的检测;表面线圈被用于高分辨率影像的检测;一个10ml的充满了掺杂着钆二乙三胺五乙酸(Gd-DTPA)的水的注射器被放置在高分辨率视域(FOV)中,作为信号强度的标准。
用T2-加权的自旋回波扫描(TR2000ms,TE100ms,FOV150mm,薄片厚度3mm,基质128by256,平均信号2,turbo factor3,扫描时间3min)将肿瘤最初定位于植入位置。一种高分辨率的、T1-加权的、脂肪抑制的、三维的、梯度回讯的肿瘤扫描(TR40ms,TE5.6ms,FOV640mm,薄片厚度0.5mm,相邻切片30,in-plane分辨率250μm,平均信号2,翻转角65°,扫描时间15min)分别在基线和注射入顺磁性纳米微粒后30、60、90、120分钟被采集。
肿瘤体积通过离线影像处理工作站(EasyVision v5.1,Philips Medical System,Best Netherlands)进行计算。通过手工划出关注区(ROI),位于每个T1加权的基线扫描切片上的肿瘤上,结合三维对象计算出体积。
为了对随时间的影像增强进行定量,使用一种无偏差的影像分析程序。在静脉内注射纳米微粒后的30、60、90分钟采集T1加权的影像(每一个肿瘤的中心采集三个临近的切片),用MATLAB(The MathWorks,Inc.,Natick,MA)进行分析。以钆作为标准参照,每一个时间点的影像强度被归一化为基线影像。连续的影像在空间上被共同-记录并测定每个象素在每个注射后时间点上的影像增强。在基线影像中,在后腿肌肉周围手工画出ROI,计算出每个时间点上ROI内平均的象素-对-象素信号增强。第二个ROI在肿瘤周围手工画出,对每个动物的基线影像中计算肿瘤信号的标准偏差。当信号强度比基线上的肿瘤信号标准偏差提高3倍时,可认为象素增强了(即与基线所看见的变化相比,增强高于99%)。独自产生增强但其周围的面内象素都没有增强的象素在计算中被作为噪音去除。剩下的增强象素簇重新定位至即刻、30、60、90分钟影像,测定出每一个时间间隔上的平均信号增强。使用ANOVA(SAS,SASInstitute,Cary,NC)对每一个时间点的肿瘤和肌肉进行统计学比较。使用LSD程序分离处理结果(p<0.05)。
在影像后肿瘤被割除,用于组织学和免疫组化分析,验证肿瘤病理学和评价相关的血管分布和血管新生。肿瘤被冰冻(-78℃)在OCT介质中,用已知的相对于原始解剖位置和MRI影像面进行定向。将四个微米冰冻切片(Leica Microsystems,Inc.,Bannockburn,IL),在-20℃下固定在丙酮中15分钟,并且通风干燥过夜(4℃),用苏木精-曙红、鼠抗-人/兔内皮抗体(QBEND/40,1∶10稀释,ResearchDiagnost ics,Inc.,Flanders,NJ)或鼠抗-人αvβ3-整联蛋白(LM-609,1∶200稀释,Chemicon International,Temecula,CA)染色。使用VectastainElite ABC试剂盒(Vector Laboratories,Burlingame,CA94010)进行免疫组化分析,用VectorVIP试剂盒显影,用Vector甲基绿核复染剂进行复染。用Nikon Eclipse E800研究显微镜(Nikon USA,Melville,NY)装上Nikon数码相机(Model DXM 1200)观察切片,结果用Nikon ACT软件捕获。
C.影像和组织学分析的结果接受αvβ3-靶向的顺磁性纳米微粒的Vx-2肿瘤兔子的T1加权MR影像显示了明显的MR影像增强,基本上(虽然不全是)沿着肿瘤四周不对称地分布。αvβ3-整联蛋白增强通常显示斑驳的分布,血管邻近并沿着组织筋膜界面(图2)。Vx-2肿瘤组织学和免疫化学评估确认,血管新生最密集地分布在沿肿瘤外周的一些独立的区域,而在肿瘤内部结缔组织区域密度较低,散布在肿瘤细胞小叶之间(图3)。
暂时地,在以相对低的水平注射后不久,由αvβ3靶向的顺磁性纳米微粒提供的MRI影像增强在血管新生区域被检测出,估计其是因为纳米微粒在30分钟后通过有孔的新生血管局部外渗(图4)。在30分钟后没有发现血管内血池影像的影响。在2小时后,相对于非-靶向的纳米微粒,用αvβ3靶向的纳米微粒处理过的兔子的信号增强(56%)了(p<0.05)。在注射入αvβ3靶向的顺磁性纳米微粒之前,在预先接受非-顺磁性αvβ3纳米微粒处理2小时,使αvβ3整联蛋白位点受到阻塞的情况下,靶向的影像信号增强降低了一半(p<0.05),具有轻微的信号影响是因为局部的血管渗漏,证明了靶向的纳米微粒的特异性。
除了肿瘤囊状物,影像增强在许多的管道的窝内显示斑驳的分布,特别是离囊状物仅几毫米区域的大静脉壁上的血管新生处。在一个例子中,静脉血管影像显示的影像信号增强的幅度几乎接近肿瘤囊状物的信号增强,随着时间的增加呈现平行,暗示了源和目标的关系(数据没有显示)。在很多例子中,血管新生在血管系统附近被肿瘤产生的因子所刺激,在植入12天后其明显没有连接到肿瘤。在注射αvβ3靶向的或非靶向的顺磁性纳米微粒后,对侧腿弯部的小窝中的血管系统经检测没有MR信号的改变。
在已知的手术位点,所有的Vx-2兔子常规地进行基线T2-加权的MRI影像,以在植入后12天定位肿瘤。在一些兔子中没有发现肿瘤,所以它们被排除在研究以外。在一些其他动物中,观察到有一块似乎大小适合并且适于进行T2-影像,但之后的组织学分析显示它是肿瘤剩余物,具有很多炎症细胞渗入物(图5);这些动物也被排除在研究以外。T2-加权的MRI的高显是由于炎症相关的水肿。
在这组动物中,一些随机地接受αvβ3靶向的顺磁性纳米微粒并且在块状物周围和附近血管系统没有显示MR影像增强(图6)。有一些按照常规方法获得的与腿弯部的块状物或附近血管系统相关的分子影像明显缺少信号增强,剩余组织的组织学和免疫组化分析证明在肿瘤外周和附近组织中缺少血管分布,不能被αvβ3-整联蛋白染色。这些发现证明了分子影像的特异性,有助于从肿瘤剩余物中区分可用的Vx-2块。
实施例2动脉硬化症的影像
A.模型系统和纳米微粒靶向的和非靶向的纳米微粒用实施例1的A段所描述的相同的方法来制备,获得的特性是相似的,微粒包含6.17mM Gd,或大约84,200Gd原子/微粒。名义的微粒尺寸通过弹性光散射(Malvern Instrument,Worchestershire,UK)测量,为273nm,“多分散性指数”(或分布带宽)为0.15。
微粒配方的实际的T1和T2驰豫率(各为r1和r2)使用应用于纯化样品(纳米微粒以59nM存在)的标准倒置恢复脉冲程序和颤动回声程序测定,放置在一个正交的鸟笼式线圈中,用临床1.5T系统(Phiplis NT Intera CV,Philips Medical System,Best,Netherlands)进行影像。所表达的每mM Gd3+的顺磁性纳米微粒的“基于离子的”r1和r2值各为17.7±0.2和25.3±0.6(sec.mM)-1。比那些商品化的可用的顺磁性影像剂具有多于5级的驰豫率增强。
靶向的纳米微粒各自包含大约200-300拷贝的模拟肽,通过偶联的磷酯连接到微粒脂质膜上,如制剂A的B部分所描述的。纳米微粒的物理性质不会因包含靶向配体而受到影响,包括药学动力学特性,并且靶向的和对照的微粒都体现出不可区别的顺磁性特性。
为了诱导动脉硬化,13只雄性新西兰白兔用1%胆固醇(n=9)或标准的兔子食物(n=4)喂养~80天。通过耳静脉以0.5ml/kg体重的剂量静脉内注射影像剂,即每剂量约1014纳米微粒。分成3个试验组1)对照的正常喂食的动物,施用αvβ3-靶向的顺磁性纳米微粒(n=4);2)高胆固醇兔子,施用αvβ3-靶向的纳米微粒(n=5);或3)高胆固醇兔子,使用非靶向的对照纳米微粒(n=4)。
MRI后,抽取所有的主动脉用于组织学评价。在福尔马林固定的、石蜡包埋的动脉切片(4?m)上进行常规的苏木精/曙红染色。主动脉壁上αvβ3整联蛋白的表达通过福尔马林固定的切片的免疫组化,使用特异的初级抗体(LM609ChemiconInternational,Inc.,Temecula,CA)和VIP底物试剂盒中提供的次级抗体进行确证。PECAM使用与CD31初级抗体(Chemicon International,Inc.,Temecula,CA)相似的方式染色。新血管生成的影像使用Nikon显微镜和Nikon DXM1200相机在高功率(600x)下进行计算。
实验的方案是由华盛顿大学医学院的动物研究委员会认可的。
B.影像和组织学以与前述实施例1中B段所用的方法相似的方式获得MR影像。在施用顺磁性纳米微粒之前和之后,使用1.5T磁铁(NT Intera CV,Philips Medical Systems,Best,Netherlands)和正交鸟笼式RF接收线圈来对体内主动脉进行影像。从肾动脉到横隔膜(TR 380ms,TE 11ms,in-plane分辨率250×250μm,5mm切片厚度,NSA=8)进行主动脉微切片的T1加权的回波、脂肪饱和、黑血影像。虽然依照我们的信号模拟,用于体内影像的实际TR不是最佳的,其还是为在短期内获得数据提供了可行的方式。必须以接近两倍的纳米微粒浓度(至约100pM)来达到1.5T时的CNR=5,证明了信号强度受到的影响。为了对血信号置零,将“滑动rf”饱和带放置在影像获得区域的近端和远端,并且与选择的影像平面共同移动。
C.影像和组织化学分析的结果使用靶向的纳米微粒显示,与动脉硬化相关的位置出现了影像增强。
图7A(上)显示了用靶向的纳米微粒处理以后,120分钟之前以及120分钟时,所选动物主动脉纵向剖面中的影像部位,以及横向切片(下),还有一种从用户定制设计影像分割运算获得数据输出、用于主动脉切片定量信号分析的例子。在影像剂注射后(当中的小图),主动脉壁中的信号增强,表明靶向的纳米微粒已经结合到αvβ3整联蛋白决定簇上。另外,主动脉的血池背景没有对小剂量纳米微粒的使用造成干扰(注意在内腔中有低的血信号),并且“黑血”信号置零的过程使主动脉壁中影像增强在即时检测时,不需要等待影像剂的血池清除,缩短了时间。
图7B显示了在三种被选出的兔子中,纵向的影像增强的变化。总的来说,在高胆固醇靶向的兔子,特别是在其所有的主动脉切片中,观察到更高的信号增强。如图所示,在使用靶向的微粒并高胆固醇喂食的兔子中,影像增强的百分率明显地高于使用非靶向的纳米微粒并高胆固醇喂食(空心正方)的兔子以及使用靶向的微粒并正常喂食(空心三角)的兔子。
在施用120分钟后,测定三种兔子在主动脉壁中影像增强的可变性,在各自的主动脉水平上显示有明显的信号差异。高胆固醇并施用靶向的纳米微粒的兔子明显具有整体增强的信号,但是三种测定样本中都存在“热区”。
组织学测定证明了αvβ3整联蛋白决定簇与血管内皮的共同定位。H&E染色显示,只在喂食胆固醇80天的兔子中,出现轻微的内膜增厚。免疫细胞化学分析显示,单喂食固醇的兔子中,在动脉外膜-中膜界面上有显著的αvβ3染色。并且PECAM染色显示,血管内皮与αvβ3整联蛋白在外膜-中膜界面上共同定位。这种现象在喂食胆固醇的兔子中特别显著,证明营养血管的扩张分布与炎症相关。
使用一种用于每个影像切片的“区域生长”分割算法。使用该“区域生长”分割算法,在每个二维影像中分离出主动脉内腔,通过评价周围象素与前面所分割象素的相似性,反复地增加切割区域。一旦达到预先确定的低限,生长终止。通过增加分割的宽度将管壁包括在内,并且保留了一些附加的背景象素。使用进一步的低限来去除背景象素,从而仅使主动脉壁被分割。在分割后,每一切片中管壁的平均强度和时间点被从同一切片在基线的平均强度中减除。该运算的要点获自香港科学和技术大学的Michael Brown博士,网址为www.cs.ust.hk/~brown/。
该方法统一应用于所有主动脉数据中,设置和获得一块整个主动脉壁的关注区域,如图7A所示。在纳米微粒注射前和注射后,整个被分割的主动脉区域以及关注位置附近随机选择的骨骼肌区域中的MRI信号强度在各种水平上被定量。信号强度根据放置在视域内的基准标记物(Gd3+-DTPA/盐水溶液装在试管模中)发出的信号标准化。在纳米微粒注射后,计算注射后15、60、120分钟的影像的信号强度改变的百分数。用Duncan的组差异的多范围测试法(SAS,Inc.,Cary,North Carolina)的常规线性建模被用于确定MRI信号的差异显著性(p<0.05)。
通过计算单只兔子所有被影像的主动脉的平均主动脉增强,保守地获取主动脉信号增强的定量数据,然后计算这些单只兔子定量值的平均值,作为整个实验组的值。图8A显示,在注射靶向的纳米微粒后,整个主动脉壁的信号立即增强了26±3.8%(在约15分钟内)。在120分钟,整个主动脉壁的信号增强了47±5.4%。所有喂食胆固醇但接受非靶向纳米微粒的兔子中,15分钟内信号增强了19±0.8%,但在60-120分钟内保持平稳(26±1%),其信号增强的幅度是特异靶向的微粒的一半。
在对照正常喂食的兔子中,在注射靶向的纳米微粒至一个与喂食胆固醇的兔子相当的水平时,观察到明显的主动脉增强(14.5±2.2%)。然而,在2小时后,信号增强微弱(23.7±3.7%)。因此,喂食胆固醇的动物的整个主动脉壁的信号增强在120分钟时接近对照喂食的动物的两倍。
任何时间段、任何组中,邻近骨骼肌(图8B)中观察到的信号增强远远低于任何主动脉组中所观察到的信号增强,仅仅接近于统计学意义(p<0.051)。根据ANOVA,这种趋势不与纳米微粒的类或获喂食方法相关。
数据显示,在体内用高分辨率MRI特异性识别血管炎症中的αvβ3决定簇是可能的。
前面的药代动力学分析表明,微粒清除是双指数的,具有1-1.5小时的β消除速率。这些特性不会因加入配体或钆螯合剂而受到影响。因此,浓度梯度驱动的主动脉或肌肉内分子-靶向的纳米微粒的非特异性聚集在120分钟时被减少了(其与现存数据相一致,显示平稳水平的主动脉内非特异信号增强,见图8)。相反,特异结合到αvβ3决定簇的过程提高了药物半衰期,因为在该循环中,与血管新生处相对低的分子决定簇相比,纳米系统存在大量的配体过量,而一次注射的平均剂量一般为将近100万亿纳米微粒。主动脉壁相对于肌肉中,非特异的增强与类似正弦的营养血管扩展有关。同时,顺磁性纳米微粒的高的局部浓度很少受特殊的“黑血”影像方法的信号置零的控制。由于营养血管内的流入/流出比主动脉管腔内慢很多,与营养血管相比,信号置零对于主动脉管腔内的血池更有效。
因而,靶向的顺磁性纳米微粒与MRI结合,可用于小剂量的常规临床影像,在早期阶段的动脉硬化中,详细描绘出血管炎症和/或血管新生。
实施例3再狭窄模型健康的、糖尿病的或高脂血症的家猪,用Telazol鸡尾酒(1ml/23kg IM)镇静,接着插入管子,加入含有1-2%异氟醚的氧气。监测ECG、血气和动脉血压。使用利多卡因、地尔硫卓、和/或硝化甘油来治疗血管痉挛。
伴随着外周动脉的进入和鞘的置入,一种合适尺寸的血管成形术球囊(如8mm×2cm球囊导管Proflex,Mallinckrodt公司,St.Louis)在颈椎水平(C-3至C-5)上被置入,并且进行多次膨胀(通常3次),至压力为6大气压持续30秒,在两次膨胀之间间隔60秒的暂停时间。典型地,使用的球囊-至-动脉率为大约1.5。该步骤产生一种血管内弹性薄层的一致破裂,并且损伤中膜。
随着上述颈动脉过度扩张球囊-损伤,如实施例1中描述的,一种包含纳米微粒的乳液通过局部递送导管系统被施加到体内。该递送系统是成对的球囊导管或机械输注递送/真空抽提系统。靶向的-或对照的纳米微粒,或单独的盐水被局部地递送,并使之在1和15分钟之间孵育。获得MR血管影像照片,接着进行颈动脉管壁影像研究。
MRI扫描使用1.5Telsa临床扫描仪(NT Intera CV,Philips Medical System,Best,Netherlands)或与之相当的临床系统,在1.0T至7.0T下进行。合适的线圈包括正交头/颈鸟笼式线圈、圆表面线圈、定相-排列(Synergy)线圈。为了研究分析,掺杂了钆二乙三胺五乙酸(Gd-DTPA)的水标准放置在高分辨率视域(FOV),作为信号强度的标准;但这不是临床应用所必需的。MR影像分析通过离线的EasyVision v5.1工作站(Philips Medical System,Best Netherlands)或相似的影像控制系统来进行。
图9显示了一种使用αvβ3靶向的顺磁性纳米微粒对球囊损伤方式影像增强的三维重现。这显示了在中膜中产生的微裂缝的空间分布。这些数据不可能通过常规的X-射线血管影像术来检测,可以为管壁损伤提供定量的评价,对于预后的血管新生并发症,包括再狭窄具有重要作用。
除了包含靶向的结构,纳米微粒还加入了抗增殖剂如核素、紫杉醇或纳巴霉素。
权利要求
1.一种把包含纳米微粒的乳液递送到靶点组织的方法,其中,所述的靶点组织的特征是具有高水平的αvβ3整联蛋白,该方法包括给含有所述组织的受试者施加一种纳米微粒乳液,其中所述纳米微粒被偶联到一种对αvβ3整联蛋白特异性的配体上,条件是,所述配体是抗体或其片段以外的物质。
2.权利要求1的方法,其中,所述的配体是非肽配体。
3.权利要求2的方法,其中,配体是U.S.6,130,231中提供的结构式(1)的化合物,或者是U.S.6,153,628或U.S.6,322,770的权利要求1中提供的化合物;这些专利引用在这里作为参考。
4.权利要求1的方法,其中,所述的配体是具有以下结构式的化合物 包括其立体异构体形式,或其立体异构体形式的混合物,或其药学可接受盐或前体药物形式,其中Hc包含胍基或包含一个带N的杂环;L1是连接基;G是N或CRB;RA是除了H以外的非干扰性取代基;每一个Rb独立是H或非干扰性取代基;和M包含可任选取代的羧基、磺酸基、或者是磷酸基团或其酯或酰胺,或是一种四元或五元的环;其中,环A和环B各自可任选地被非干扰性取代基进一步取代。
5.权利要求4的方法,其中,M选自以下基团-CORB、-SO3H、-PO3H、-CONHNHSO2CF3、-CONHSO2RB、-CONHSO2NHRB、-NHCOCF3、NHCONHSO2RB、-NHSO2RB、-OPO3H2、-OSO3H、-PO3H2、-SO2NHCORB、-SO2NHCO2RB、
6.权利要求1的方法,其中,所述的纳米微粒是基于高沸液态全氟碳的纳米微粒,还包含一种脂质/表面活性剂被膜。
7.权利要求6的方法,其中,所述的αvβ3-特异的配体任选地通过一种间隔基共价偶联到脂质/表面活性剂被膜的一种组分上。
8.权利要求6的方法,其中,所述的纳米微粒还包括至少一种磁共振影像(MRI)的影像剂。
9.权利要求8的方法,其中,所述的MRI影像剂是一种螯合的顺磁性离子。
10.权利要求9的方法,其中,所述的螯合剂包含二亚乙基三胺五乙酸,或1,4,7,10-四氮杂环十二烷-1,4,7,10-四乙酸,并且顺磁性离子是钆离子。
11.权利要求6的方法,其中,所述的纳米微粒还包括至少一种生物学活性剂。
12.权利要求11的方法,其中,所述的生物学活性剂是一种激素或药物。
13.权利要求6的方法,其中所述的纳米微粒还包含至少一种放射性核素。
14.权利要求13的方法,其中,所述的放射性核素是99mTc。
15.权利要求6的方法,其中,所述的纳米微粒还包括至少一种荧光团。
16.权利要求15的方法,其中所述的荧光团是荧光素。
17.权利要求1的方法,进一步包括使αvβ3-特异的配体结合到靶点组织;并获得所述靶点组织的超声影像。
18.权利要求8的方法,进一步包括使αvβ3-特异的配体结合到靶点组织;并获得所述靶点组织的磁共振影像。
19.权利要求13的方法,进一步包括使αvβ3-特异的配体结合到靶点组织;并获得所述靶点与核素结合的组织的影像。
20.权利要求11的方法,进一步包括使αvβ3-特异的配体定位到所述的所需的靶点上,从而使所述的生物学活性剂被递送到所述靶点。
21.权利要求20的方法,进一步包括通过检测19F磁共振信号,证实所述纳米微粒的位置。
22.权利要求15的方法,进一步包括使αvβ3-特异的配体结合到靶点组织;并获得靶点与荧光团结合的组织的影像。
23.一种包含纳米微粒乳液的组合物,其中,所述的纳米微粒被偶联到对αvβ3-特异的配体上,条件是所述的配体不是抗体或其片段。
24.权利要求23的组合物,其中,所述的配体是非肽配体。
25.权利要求24的组合物,其中,所述的配体是具有以下结构式的化合物 包括其立体异构体形式,或其立体异构体形式的混合物,或其药学可接受盐或前体药物形式,其中Hc包含胍基或包含一个带N的杂环;L1是连接基;G是N或CRB;RA是除了H以外的非干扰性取代基;每一个Rb独立是H或非干扰性取代基;和M包含任选取代的羧基、磺酸基、或者是磷酸基团或其酯或酰胺,或是一种四元或五元的环;其中,环A和环B各自可任选地被非干扰性取代基进一步取代。
26.权利要求25的组合物,其中,M选自以下基团-CORB、-SO3H、-PO3H、-CONHNHSO2CF3、-CONHSO2RB、-CONHSO2NHRB、-NHCOCF3、NHCONHSO2RB、-NHSO2RB、-OPO3H2、-OSO3H、-PO3H2、-SO2NHCORB、-SO2NHCO2RB、
27.权利要求23的组合物,其中,所述的纳米微粒是基于高沸液态全氟碳的纳米微粒,还包含一种脂质/表面活性剂被膜。
28.权利要求27的组合物,其中,所述的αvβ3-特异的配体被共价偶联到脂质/表面活性剂被膜的一种组分上。
29.权利要求27的组合物,其中,所述的纳米微粒还包括至少一种磁共振影像(MRI)的影像剂。
30.权利要求29的组合物,其中,所述的MRI影像剂是一种螯合的顺磁性离子。
31.权利要求30的组合物,其中,所述的螯合剂是二亚乙基三胺五乙酸,并且顺磁性离子是钆离子。
32.权利要求27的组合物,其中,所述的纳米微粒还包括至少一种生物学活性剂。
33.权利要求32的组合物,其中,所述的生物学活性剂是一种激素或药物。
34.权利要求27的组合物,其中所述的纳米微粒还包含至少一种放射性核素。
35.权利要求34的组合物,其中,所述的放射性核素是99mTc。
36.权利要求27的组合物,其中,所述的纳米微粒还包括至少一种荧光团。
37.权利要求36的组合物,其中所述的荧光团是荧光素。
38.一种用于制备纳米微粒乳液的试剂盒,所述纳米微粒靶向于表达αvβ3的组织,该试剂盒包含至少一个装有纳米微粒的容器,该纳米微粒含有对αvβ3特异性的配体和用于偶联到附属剂的连接结构。
39.权利要求38的试剂盒,进一步包含至少一个包含所述附属剂的容器。
40.一种用于制备纳米微粒乳液的试剂盒,所述纳米微粒靶向于表达αvβ3的组织,该试剂盒包含至少一个装有纳米微粒的容器,该纳米微粒含有用于偶联到αvβ3特异性配体的连接结构;以及至少一个装有αvβ3特异性配体的容器。
41.一种具有以下结构式的化合物 包括其立体异构体形式,或其立体异构体形式的混合物,或其药学可接受盐或前体药物形式,其中Hc包含胍基或包含一个带N的杂环;L1是连接基;G是N或CRB;RA是除了H以外的非干扰性取代基;每一个Rb独立是H或非干扰性取代基;和M包含可任选取代的羧基、磺酸基、或者是磷酸基团或其酯或酰胺,或是一种四元或五元的环;其中,环A和环B各自可任选地被非干扰性取代基进一步取代;任选地通过连接基被偶联到脂质/表面活性剂上。
42.权利要求41的化合物,其中,脂质/表面活性剂是磷脂。
43.权利要求41的化合物,其中,连接基包含聚烷二醇和/或肽。
全文摘要
公开了一种感光乳液,特别是从高沸液体全氟化合物形成的纳米微粒,所述的包被有脂质/表面活性剂被膜的微粒是制成特异于活化的内皮细胞区域的,通过将所述的纳米微粒偶联到一种对QvP3整联蛋白特异性的配体上发挥作用,其不同于抗体。该纳米微粒还可进一步包含生物活性剂、放射性核素、或其他影像剂。
文档编号A61B5/055GK1738815SQ03806857
公开日2006年2月22日 申请日期2003年1月24日 优先权日2002年1月24日
发明者G·兰沙, S·A·维克莱恩, T·哈里斯 申请人:巴内斯-朱威胥医院, 布里斯托尔-迈尔斯 施贵宝影像股份有限公司