专利名称:应用在肿瘤低氧区域中选择性复制的重组腺病毒载体的靶向肿瘤治疗的利记博彩app
技术领域:
本发明一般涉及在低氧细胞中增殖条件复制型(conditionallyreplication competent)腺病毒载体的方法。更特别地,所述方法包括用条件复制型腺病毒载体感染低氧细胞,例如肿瘤内的低氧细胞,由此所述腺病毒载体在低氧细胞中复制,杀死该细胞。
缩写表Ad腺病毒AdCMV-EGFP具有在组成型CMV启动子的转录控制下EGFP基因的腺病毒载体AdCMV-dsRed2 具有在组成型CMV启动子的转录控制下dsRed2基因的复制缺陷型腺病毒载体
AdHRP-E1A-dsRed2具有在HRP的控制下Ad E1A基因的条件复制型Ad载体。其也组成型表达一种红色荧光标记。
AdHRP-E1A-TNF-α具有在HRP的控制下Ad E1A基因和在组成型CMV启动子控制下TNF-α基因的条件复制型腺病毒载体AdHRP-E1AE4-dsRed2 具有在HRP控制下的Ad E1A和E4基因的条件复制型Ad载体。其还组成型表达一种红色荧光标记。
AdHRP-E4-dsRed2 具有在HRP控制下的Ad E4基因的条件复制型Ad载体。其还组成型表达一种红色荧光标记。
ARNT芳基受体核转位蛋白(translocator)CMV 巨细胞病毒DNAse I 脱氧核糖核酸酶IDHFR二氢叶酸还原酶dsRed2 珊瑚海葵(Discosoma sp.)红色荧光蛋白E1A 腺病毒早期基因1AE1B 腺病毒早期基因1BE2A 腺病毒早期基因2AE2B 腺病毒早期基因2BE3 腺病毒早期基因3E4 腺病毒早期基因4EGFP增强的绿色荧光蛋白ex-Flk1 Flk1受体的胞外结构域
HIF低氧可诱导因子HPRT 次黄嘌呤磷酸核糖转移酶HRE低氧应答元件HRP低氧应答启动子HRP-EGFP 其中EGFP的表达由HRP调节的质粒载体hsp热激蛋白HSV-tk 单纯疱疹病毒胸苷激酶IL-2 白细胞介素2IL-12 白细胞介素12kb 千碱基MOI感染复数NIH国立卫生研究院pfu噬斑形成单位PGK磷酸甘油酸激酶PSA前列腺特异性抗原pVHL von Hippel-Lindau蛋白s-Flt1 可溶形式的Flt1受体SV40 猿猴病毒40TAFs 转录相关的因子Tm 解链温度TNF-α 肿瘤坏死因子-αTRE转录调节元件VEGF 血管内皮生长因子VHLvon Hippel-Lindau
背景技术:
尽管医学研究和技术有显著进展,但癌症还是在美国及全世界导致死亡的最主要疾病之一。仅在美国每年就有超过一百万的新病例,而且每年有五十万以上的人死于癌症。
目前对癌症的治疗包括手术切除或放疗,但每种治疗方法均有限制。在前者情况中,一旦肿瘤已经通过侵入周围组织或移至远处部位而转移,则实际上不可能通过手术除去所有癌细胞。手术后剩余的任何这种细胞均可持续生长,导致术后癌症复发。目前放疗策略在治疗患者的癌症中通常也不成功。在放疗后,由于通常不可能输送足够高剂量的射线以杀死所有的肿瘤细胞而同时不损害周围正常组织,因此癌症可以复发。癌症也可以由于肿瘤示出对射线诱导的细胞死亡有各种不同的敏感性而复发。因此,目前的治疗方案不能消除肿瘤细胞的能力是导致不能成功治疗癌症的一个重要临床限制(Lindegaard et al.,1996;Suit,1996;Valter et al.,1999)。
需要更新的治疗策略以解决不能成功治疗致瘤性疾病的问题。肿瘤学家面对的主要问题之一是选择性杀死肿瘤细胞而不导致周围正常细胞损害的能力。目前各种各样的方法是利用在大多数情况中肿瘤细胞比正常细胞生长迅速的事实,因此设计的杀死快速生长的细胞的策略对肿瘤细胞略微有选择性(见Yazawa et al.,2002)。然而,这些方法还杀死机体内正常迅速分化的某些细胞类型,特别是骨髓中的细胞,导致并发症如贫血和中性粒细胞减少症(参见Vose & Armitage,1995)。其它策略基于肿瘤特异性抗原的抗体的产生(参见Sinkovics & Horvath,2000),但仅鉴别了少数的这种抗原,限制了这些方法的适用性。因此,需要新的方法以增强癌症治疗方法的选择性。
近年来,已经尝试了研发并应用有复制能力的病毒,这种病毒可在肿瘤细胞中选择性复制并从而杀死肿瘤细胞(见例如Galanis et al.,2001)。在这种方法中,病毒载体被遗传工程化为在靶定的肿瘤细胞中特异性复制。然后通过病毒介导的细胞裂解成功杀死靶定的肿瘤细胞,这样可以引起随后的感染和杀死邻近的细胞(Galanis et al.,2001)。
这种方法存在的问题是要发现使病毒选择性靶向和/或在肿瘤细胞中复制的机制。为此,已经尝试了基于肿瘤细胞的特异性遗传特性的选择性复制方案(见Galanis et al.,2001及其参考文献)。例如,实现肿瘤特异性病毒复制的方法之一涉及重组肿瘤消解性腺病毒载体dl1520,或Onyx-015。设计了Onyx-015载体以尝试提供在缺失p53肿瘤抑制基因的细胞中选择性复制(Bischoff et al.,1996;Ries & Korn,2002)。Onyx-015的设计是基于这样的事实,即成功的腺病毒复制需要细胞p53蛋白的失活,这通过腺病毒E1B蛋白实现。Onyx-015在E1B基因有一个突变,破坏p53失活能力。E1B突变使病毒在缺失p53功能的细胞中复制,但防止在有野生型p53的细胞中复制。由于p53功能在50%以上的所有肿瘤包括大约70%的一些癌症如结肠直肠癌中丧失(见例如Beroud &Soussi,1998;Colman et al.,2000;Hickman et al.,2002),因此Onyx-15理论上可用于治疗一半以上的所有肿瘤。不幸地,近来产生关于Onyx-015的特异性的争论(见Goodrum & Ornelles,1998;Rothmann et al.,1998;Dix et al.,2001;Ries & Korn,2002)。一些研究表明Onyx-015甚至可以在具有野生型p53功能的肿瘤细胞中复制(Goodrum & Ornelles,1998;Rothmann et al.,1998)。同时这种显然的差别可通过这样的事实和谐,即具有正常p53功能的大多数肿瘤细胞在p53途径的其它部分具有缺陷,但是存在这种载体广泛应用的限制。虽然如此,仍需要一种策略以用于保持野生型p53功能的肿瘤细胞中。
将腺病毒载体在肿瘤细胞中靶定复制的另一种策略包括应用肿瘤和/或组织特异性启动子以控制病毒复制需要的基因的表达(参见Haviv& Curiel,2001)。一个典型的实例是CN706(Calydon,Inc.,Sunnyvale,California,United States of America),其中前列腺特异性抗原(PSA)基因启动子驱动腺病毒E1A基因的表达。见Henderson和Schuur的美国专利5,871,726。在另一种病毒CV787中也见到特异性,其中大鼠前列腺特异性probasin启动子驱动E1A的表达,同时PSA启动子驱动E1B的表达(Yu et al.,1999)。这种策略的另一种尝试包括应用MUC1启动子以控制E1A的表达(Kurihara et al.,2000)。这些类型的策略的关键是启动子的特异性。不幸地,仅鉴别了极少量的呈现足够特异性的启动子用于抗肿瘤策略中。
因此,本领域需要有效的治疗方法以特异性靶定并杀死患者体内肿瘤细胞。本发明解决了本领域中的这种及其它需要。
概述本发明提供了一种腺病毒载体,其包含在转录调节元件(TRE)的转录控制下的腺病毒基因,所述TRE包含一个最小启动子(minimalpromoter)和一个低氧应答元件(HRE)。在一个实施方案中,腺病毒基因选自E1A基因,E1B基因,E2A基因,E2B基因,和E4基因。在一个实施方案中,腺病毒载体包含在转录调节元件(TRE)的转录控制下的第二种腺病毒基因。在一个实施方案中,最小启动子选自巨细胞病毒(CMV)最小启动子,人β-肌动蛋白最小启动子,人EF2最小启动子,及腺病毒E1B最小启动子。在另一个实施方案中,CMV最小启动子包含SEQ ID NO1。在一个实施方案中,低氧应答元件(HRE)衍生自人血管内皮生长因子(VEGF)基因。在另一个实施方案中,HRE包含SEQ ID NO2的5个串联拷贝。在一个实施方案中,腺病毒载体进一步包含一个转基因。在一个实例中,转基因包含第二种腺病毒基因。在另一个实例中,转基因包含编码免疫刺激分子的核酸。在又一个实例中,转基因包含一个自杀基因。
本发明还提供了一种包含在TRE的转录控制下的腺病毒基因的组合物,其中TRE包含一个最小启动子和一个HRE。在一个实例中,所述组合物进一步包含一种药物可接受的载体。
本发明还提供了一种抑制肿瘤生长的方法,所述方法包括将肿瘤中的低氧细胞与腺病毒载体接触,从而该载体进入细胞中并抑制肿瘤生长。在一个实施方案中,所述接触是肿瘤内给予载体的结果。在另一个实施方案中,所述接触是静脉内给予载体的结果。
本发明还提供了一种宿主细胞,其包含在TRE的转录控制下的腺病毒基因,所述TRE包含一个最小启动子和一个HRE。
本发明还提供了一种增殖特异于低氧细胞的腺病毒的方法,所述方法包括将低氧细胞与腺病毒载体接触,从而该腺病毒被增殖为至少104个病毒颗粒/细胞的效价。
本发明还提供了一种赋予靶细胞选择性胞毒性的方法,所述方法包括将允许HRE发挥功能的细胞与包含HRE的腺病毒载体接触,从而该腺病毒载体进入细胞中。
本发明还提供了一种抑制肿瘤生长的方法,所述方法包括(a)将肿瘤内低氧细胞与第一种腺病毒载体接触,从而第一种腺病毒载体进入细胞中;(b)将低氧细胞与一种复制缺陷型腺病毒载体接触,从而复制缺陷型腺病毒载体进入细胞中。在一个实施方案中,第一种腺病毒载体包含在TRE的转录控制下的腺病毒基因,所述TRE包含一个HRE。在另一个实施方案中,复制缺陷型腺病毒载体包含在组成型启动子的转录控制下的第二种基因。在另一个实施方案中,复制缺陷型载体包含在TRE的转录控制下的第二种基因,所述TRE包含一个HRE。在一个实例中,第二种基因是腺病毒基因,例如早期基因。在另一个实施例中,第二种基因是自杀基因,包括但非限于TNF-α,Trail,Bax,HSV-tk,胞嘧啶脱氨酶,p450,白喉毒素,可溶的FLT1基因,及胞外FLK-1基因。在又一个实例中,第二种基因是免疫刺激分子,包括但非限于IL-2和IL-12。
因此,本发明的一个目的是提供了一种治疗方法,该方法利用腺病毒载体在表达低氧可诱导因子1(HIF-1)的靶组织中条件复制。这个及其它目的通过本发明全部或部分实现。
本领域技术人员在学习了本发明的如下描述及非限制性实施例之后将显而易见本发明的上述目的,其它目的及优势。
附图简述
图1是质粒载体HRP-EGFP的示意图。这个载体用于产生稳定转导的细胞系,其在低氧条件下表达EGFP。其含有在低氧应答启动子控制下的EGFP基因。
图2是条件复制型腺病毒载体AdHRP-E1A-dsRed2的示意图。这个载体具有在HRP启动子控制下的E1A基因并组成型表达一种红色荧光蛋白报道基因dsRed2。
图3是示例的条件复制型腺病毒载体AdHRP-E4-dsRed2的示意图,其中仅E4基因在HRP启动子的控制下。这个载体还组成型表达一种红色荧光蛋白报道基因。
图4是示例的条件复制型腺病毒载体AdHRP-E1AE4-dsRed2的示意图,其中E1A和E4基因均在HRP启动子的控制下。这个载体还组成型表达一个红色荧光蛋白报道基因。
图5是腺病毒载体AdCMV-EGFP和AdCMV-dsRed2的示意图。每个载体均是复制缺陷型腺病毒载体,具有在组成型CMV启动子的转录控制下的一个荧光标记。这些载体由于在E3多肽编码序列中存在缺失(用框ΔE3标示)及另外存在CMV标记构建体(用ΔE1标示)中断E1多肽编码序列而是复制缺陷的。
图6A和6B示出用本发明的腺病毒载体处理小鼠中异种移植肿瘤模型的结果。
图6A描述了腺病毒载体AdHRPE1A-TNF-α。这个载体具有与HRP可操纵连接的腺病毒E1A基因。另外,其具有与组成型CMV启动子可操纵连接的肿瘤坏死因子-α(TNF-α)基因。
图6B是示出肿瘤内注射Ad-HRPE1A-TNF-α抑制这个异种移植模型中肿瘤生长的能力的图表。携带肿瘤的小鼠用复制缺陷型对照载体(AdCMV-dsRed2,见图5,实心方形所示)或AdHRPE1A-TNF-α(实心三角形所示)注射,并在指定时间点测定肿瘤体积及与第0天肿瘤体积对比(在第0天体积设定为1.0)。
详细描述本发明一般性涉及在表达转录因子低氧可诱导因子1(HIF-1)的细胞中增殖条件复制型腺病毒载体的方法。在一个实施方案中,所述方法包括用条件复制型腺病毒载体感染低氧细胞,例如肿瘤内低氧细胞,由此腺病毒载体在低氧细胞中复制,杀死该细胞。
I.总则低氧,低于正常组织氧压的一种状态,参与许多人体疾病,包括癌症。其主要参与肿瘤生长和发展。特别地,发现低氧在促进突变形成和选择恶性肿瘤细胞中起关键作用。其还参与促进肿瘤血管发生。
细胞对低氧的应答主要通过转录因子低氧可诱导因子1(HIF-1)介导。在低氧条件下,HIF-1结合称为低氧应答元件(HRE)的序列,该序列存在于某些低氧应答基因的启动子中。HIF-1与含有HRE的启动子的结合导致正调节相关基因的转录。
HIF-1的活性形式是一种异源二聚体,由调节成分(HIF-1α)和组成型表达的芳基烃受体核转运蛋白(ARNT,也称为HIF-1β)组成。HIF-1介导的转录的调节是通过依赖于细胞的氧状态的HIF-1α的翻译后修饰而发生的。在正常含氧条件下,HIF-1α通过脯氨酰基羟化酶羟化,使用分子氧作为氧供体。这种羟化使得通常存在于细胞内的von Hippel-Lindau蛋白(pVHL)结合HIF-1α,形成pVHL/HIF-1α复合物。将pVHL/HIF-1α复合物进行遍在蛋白化并在蛋白酶体中降解。另一方面,在低氧条件下,脯氨酰基羟化酶活性由于相对缺乏氧供体而更低。在这些条件下,HIF-1α不被羟化,VHL/HIF-1α复合物不再形成,而且细胞内HIF-1α稳态水平提高。HIF-1α因此可通过与HIF-1β复合而形成活性HIF-1,这样导致用含有HRE的启动子转录这些基因。
HIF-1结合导致一些基因的表达增加,包括转录因子,生长因子和细胞因子,以及参与氧转运和铁代谢,糖酵解和葡萄糖吸收,及应激应答的基因。另外,低氧调节与血管发生相关的细胞增殖和迁移。血管内皮生长因子(VEGF)基因,其产物是血管发生中关键的调节因子,在其启动子中含有HRE。HIF-1正调节VEGF和FLT-1,一种VEGF受体的表达。由于细胞的高生长速度形成实体瘤,因此持续需要新血管以给迅速生长的肿瘤细胞提供足够的养分,包括氧。这些新形成的血管通常特征在于畸形,由此非常容易发现其中各个细胞不能充分氧化的肿瘤部位。事实上,数据提示每个大于1mm3的肿瘤均有低氧的局部区域(Dachs &Tozer,2000)。
II.定义以下术语是为本领域技术人员所熟知的,陈述如下定义便于解释本发明。
II.A.核酸本发明中应用的核酸包括但非限于SEQ ID NO1和2任一项的分离的核酸分子;与SEQ ID NO1和2任一项基本相同的序列;其保守的变体,亚序列及其延长的序列,互补的DNA分子,及相应的RNA分子。本发明还涵盖了包含所揭示的核酸序列的基因,cDNA,嵌合基因和载体。
术语“核酸分子”是指脱氧核糖核苷酸或核糖核苷酸及其单链或双链形式的聚合物。除非特别限制,该术语涵盖了含有已知天然核苷酸的类似物的核酸,其具有与参考的天然核酸相似的性质。除非特别指出,—特定的核苷酸序列也暗含了其保守修饰的变体(例如简并密码子取代),其互补序列,亚序列,延长的序列,以及明确指定的序列。术语“核酸分子”或“核苷酸序列”也可用于代替“基因”,“cDNA”或“mRNA”。核酸可以衍生自任何来源,包括任何生物体。
本发明针对核酸分子所用术语“分离的”是指核酸分子远离其天然环境而存在并且不是天然产物。分离的DNA分子可以纯化形式存在或者在非天然环境如转基因宿主细胞中存在。
本发明针对两个核苷酸序列所用术语“基本相同”是指两或多个序列或亚序列当对比和排列最大相应程度时,在一个实例中有至少60%相同性,在另一个实施例中有大约70%相同性,在另一个实施例中有大约80%相同性,在另一个实施例中有大约90-95%相同性,及在另一个实例中有大约99%核苷酸相同性,使用如下序列对比算法之一测定(在下文标题为“核苷酸及氨基酸序列对比”段落描述)或者通过目测测定。在一个实例中,在至少50个残基的核苷酸序列中存在基本相同性,在另一个实例中至少大约100残基的核苷酸序列中存在基本相同性,在另一个实例中至少大约150个残基的核苷酸序列中存在基本相同性,在另一个实例中包含完整的编码序列的核苷酸序列中存在基本相同性。一方面,多态序列可以是基本相同的序列。术语“多态”是指一个群体中存在两或多个遗传确定的可选序列或等位基因。等位基因差异可以是小如一个碱基对。
两个核苷酸序列基本相同的另一个指征是这两个分子在严格条件下相互特异性或充分杂交。关于核酸杂交,对比的两个核酸序列可以称为“探针”或“靶”。“探针”是指参考核酸分子,“靶”是指测试核酸分子,通常在核酸分子的异源群体中发现。“靶序列”与“测试序列”同义。
用于杂交研究或分析的核苷酸序列例如包括探针序列,其在一个实施方案中互补或模拟本发明的核酸分子的至少大约14-40个核苷酸序列。在一个实例中,探针包含14-20个核苷酸,当需要时可以更长,如30,40,50,60,100,200,300或500个核苷酸或者直至SEQ ID NO1和2任一项所示的全长序列。这种片段可易于通过例如通过化学合成方法而直接合成片段,通过应用核酸扩增技术或者通过将选择的序列导入重组载体中以重组产生而制备。短语“特异性杂交”是指当序列存在于复合核酸混合物(例如总细胞DNA或RNA)中时,在严格条件下一个分子只与一个特定的核苷酸序列结合,形成双链或杂交。短语“充分杂交”是指探针核酸分子与靶核酸分子之间的互补杂交,并包含可以通过降低杂交介质的严格性而调和最小的错配以达到希望的杂交。
关于核酸杂交实验如Southern和Northern印迹分析的“严格杂交条件”和“严格杂交洗涤条件”是序列和环境依赖性的。较长的序列在较高的温度特异性杂交。关于核酸杂交的详尽指导见于Tijssen,1993所述。通常地,选择的高严格杂交和洗涤条件是针对特异的序列在指定离子强度和pH下采用低于热熔点(Tm)大约5℃的条件。典型地,在“严格条件下”,探针与其靶序列特异性杂交,但与其它序列则否。
Tm是50%的靶序列与极佳匹配的探针杂交的温度(在限定的离子强度和pH)。选择的非常严格的条件与特定探针的Tm相当。针对具有大约100个以上互补残基的互补核酸的Southern或Northern印迹分析的严格杂交条件例如是在42℃在具有1mg肝素的50%甲酰胺中杂交过夜。高严格洗涤条件例如是在65℃在0.1×SSC,SM NaCl中洗涤15分钟。严格洗涤条件例如是在65℃在0.2×SSC缓冲液中洗涤15分钟(见Sambrook and Russell,2001针对SSC缓冲液所述)。通常地,高度严格洗涤之前进行低严格洗涤以除去背景探针信号。针对大约100个核苷酸以上的双链体的中等严格洗涤条件例如是在45℃在1×SSC中洗涤15分钟。针对大约100个核苷酸以上的双链体的低严格洗涤条件例如是在40℃在4-6×SSC中洗涤15分钟。就短探针而言(例如大约10-50个核苷酸),严格条件典型地包括低于大约1M Na+离子的盐浓度,典型地为大约0.01-1M Na+离子浓度(或其它盐),pH为7.0-8.3,温度典型地为至少大约30℃。严格条件也通过加入去稳定剂如甲酰胺而实现。一般而言,与在特定的杂交分析中针对不相关的探针观测到的信噪比为2倍(或更高)表明特异性杂交。
以下是可用于克隆与本发明的参考核苷酸序列基本相同的同源核苷酸序列的杂交和洗涤的实例在一个实例中,探针核苷酸序列与靶核苷酸序列在50℃在7%十二烷基硫酸钠(SDS),0.5M NaPO4,1mmEDTA中杂交,随后在50℃在2×SSC,0.1%SDS中洗涤;在另一个实例中,探针与靶序列在50℃在7%十二烷基硫酸钠(SDS),0.5M NaPO4,1mm EDTA中杂交,随后在50℃在1×SSC,0.1%SDS中洗涤;在另一个实例中,探针和靶序列在50℃在7%十二烷基硫酸钠(SDS),0.5MNaPO4,1mm EDTA中洗涤,随后在50℃在0.5×SSC,0.1%SDS中洗涤;在另一个实例中,探针和靶序列在50℃在7%十二烷基硫酸钠(SDS),0.5M NaPO4,1mm EDTA中杂交,随后在50℃在0.1×SSC,0.1%SDS中洗涤;在另一个实例中,探针和靶序列在50℃在7%十二烷基硫酸钠(SDS),0.5M NaPO4,1mm EDTA中杂交,随后在65℃在0.1×SSC,0.1%SDS中洗涤。
两个核酸序列基本相同的另一个指征是由该核酸编码的蛋白质是基本相同的,共享全面的三维结构,是生物学功能等价物或者是免疫学交叉反应的。这些术语在下文标题为“多肽”的段落中进一步解释。如果相应的蛋白质是基本相同的,则在严格条件下彼此不杂交的核酸分子仍是基本相同的。这可以发生在例如当两个核苷酸序列由遗传密码所允许的显著简并的时候。
术语“保守取代变体”是指具有简并密码子取代的核酸序列,其中一或多个选择的(或全部的)密码子的第三个位置由混和的碱基和/或脱氧肌苷残基取代(Ohtsuka et al.,1985;Batzer et al.,1991;Rossolini et al1994)。
术语“亚序列”是指核酸的一个序列,其包含较长的核酸序列的一部分。亚序列例如是上述探针,或者引物。术语“引物”是指一个邻近序列,在一个实例中其包含选择的核酸分子的大约8或多个脱氧核糖核苷酸或核糖核苷酸,在另一个实例中其包含10-20个核苷酸,在另一个实例中其包含20-30个核苷酸。本发明的引物涵盖了足够长的寡核苷酸及合适的序列,以起始本发明的核酸分子的聚合。
术语“延长的序列”是指加入核苷酸(或其它类似分子)掺入核酸中。例如,聚合酶(例如DNA聚合酶)可在核酸分子的3’末端加入序列。另外,核苷酸序列可以与其它DNA序列组合,如启动子,启动子区域,增强子,聚腺苷酸化信号,内含子序列,另外的限制酶位点,多克隆位点,及其它编码片段。
本发明所用术语“互补序列”是指两个核苷酸序列,其包含能彼此配对在碱基对之间形成氢键的反平行核苷酸序列。如本发明所用,术语“互补序列”是指基本互补的核苷酸序列,这可以通过上述相同核苷酸对比评价,或者限定为在相对严格条件下(如本文所述)能与所研究的核酸片段杂交。互补核酸片段的一个特殊实例是反义寡核苷酸。
术语“基因”泛指与生物学功能相关的任何DNA片段。基因涵盖了这样的序列,包括但非限于编码序列,启动子区域,转录调节序列,是调节蛋白的特异性识别序列的非表达的DNA片段,有助于基因表达的非表达的DNA片段,设计为具有希望参数的DNA片段,或其组合。基因可通过多种方法获得,包括从生物样品中克隆,基于已知或推定的序列信息合成,及重组衍生现有序列。
术语“基因表达”一般是指从DNA序列中产生生物学活性多肽的细胞过程。
本发明也可以应用嵌合基因。本文所用术语“嵌合基因”是指可操纵地与编码治疗性多肽的核苷酸序列连接的启动子区域;产生反义RNA分子的核苷酸序列;具有三级结构如发夹结构的RNA分子;或者双链的RNA分子。
本文所用术语“可操纵地连接”是指一个启动子区域与一个核苷酸序列以这种方式连接,由此核苷酸序列的转录由该启动子区域控制和调节。相似地,称核苷酸序列在其可操纵地连接的启动子的“转录控制”下。本领域已知将启动子区域与核苷酸序列可操纵地连接的技术。
本文所用术语“异源基因”,“异源DNA序列”,“异源核苷酸序列”,“外源核酸分子”,或“外源DNA片段”均是指源自与指定的宿主细胞无关的来源,或者如果源自相同来源,则是其原始形式的修饰形式。因此,宿主细胞中的异源基因包括这样的基因,其对特殊的宿主细胞是内源的但已经修饰,例如通过诱变或通过分离自天然转录调节序列而修饰。这个术语还包括天然发生的核苷酸序列的非天然发生的多个拷贝。因此,这个术语是指对细胞是外源或异源的DNA片段,或者与细胞同源但在宿主细胞核酸内的一个位置未发现所述元件。
本文所用术语“构建体”是指能指导特殊的核苷酸序列在合适的宿主细胞中表达的DNA序列,包含与感兴趣的核苷酸序列可操纵地连接的启动子,其与终止信号可操纵地连接。这个术语还典型地包含核苷酸序列正确翻译所需的序列。包含感兴趣的核苷酸序列的构建体可以是嵌合的。构建体还可以是天然发生的但已经以重组形式获得用于异源表达。
术语“启动子”或“启动子区域”均是指基因内的一个核苷酸序列,其位于同一基因的5’至编码序列并起指导编码序列转录的作用。启动子区域包含一个转录起始位点,并可以另外包括一或多个转录调节元件。在一个实施方案中,本发明的方法应用一种低氧可诱导的启动子。
“最小启动子”是具有使得基本水平转录发生的最小元件的核苷酸序列。同样,最小启动子不是完整的启动子而是在实验系统中能指导一种报道构建体基本水平转录的启动子的亚序列。最小启动子包括但非限于CMV最小启动子,HSV-tk最小启动子,猿猴病毒40(SV40)最小启动子,人b-肌动蛋白最小启动子,人EF2最小启动子,腺病毒E1B最小启动子,热激蛋白(hsp)70最小启动子。最小启动子通常用一或多个转录调节元件增大以影响可操纵地连接的基因的转录。例如,细胞类型特异性或组织特异性转录调节元件可加入最小启动子中以产生指导可操纵地连接的核苷酸序列以细胞类型特异性或组织特异性方式转录的重组启动子。在本发明的一个实施方案中,低氧可诱导启动子包含与人VEGF启动子的HRE的5个串联拷贝连接的CMV最小启动子。
不同的启动子具有转录调节元件的不同组合。基因在细胞中表达与否依赖于组成基因的启动子的特殊转录调节元件与细胞核内存在的不同转录因子的组合。同样,启动子根据其在体内或体外的功能活性而通常被分为“组成型”,“组织特异性”,“细胞类型特异性”,或“可诱导”启动子。例如,组成型启动子是能指导基因在多种细胞类型中转录的启动子。组成型启动子例如包括编码某些组成型或“管家”功能的如下基因的启动子次黄嘌呤磷酸核糖转移酶(HPRT),二氢叶酸还原酶(DHFR;(Scharfmann et al.,1991),腺苷脱氨酶,磷酸甘油酸激酶(PGK),丙酮酸激酶,磷酸甘油酸变位酶,β-肌动蛋白启动子(见例如Williams et al.,1993),及本领域技术人员已知的其它组成型启动子。另一方面,“组织特异性”或“细胞类型特异性”启动子在一些组织和细胞类型中指导转录,但在其它组织和细胞中是失活的。组织特异性启动子例如包括上述PSA启动子(Yu et al.,1999;Lee et al.,2000),probasin启动子(Greenberg etal.,1994;Yu et al.,1999),及MUC1启动子(Kurihara et al.,2000),以及本领域技术人员已知的其它组织特异性和细胞类型特异性启动子。
“可诱导”启动子是与其可操纵连接的基因的转录水平基于某些刺激的存在而变化的启动子。在可诱导的启动子控制下的基因只在存在诱导剂的情况下才表达或更大程度表达(例如在金属硫蛋白启动子控制下的转录在存在某些金属离子的情况下明显增加)。可诱导的启动子包括转录调节元件(TRE),当其诱导因子被结合时刺激转录。例如,有血清因子,类固醇激素,视黄酸和环AMP的TRE。可以选择含有特殊TRE的启动子以获得可诱导应答,并且在一些情况中,TRE自身可以附着于不同的启动子,从而赋予重组基因可诱导性。在本发明的一个实施方案中,腺病毒载体包含赋予腺病毒基因HIF-1介导的可诱导性的低氧可诱导启动子。
如本文所用,术语“低氧可诱导启动子”是指含有低氧应答元件的启动子,由此如果存在活性形式的HIF-1,则其结合并导致可操纵地结合的核苷酸序列在高于基本水平之上的转录。同样,低氧可诱导启动子是在正常含氧条件下,由于没有活性HIF-1导致可操纵连接的核苷酸序列在基本水平或之下转录的启动子。
另外,如本发明所用,细胞中存在活性HIF-1不仅包括其中细胞缺氧的条件,而且还包括其中聚集活性形式HIF-1并可结合HRE的任何其它条件。这种其它条件包括其中不发生HIF-1α与pVHL之间相互作用并因此不发生HIF-1α遍在蛋白化和降解的条件。例如,活性HIF-1可以作为脯氨酰基羟化酶多肽的活性修饰(例如突变)的结果而形成,由此不发生HIF-1α的羟化。或者,在缺少pVHL的细胞中,活性HIF-1聚集(见例如Clifford & Maher,2001)。“正常含氧条件”或“含氧正常”是指正常的氧饱和状态,其中HIF-1α多肽通过上述脯氨酰基羟化酶而羟化,并因此细胞不聚集活性形式的HIF-1。
当应用启动子时,术语“连接”是指启动子元件的物理性接近,由此它们一起发挥指导可操纵连接的核苷酸序列转录的功能。在本发明的一个实施方案中,最小启动子与HRE连接,导致腺病毒基因在含有活性HIF-1转录因子的细胞中低氧可诱导转录。
如本文所用,术语“转录调节序列”或“转录调节元件”均是指启动子区域内的一个核苷酸序列,其使得对调节转录因子应答。应答可涵盖转录量的减少或增加,并且是通过转录因子与包含转录调节元件的DNA分子的结合而介导的。在一个实例中,转录调节元件是HRE。
术语“转录因子”一般是指通过与转录调节元件及进行转录的细胞成分包括RNA聚合酶,转录相关因子(TAF),染色质重塑蛋白(chromatin-remodeling protein)相互作用而调节基因表达的一种蛋白质,及影响基因转录的任何其它相关蛋白。
术语“报道基因”或“标记基因”或“可选择的标记”均是指编码易于观测和/或定量的产物的异源基因。报道基因是异源的,其源自与指定的宿主细胞无关的来源,或者如果源自同样的来源则是其原始形式的修饰形式。可操纵地与转录调节区域连接的可检测的报道基因的非限制性实例可见于Alam & Cook(1990)Anal Biochem 188245-254及PCT国际公开文本No.WO 97/47763所述。进行转录分析的报道基因例如包括lacZ基因(见例如Rose & Botstein(1983)Meth Enzymol 101167-180),绿色荧光蛋白(GFP;Cubitt et al.,1995),荧光素酶和氯霉素乙酰转移酶(CAT)。产生转基因动物的方法的报道基因包括但非限于抗生素抗性基因,例如抗生素抗性基因赋予新霉素抗性。可以使用任何合适的报道和检测方法,本领域技术人员意识到对本发明无特殊选择或限制。
报道基因的量可通过在性质上或数量上确定报道基因产物的存在或活性的任何方法测定。将通过每个测试启动子区域片段指导的报道基因表达的量与在没有启动子区域片段的情况中包含报道基因的对照构建体对比报道基因表达的量。当与对照构建体相比,在测试构建体中报道基因表达的量显著增加时,则鉴别一个启动子区域片段具有启动子活性。本文所用术语“显著增加”是指在可测定的性质中数量上的改变,其高于测定技术中固有的误差幅度,在一个实例中与对照测定相比增加大约2倍或更高,在另一个实例中,增加大约5倍或更高,在另一个实例中增加大约10倍或更高。
本发明进一步包括包含所揭示的核苷酸序列的腺病毒载体。本文所用术语“载体”是指具有序列的DNA分子,其使得那些序列移至一种相容的宿主细胞中。载体还包括核苷酸序列以允许与载体内的核苷酸序列连接,其中这种核苷酸序列在相容的宿主细胞中也复制。载体还可以介导治疗性多肽的重组生产,如下文进一步描述。
本发明的核酸可以被克隆,合成,重组改变,诱变或其组合。本领域已知用于分离核酸的标准重组DNA和分子克隆技术。例如,非限制的方法例如Silhavy et al.,1984;Ausubel et al.,1992;Glover & Hames,1995和Sambrook & Russell,200所述。产生碱基对改变,缺失或少量插入的位点特异性诱变方法也为本领域所已知,如已有的出版物所述(见例如Adelman et al.,1983;Sambrook & Russell,2001)。
II.B.多肽本发明应用的多肽包括但非限于如下所述治疗性多肽;与如下所述治疗肽基本相同的多肽;如下所述治疗性多肽的多肽片段(在一个实施方案中是生物学功能片段);包含如下所述治疗性多肽,其生物学功能类似物的融合蛋白;及与特异性识别如下所述治疗性多肽的抗体交叉反应的多肽。本发明应用的多肽包括但非限于分离的多肽,多肽片段,包含所揭示的氨基酸序列的融合蛋白,生物学功能类似物,及与特异性识别所揭示的多肽的抗体交叉反应的多肽。
关于多肽所用术语“分离的”是指多肽远离其天然环境而存在并且不是天然产物。分离的多肽可以纯化的形式存在或者在非天然环境如转基因宿主细胞中存在。
关于两或多个多肽序列所用术语“基本相同”是测定多肽序列具有相同或功能等价的氨基酸,在一个实例中具有大约35%或45%,在另一个实例中具有45-55%,及在另一个实例中有55-65%的相同或功能等价的氨基酸。在另一个实例中,两或多个“基本相同的”多肽序列具有大约70%,或者在另一个实例中具有大约80%,在另一个实例中具有大约90%,在另一个实例中具有大约95%,及在另一个实例中有大约99%的相同或功能等价的氨基酸。“相同性”百分比及确定相同性的方法见下文标题为“核苷酸和氨基酸序列对比”的段落所述。
基本相同的多肽还涵盖了呈现一个保守的三维结构的两或多个多肽。可使用计算方法对比结构表现,并可以产生结构模型并易于将其调整为鉴别重要的活性位点或配体结合位点的相似性(见Barton,1998;Saqi et al.,1999;Henikoff et al.,2000;Huang et al.,2000)。
关于氨基酸序列所用术语“功能等价物”为本领域所已知,是基于氨基酸侧链取代的相对相似性而言(见Henikoff & Henikoff,2000)。需要考虑的相关因素包括侧链疏水性,亲水性,电荷及大小。例如,精氨酸,赖氨酸和组氨酸均是正电荷残基;丙氨酸,甘氨酸和丝氨酸的大小均是较小的;苯丙氨酸,色氨酸和酪氨酸均具有一般相似的形状。通过如下文进一步描述的这种分析,精氨酸,赖氨酸和组氨酸;丙氨酸,甘氨酸和丝氨酸;及苯丙氨酸,色氨酸和酪氨酸是生物学功能等价物。
在产生生物学功能等价的氨基酸取代中,可考虑氨基酸的亲水指数。基于氨基酸的疏水性和电荷特性指定了每个氨基酸的亲水性指数,这些是异亮氨酸(+4.5);缬氨酸(+4.2);亮氨酸(+3.8);苯丙氨酸(+2.8);半胱氨酸(+2.5);甲硫氨酸(+1.9);丙氨酸(+1.8);甘氨酸(-0.4);苏氨酸(-0.7);丝氨酸(-0.8);色氨酸(-0.9);酪氨酸(-1.3);脯氨酸(-1.6);组氨酸(-3.2);谷氨酸(-3.5);谷氨酰胺(-3.5);天冬氨酸(-3.5);天冬酰胺(-3.5);赖氨酸(-3.9)及精氨酸(-4.5)。
本领域已知氨基酸亲水性指数在赋予蛋白质活性生物学功能方面的重要性(Kyte & Doolittle,1982)。已知可以用某些氨基酸取代具有相似亲水性指数或分值的其它氨基酸并仍保持相似的生物学活性。在基于亲水性指数的改变中,在一个实例中氨基酸的取代包括具有原始数值±2范围内的亲水性指数的那些氨基酸,在另一个实例中,包括具有原始数值±1范围内的亲水性指数的那些氨基酸,在另一个实例中,包括具有原始数值±0.5范围内的亲水性指数的那些氨基酸。
本领域还理解基于亲水性可有效产生相似氨基酸取代。美国专利No.4,554,101陈述了蛋白质的最大局部平均亲水性,由其邻近氨基酸的亲水性决定,与其免疫原性和抗原性相关,例如与蛋白质的生物学性质相关。应理解可以用一个氨基酸取代具有相似亲水性值的另一个氨基酸,并仍获得一种生物学等价蛋白质。
如美国专利No.4,554,101所述,对氨基酸残基已得出如下亲水性值精氨酸(+3.0);赖氨酸(+3.0);天冬氨酸(+3.0±1);谷氨酸(+3.0±1);丝氨酸(+0.3);天冬酰胺(+0.2);谷氨酰胺(+0.2);甘氨酸(0);苏氨酸(-0.4);脯氨酸(-0.5±1);丙氨酸(-0.5);组氨酸(-0.5);半胱氨酸(-1.0);甲硫氨酸(-1.3);缬氨酸(-1.5);亮氨酸(-1.8);异亮氨酸(-1.8);酪氨酸(-2.3);苯丙氨酸(-2.5);色氨酸(-3.4)。
在基于相似亲水性值产生改变时,在一个实例中氨基酸的取代是亲水性指数在原始数值±2范围内的那些氨基酸,在另一个实例中,是亲水性指数在原始数值±1范围内的那些氨基酸,在另一个实例中,是亲水性指数在原始数值±0.5范围内的那些氨基酸。
本发明的方法也可应用多肽片段或多肽的功能部分,如白细胞介素多肽。这种功能部分不需要包含天然基因产物的所有或基本所有氨基酸序列。术语“功能性”包括多肽的任何生物学活性或特征。在白细胞介素多肽的情况中,生物学活性例如是如本文所述的体内免疫刺激活性或抗血管发生活性。
本发明还包括治疗性多肽的较长的序列。例如,可将一或多个氨基酸加入多肽的N末端或C末端。本发明还提供了包含治疗性多肽序列(例如白细胞介素多肽序列)的融合蛋白。本领域已知制备这种蛋白质的方法。在一个实例中,融合蛋白包括治疗性多肽的任何生物学活性。在白细胞介素多肽的情况中,在一个实施方案中生物学活性是天然白细胞介素的任何生物学活性,例如本文所述的体内免疫刺激或抗血管发生活性。任选地,融合蛋白可具有由融合的异源序列提供的额外的生物学活性。
本发明还涵盖了治疗性多肽的功能类似物。功能类似物呈现治疗性多肽(例如白细胞介素多肽)的至少一种生物学功能。关于氨基酸序列,本文所用生物学功能类似物是其中某些但不是大多数或全部氨基酸被取代的肽。功能类似物可以在相应的核酸分子水平产生,改变这种序列以编码希望的氨基酸改变。在一个实施方案中,可以导入改变以改良多肽的生物学功能,例如改良多肽(例如白细胞介素多肽)的治疗效力。
本发明还涵盖了所述多肽的重组产生。简而言之,将编码治疗性多肽的核酸序列克隆入一个构建体中,将该构建体导入一个宿主生物体中,在此其被重组产生。
术语“宿主生物体”是已经导入所述腺病毒载体的任何生物体。在一个实施方案中,宿主生物体是温血脊椎动物,在另一个实施方案中,是哺乳动物。
II.C.核苷酸和氨基酸序列对比关于两或多个核苷酸或多肽序列所用术语“相同的”或“相同性”百分比是指两或多个序列或亚序列当进行最大相应程度对比或排列时,是相同的或具有指定百分比的相同氨基酸残基或核苷酸,使用一种本文所述序列对比算法或通过目测测定。
关于核苷酸或多肽序列所用术语“基本相同”是指一个特殊的序列由于一或多个缺失,取代或添加而与天然发生的序列不同,其净效应(neteffect)保留天然基因,基因产物或序列的至少一些生物学活性。这种序列包括“突变”序列,或者其中生物学活性在一定程度上改变但保留至少一些原始生物学活性的序列。本文所用术语“天然发生的”用于描述天然发现的一种成分,其与人工产生的成分截然不同。例如,存在于生物体中的一个蛋白质或核苷酸序列是天然发生的,其可以分离自天然来源并未在实验室中被人工修饰。
就序列对比而言,典型地将一个序列作为参比序列以与测试序列对比。当使用序列对比算法时,将测试序列和参比序列输入计算机程序,如果需要则指定亚序列坐标(subsequence coordinate),选择序列算法程序参数。然后基于选择的程序参数,序列对比算法计算指定的测试序列与参比序列的序列相同性百分比。
可以进行最佳序列对比,例如通过Smith & Waterman(1981)的局部同源算法,通过Needleman & Wunsch(1970)的同源序列对比算法,通过Pearson & Lipman(1988)的相似性搜索方法,通过这些算法的计算机执行程序(GCG WISCONSIN PACKAGE中的GAP,BESTFIT,FASTA和TFASTA,得自Accelrys,Inc.,San Diego,California,United States ofAmerica),或者通过目测(一般见Ausubel et al.,1992)进行。
确定序列相同性百分比和序列相似性的算法例如是BLAST算法,这是Altschul等在1990年描述的。进行BLAST分析的软件可通过国立生物技术信息中心(http//www.ncbi.nlm.nih.gov/)公开获得。这个算法包括首先通过鉴别质询(query)序列中长度W的短语而鉴别高分值的序列对(HSP),当与数据库序列中同样长度一个字对比时其匹配或满足一些正值的阈值T。T是指邻近字分值的阈值。这些初始的邻近字采样数(hits)作为种子开始搜索以发现含有其的较长的HSP。然后只要累积的序列对比分值增加,这个字采样数沿着每个序列的两个方向延伸。就核苷酸序列而言,累积的分值是使用参数M(一对匹配残基的奖分;总是>0)和N(错配残基的罚分;总是<0)计算的。就氨基酸序列而言,分值矩阵用于计算累积分值。当累积序列对比分值通过低于其最大获得值X时,字采样数在每个方向的延伸就停止,累积的分值由于一或多个负分值的残基对比的累积而为零或小于零,或者达到每个序列的末端。BLAST算法的参数W,T和X决定了序列对比的敏感性和速度。BLASTN程序(就核苷酸序列而言)用作默认值,字长W=11,期望值E=10,截断值为100,M=5,N=-4,双链对比。就氨基酸序列而言,BLASTP程序用作默认值,字长(W)为3,期望值(E)为10,BLOSUM62分值矩阵(见Henikoff & Henikoff,1992)。
除了计算序列相同性百分比之外,BLAST算法还进行两个序列之间的相似性统计学分析(见例如Karlin & Altschul,1993)。由BLAST算法提供的一种相似性测定是最小总和概率(P(N)),其提供了两个核苷酸或氨基酸序列之间的匹配偶然发生的概率的指征。例如在一个实例中,如果测试的核酸序列与参考核酸序列的对比中最小总和概率低于大约0.1,则认为测试核酸序列与参考序列相似,在另一个实例中低于大约0.01,在另一个实例中低于大约0.001。
III.腺病毒载体在一个实施方案中,本发明的腺病毒载体是条件复制型。也就是说,它们含有在可诱导启动子的转录控制下复制需要的一或多个功能性基因。这延迟了在体内未控制的复制并降低了病毒感染的不利副作用。也可以使用有复制能力的自身限制性或自身破坏病毒载体,可以使用复制缺陷型病毒载体。
将一个核酸构建体掺入病毒基因组可以任选通过将该构建体连接入病毒基因组的一个合适的限制位点而进行。然后将病毒基因组通过任何合适的方法包装入病毒外壳或壳体中。特别地,可以使用任何合适的包装细胞系以产生本发明的病毒载体。这些包装细胞系补足本发明的条件复制缺陷型病毒基因组,因为它们包括置于在条件复制型载体中缺失的可诱导启动子下的基因,典型地掺入其基因组中。因此,包装细胞系的应用使得本发明的病毒载体可以培养产生。
本发明的腺病毒载体被设计为优先在表达高水平HIF-1的细胞中复制,包括但非限于肿瘤低氧区域中存在的细胞。这可以通过将复制所必需的腺病毒基因置于低氧应答启动子(HRP)的转录控制下而实现。这个启动子优先指导低氧细胞中转录的能力通过产生一个质粒而评价,所述质粒含有可操纵地与一个增强的绿色荧光蛋白(EGFP)编码序列连接的启动子,如实施例1所述。HRP-EGFP构建体用于从两个肿瘤细胞系中建立稳定的亚系(subline)HCT116,人结肠癌细胞系;4T1,鼠乳腺腺癌。在含氧正常的条件下生长的细胞不表达EGFP。来自暴露于低氧条件(氧压为0.5-1.5%)的稳定转导的亚系细胞示出在保温24小时后强力表达EGFP。
在一个实施方案中,使用肿瘤内注入的构建体的条件复制能力提供了在肿瘤低氧区域中的载体复制。本发明的一个特征是将载体有效地集中在规定的部位邻近的低氧细胞中分布和复制的方法。腺病毒报道基因构建体的体内肿瘤内复制在皮下肿瘤模型中评价,如实施例2所述。
HRP限制低氧细胞转录的能力在体内通过用稳定的亚系在小鼠中建立皮下肿瘤而测试,如实施例2所述。使皮下肿瘤生长至直径为1.0-1.5cm。然后从处死的小鼠中切下肿瘤并检测EGFP表达。EGFP报道基因只在肿瘤的低氧区域中表达。
在使低氧可诱导的载体在肿瘤内复制最大化及伴随着同一载体潜在免疫原性系统复制最小化的尝试中,应用低氧应答启动子产生构建体。如本文所揭示,可以实现载体在肿瘤内高度复制同时在周围细胞中复制基本被消除。因此,在本发明的一个实施方案中,腺病毒载体在肿瘤内的HIF-1可诱导复制可导致肿瘤生长抑制。
根据本发明的方法可使用任何低氧可诱导的启动子,包括但非限于包含与HIF-1结合序列连接的一个最小启动子的重组启动子。在一个实例中,HIF-1结合序列是HRE。HRE已经在一些低氧可诱导基因的启动子中发现,包括磷酸甘油酸激酶-1(Firth et al.,1994;Semenza et al.,1994),促红细胞生成素(Pugh et al.,1991;Semenza et al.,1991)及VEGF(Liu et al.,1995;Forsythe et al.,1996)。
就应答低氧被正调节的基因而言,其中赋予低氧可诱导性的确切序列还未确定,应答序列可以通过本领域技术人员已知的方法限定。在候选启动子区域内,与核酸序列结合的调节蛋白的存在可以使用本领域技术人员熟知的多种方法检测(Ausubel et al.,1992)。简而言之,体内足迹法(footprinting assay)表明在活的或透化的细胞(permeabillized cell)内保护DNA序列免于化学和酶修饰。相似地,体外足迹法使用蛋白质提取物示出保护DNA序列免于化学或酶修饰。硝酸纤维素滤膜结合分析和凝胶电泳迁移率变动分析(EMSA)基于候选转录因子而追踪放射标记的调节DNA元件的存在。计算机分析程序例如TFSEARCH版本1.3(Yutaka Akiyama″TFSEARCHSearching Transcription Factor BindingSites″,http//www.rwcp.or.jp/papia/)可以用于将已知的转录调节元件的共有序列定位于基因组区域内。
本发明的低氧可诱导启动子可以与额外的元件连环或组合以扩增转录活性。在本发明的一个实施方案中,低氧可诱导启动子包含来自与CMV最小启动子连接的人VEGF基因的HRE的5个串联拷贝。
或者或另外,低氧可诱导的启动子可以与作为mRNA翻译的增强子的元件组合。在一个实施方案中,mRNA翻译的增强子是HRE。
本发明的低氧可诱导的启动子可进一步应答可用于本文所述组合治疗中的非低氧刺激。例如,mortalin启动子是由低剂量的电离辐射诱导的(Sadekova et al.,1997),hsp27启动子是由17β-雌二醇和雌激素受体兴奋剂激活的(Porter et al.,2001),HLA-G启动子是由亚砷酸盐诱导的,hsp启动子可以通过光力学治疗激活(Luna et al.,2000)。因此,本发明应用的低氧可诱导启动子可包含支持组合治疗的额外的可诱导特征或者额外的DNA元件。可以在放疗之前,期间或之后给予病毒;或者在化疗之前,期间或之后给予病毒;和/或在光力学治疗之前,期间或之后给予病毒。
低氧可诱导启动子可衍生自任何生物学来源,包括来自与治疗的指定对象异源的来源。例如,人VEGF启动子在牛肺动脉内皮(BPAE)细胞中可指导有效地低氧可诱导的表达(Liu et al.,1995)。
IV.转基因本发明的方法应用腺病毒载体以在细胞中复制,从而导致细胞裂解。为了更有效地杀死含有腺病毒载体的细胞,本发明还提供了包含转基因的腺病毒载体。根据本发明,转基因可包含一种治疗性基因,包括但非限于肿瘤抑制基因,编程性细胞死亡诱导基因,抗血管发生基因,自杀前体药物转化酶基因,细菌毒素基因,反义基因,肿瘤抑制基因,免疫刺激基因,或者其组合。
如本文所用术语“转基因”是指导入细胞中的任何核苷酸序列,从而使得核苷酸序列在细胞中表达。转基因可包括与细胞衍生自其中的生物体部分或完全异源(即外源)的基因,或者可以是与已经包含在细胞内的基因相同或同源的核苷酸序列。在本发明的一个实施方案中,转基因包含一种治疗基因。
在本发明的一个实施方案中,转基因是由条件复制型腺病毒载体编码的。然而,可有效包装入腺病毒病毒体中的外源核苷酸的数目是大约2000个碱基对。因此,本发明的条件复制型腺病毒载体除了每个转基因必需的启动子和聚腺苷酸化序列之外,可任选地包含不超过大约1.4-1.6千碱基对(kb)的转基因。大于这个范围的转基因典型地由其它机制提供。如下文所述,在本发明的一个实施方案中,本发明提供了一种方法,其中转基因由复制缺陷型腺病毒载体输送,复制缺陷型腺病毒载体在存在有复制能力的病毒的细胞中自身成为有复制能力的。这是由于从前者缺失的基本早期基因产物由后者提供而发生。
本发明的方法可用于通过导致细胞裂解的腺病毒载体复制而导致细胞死亡。本发明的腺病毒载体可另外包括一种转基因,所述转基因包含编码具有治疗性生物学活性的多肽(也称为治疗性多肽)的核酸分子。治疗性多肽例如包括但非限于免疫刺激分子,肿瘤抑制基因产物/抗原,自杀基因产物,及抗血管发生因子(见Mackensen et al.,1997;Walther &Stein,1999;Kirk & Mule,2000及其所引用的参考文献)。
血管发生和抑制的免疫应答在恶性疾病和肿瘤生长,侵润和转移的发病机理中起关键作用。因此,在一个实例中,治疗性多肽具有诱导体内免疫应答和/或抗血管发生应答的能力。在一个实施方案中,本发明的腺病毒载体编码一种治疗性基因,其表现免疫刺激和抗血管发生双重活性,例如IL-12(见Dias et al.,1998及下文引用的参考文献),干扰素-α(见O′Byrne et al.,2000及其引用的参考文献),或者趋化因子(见Nomura &Hasegawa,2000及其引用的参考文献)。在另一个实施方案中,本发明的腺病毒载体编码具有免疫刺激活性的基因产物和具有抗血管发生活性的基因产物(见例如Narvaiza et al.,2000)。
IL-12,任选地与共同刺激剂B7.1组合,是一种代表性治疗性多肽,因为编码IL-12或B7.1以及IL-12和B7.1组合的病毒的局部应用呈现出改良抗肿瘤的免疫应答(Ptzer et al.,1997)。
在一个实施方案中,本发明包含编码能激发免疫应答和/或抗血管发生应答的IL-12多肽的一种腺病毒载体。白细胞介素-12(IL-12)是由两个亚基p35和p40组成的二硫键连接的异源二聚体。IL-12刺激T细胞和NK细胞以分泌干扰素-γ(IFN-γ)并增加T细胞和NK细胞增殖和溶细胞活性(Kobayashi et al.,1989;Wolf et al.,1991;D’Andre et al.,1992;Gately et al.,1994;Robertson et al.,1992)。通过这些功能,IL-12促进早期炎症应答和支持细胞介导的免疫性的CD4+T辅助(Th1)细胞的发育(Manetti et al.,1993;Hsieh et al.,1993)。IL-12进一步抑制血管发生,可能通过NK细胞介导的机制进行(Voest et al.,1995;Majewski et al.,1996;Yao et al.,1999)。在一个实例中,由本发明的基因治疗构建体编码的IL-12多肽展示天然发生的IL-12多肽的一或多种生物学性质。
在另一个实施方案中,本发明包含编码IL-12多肽的腺病毒载体。IL-2是一种免疫刺激分子,其在多种癌症中示出治疗活性,所述癌症包括肾癌,乳腺癌,膀胱癌和恶性黑素瘤。IL-2的抗肿瘤活性与其扩展并激活表达IL-2受体的NK细胞和T细胞的能力相关(见例如Margolin,2000;Gore,1996;Deshmukh et al.,2001;Larchian et al.,2000;Horiguchiet al.,2000;及其引用的参考文献)。IL-2也成功用于与抗肿瘤疫苗共同给予(见Overwijk et al.,2000及其引用的参考文献)。
在一个实例中,由本发明的腺病毒载体编码的IL-2多肽展示出天然发生的IL-2多肽的一或多种生物学性质。IL-2诱导的增殖可例如通过在CTLL-2细胞中掺入3H-胸苷而测定,如欧洲专利No.0 439 095所述。IL-2多肽的生物学性质可使用前述出版物中描述的方法进一步评价。
如本文所用术语“自杀基因”是指编码一种多肽的基因,导致产生该多肽的细胞死亡。自杀基因可编码例如直接通过诱导编程性细胞死亡而导致细胞死亡的基因。这种基因称作“编程性细胞死亡诱导基因”,包括但非限于TNF-α(Idriss & Naismith,2000),Trail(Srivastava,2001),Bax和Bcl-2(Shen & White,2001)。编码直接杀死细胞的蛋白质的其它基因包括细菌毒素基因,其通常在某些细菌的基因组中发现并且编码对真核细胞有毒性的多肽(即细菌毒素)。细菌毒素包括但非限于白喉毒素(Frankel et al.,2001)。
或者,自杀基因可编码将一种前体药物转化为毒性化合物的多肽。这种自杀前体药物转化酶包括但非限于HSV-tk多肽,其将9-(1,3-二羟-2-丙氧甲基)鸟嘌呤转化为毒性核苷酸类似物(Freeman et al.,1996);胞嘧啶脱氨酶,其将非毒性核苷酸类似物5-氟胞嘧啶转化为毒性类似物5-氟尿嘧啶(Yazawa et al.,2002);及细胞色素p450,其将某些脂族胺N-氧化物转化为毒性代谢物(Patterson,2002)。
另外,自杀基因可编码干扰与细胞存活或增殖相关的信号转导级联的一种多肽。这种级联包括但非限于由Flt1和Flk1受体酪氨酸激酶介导的级联(参见Klohs,et al.,1997)。可干扰Flt1和/或Flk1信号转导的多肽包括但非限于可溶的Flt1受体(s-Flt1;Shibuya,2001)及Flk-1受体的胞外结构域(ex-Flk1;Lin et al.,1998)。
V.治疗方法本发明的治疗方法包括将肿瘤内的低氧细胞与腺病毒载体接触,从而该载体进入细胞并抑制肿瘤生长。例如,所揭示的腺病毒载体可用于治疗原发的和转移的实体瘤,及乳腺癌,结肠癌,直肠癌,肺癌,口咽癌,咽癌,食管癌,胃癌,胰腺癌,肝癌,胆囊癌,胆管癌,小肠癌,尿道包括肾,膀胱和尿道上皮癌,女性生殖道包括子宫颈,子宫,卵巢癌、绒毛膜癌和妊娠滋养层疾病,男性生殖道包括前列腺,精囊,睾丸癌和生殖细胞瘤,内分泌腺包括甲状腺,肾上腺和垂体癌,皮肤包括血管瘤,黑素瘤,骨或软组织中产生的肉瘤,及Kaposi′s肉瘤,脑、神经、眼和脑膜瘤包括星形细胞瘤,神经胶质细胞瘤,成胶质细胞瘤,成视网膜细胞瘤,神经瘤,成神经细胞瘤,施万细胞瘤(Schwannomas)和脑膜瘤,自恶性血液病产生的实体瘤如白血病,及包括绿色白血病,浆细胞瘤,蕈样肉芽肿病的斑和肿瘤及皮肤T细胞淋巴瘤/白血病,淋巴瘤包括Hodgkin′s和非Hodgkin′s淋巴瘤。
本发明的组合物当单独应用或者与常规给予患者以治疗疾病包括血管发生疾病的放疗,光力学治疗和/或化疗组合应用时,也可以用于预防上述肿瘤的转移。例如,肿瘤可以常规应用手术,光力学治疗,放疗和/或化疗治疗,随后给予本发明的组合物以延长微小转移的休眠期及稳定任何残余原发肿瘤并抑制其生长。事实上,可在放疗、化疗和/或光力学治疗之前,期间或之后给予病毒。
本发明的组合物和方法非限于用于由于低氧导致HIF-1表达增加的细胞中。它们也可用于其中HRE可发挥调节可操纵地连接的核苷酸序列转录功能的任何细胞中。例如,已经报道了在家族性血管瘤综合征中pVHL功能丧失,在多数偶发的中枢神经系统成血管细胞瘤(hemangioblastoma)和透明细胞肾癌中也如此(参见Ivan & Kaelin,2001)。此外,与肾细胞癌和/或成血管细胞瘤相关的pVHL突变均示出干扰pVHL调节HIF-1α活性的能力(Maxwell et al.,2001)。因此,本发明的组合物和方法可应用于丧失pVHL功能的细胞。
另外,近期的报道提示HIF-1在一些肿瘤细胞中积聚,甚至在正常含氧条件下。长期以来已知一些癌细胞在需氧条件下展示高速度的糖酵解,这是称为Warburg作用的一个现象。有迹象提示Warburg作用的特征在于HIF-1在肿瘤正常含氧部位的转化的细胞中积聚,导致在需氧条件下糖酵解。另外HIF-1在这些细胞中的诱导看来是由pp60c-Src蛋白介导的(见Karni et al.,2002),其与一些形式的人体癌症相关(参见Brickell,1992)。因此,本发明的组合物和方法可用于pp60c-Src活性增加的细胞。
pp60c-Src的增加或VHL功能的丧失因此使得HIF-1选择性条件复制型腺病毒载体在无低氧的情况中在肿瘤细胞中复制(例如衍生自VHL缺陷的透明细胞肾癌的那些肿瘤细胞)。在这些情况中,每个肿瘤细胞均被靶定,因为HIF-1在每个细胞中均是激活的。
在本发明的一个实施方案中,提供了通过用两种不同的腺病毒载体在靶组织中共同感染细胞而抑制靶组织生长的一种方法,所述两种不同的腺病毒载体一个是包含在HRE的转录调节下的腺病毒基因的条件复制型载体,另一个是包含转基因的复制缺陷型腺病毒载体。组合方法的应用提供了这样的优势,其中条件复制型腺病毒具有仅携带大约2kb的转基因能力(如果外源启动子小)以携带转基因。因此,需要扩展腺病毒载体携带转基因的能力,其在许多情况中超过2kb。复制缺陷型病毒与条件复制型病毒联合应用,则可显著扩展输送转基因的能力。在第一代E1,E3缺陷的腺病毒载体的情况中,该能力为大约8kb。在第三代无内容载体(gutless vector)的情况中,该能力将达到大约37kb。无内容载体的构建见Mitani et al.,1995;Fisher et al.,1996;Kochanek et al.,1996;Kumar-Singh & Chamberlain,1996;Hardy et al.,1997;Parks &Graham,1997;Morsy et al.,1998;PCT国际公开文本No.WO 98/54345、WO97/45550和WO 96/33280;及美国专利No.5,871,982等所述。
V.A.对象本发明在其许多实施方案中治疗的对象是人,尽管应理解本发明的原理表明本发明对无脊椎动物及所有脊椎动物物种,包括哺乳动物均是有效的,这些动物均包含在术语“对象(subject)”的范畴内。另外,哺乳动物应理解为包括其中需要治疗或预防癌症的任何哺乳动物物种,特别是农业和家养哺乳动物物种。
本发明的方法特别用于治疗温血脊椎动物。因此,本发明涉及哺乳动物和鸟类。
更特别地,提供了哺乳动物的治疗,哺乳动物如人、以及濒临灭绝的哺乳动物(如西伯利亚虎)、对人有经济重要性(供人消费的农场动物)和/或社会重要性(作为宠物饲养的或在动物园中饲养的动物)的哺乳动物,例如除人以外的食肉动物(如猫和狗),猪(猪(pig)、肥猪(hog)和野猪),反刍动物(牛(cattle)、公牛(oxen)、绵羊、长颈鹿、鹿、山羊、野牛和骆驼)和马。还提供了鸟类的治疗,包括濒临灭绝的鸟类、动物园饲养的鸟类和禽类的治疗,特别是家养禽类即家禽如火鸡、鸡、鸭、鹅、珍珠鸡(guinea fowl)等的治疗,因为它们对于人类有经济重要性。因此,还包括家畜、包括但不限于家养猪(猪和肥猪)、反刍动物、马、禽类等的治疗。
V.B.制剂在一个实施方案中,本发明请求保护的腺病毒载体包含一种包括药物学可接受的载体的组合物。可以使用任何合适的药物制剂制备用于给予个体的腺病毒载体。
例如,合适的制剂可以包括水性和非水性无菌注射溶液,其可以含有抗氧化剂、缓冲液、抑菌剂、杀菌抗生素和使制剂与计划接受者的体液等渗的溶质;水性和非水性无菌悬浮液,其可以包括悬浮剂和增稠剂。制剂可以以单剂量或多剂量容器例如密封安瓿和小瓶提供,并可以在冷冻或冷冻干燥(冻干)条件下储存,仅需要在即将使用前添加无菌液体载体例如水进行注射。一些举例性的成分为SDS,在一个例子中范围为0.1-10mg/ml,在另一个例子中为约2.0mg/ml;和/或甘露醇或另一种糖,例如范围为10-100mg/ml,在另一个例子中约30mg/ml;和/或磷酸盐缓冲盐水(PBS)。
应理解的是除了上述特别描述的成分之外,本发明的制剂根据制剂的类型还可以包括现有技术中常规的其它成分。在可能的制剂中,可以使用无菌无热原的水溶液和非水溶液。
本发明的治疗方案和药物组合物可以与附加的佐剂或生物应答修饰剂一起使用,这些佐剂或生物应答修饰剂包括但不限于细胞因子IFN-α,IFN-γ,IL-2,IL-4,IL-6,TNF,或影响免疫细胞的其它细胞因子。根据本发明的这一方面,所公开的腺病毒载体可以在组合疗法中与一或多种这些细胞因子一起给药。
V.C.给药给予本发明的腺病毒载体的合适方法包括但不限于静脉内或肿瘤内注射。或者,腺病毒载体可以以任何其它方式沉积在需治疗的部位,例如将包含腺病毒载体的组合物喷雾在肺通道中。给予本发明的治疗组合物的特定模式取决于许多因素,包括待治疗的细胞的分布和丰度、采用的载体、载体的额外的靶向组织或细胞的特征以及载体从其给药部位代谢或除去的机制。例如,相对浅表的肿瘤可以进行肿瘤内注射,相反,内部肿瘤可以通过静脉内注射来治疗。
在一个实施方案中,给药方法包括用于在需要治疗的部位区域化载体输送或积累的特征。在一个实例中,腺病毒载体被肿瘤内输送。在另一个实施方案中,通过静脉内注射构建体实现腺病毒载体向肿瘤的选择性输送。
为了将腺病毒载体输送到肺通道,本发明的腺病毒载体可以配制成气溶胶或粗喷雾剂(coarse spray)。制备和给予气溶胶或喷雾制剂的方法可参见例如Cipolla et al.,2000和U.S.Patent Nos.5,858,784;6,013,638;6,022,737;和6,136,295。
V.D.剂量有效量的本发明的腺病毒载体组合物被给予需要其的个体。“治疗有效量”是治疗组合物的足以产生可测量应答(例如在正在治疗的个体中的溶细胞应答)的量。在一个实施方案中,测量抑制肿瘤生长的活性。本发明药物组合物中活性成分的实际剂量水平可以进行变化,从而给予在特定个体中有效实现所需的治疗应答的活性化合物的量。所选择的剂量水平取决于治疗组合物的活性、给药途径、与其它药物或治疗的联合、正在治疗的症状的严重程度以及个体的状态和以前的病史。但是,本领域技术人员了解从低于达到所需治疗效果所需的水平的化合物剂量开始,并逐渐增加剂量直至达到所需效果。
治疗组合物的效力可以进行变化,因此“治疗有效”量可以有变化。但是,使用本文下述的分析方法,本领域技术人员可以容易地评价本发明的候选调节物的效力和效能并相应地调整治疗方案。
在阅读了本发明在此披露的信息后,本领域技术人员能够考虑特定制剂、组合物的给药方法以及肿瘤大小而针对各个患者调整剂量。计算剂量可进一步考虑患者身高和体重、症状的严重程度和阶段以及是否存在额外的有害的身体条件。这种调整或改变以及何时和如何进行这种调整或改变是医药领域技术人员熟知的。
对于病毒载体的局部给药,先前的临床研究证实为毒性最小可以注射高至1013噬斑形成单位(pfu)的病毒。在人类患者中,通常使用1×109-1×1013pfu(参见Habib et al.,1999)。为了确定这一范围内的合适剂量,初步治疗可以从1×109pfu起始,在不出现剂量限制毒性时可以逐步增加剂量水平。毒性可以使用国立癌症研究院发布的标准评价并合理地定义为任何4级毒性或任何3级毒性持续1周以上。也可修改剂量以使抗肿瘤或抗血管发生活性最大化。用于评价抗肿瘤和/或抗血管发生活性的代表性标准和方法如以下所述。对于复制型病毒载体,在某些情况下可以使用约1×107-1×108pfu的剂量。
实际上,在一个实施方案中,本发明提供了一种在靶组织如肿瘤、另一种低氧组织或表达HIF-1的其它组织中选择性繁殖腺病毒的方法。本文描述的腺病毒构建体被包装进腺病毒载体中,制备的病毒效价达到至少1×106-1×107pfu/ml。将腺病毒构建体以1.0pfu/靶细胞的量给予。因此,给予最低水平的腺病毒构建体从而在病毒繁殖时提供治疗水平,这构成了本发明的一个方面。
实施例下述实施例用于描述请求保护的本发明内容的模式。下述实施例的某些方面描述了本发明人发现或预期能很好实施请求保护的本发明内容的技术和程序。这些实施例示出了本发明人的标准实验室实践。基于本发明的披露和现有技术水平,本领域技术人员能理解下述实施例仅是为了举例,在不偏离本发明请求保护的内容的范围情况下可以进行多种变化、修饰和改变。
实施例1在暴露于低氧的细胞中EGFP的体外表达构建了基于VEGF启动子中的HIF-1结合元件的启动子。所述低氧应答启动子(HRP)包含与巨细胞病毒(CMV)的最小启动子连接的来自人VEGF启动子的HRE的5个串联拷贝。为了测试这一质粒的活性,构建如图1所示的质粒,其中HRP控制增强型的绿色荧光蛋白(EGFP)基因的表达。使用HRP-EGFP构建体从两个肿瘤细胞系建立稳定的亚系,这两个肿瘤细胞系为人结肠癌细胞系HCT116和鼠乳腺腺癌4T1。暴露于低氧条件(氧压力为0.5-1.5%)的来自稳定转导的亚系的细胞在保温24小时后显示强烈的EGFP表达。
实施例2在皮下肿瘤中HRP-驱动的EGFP表达通过给小鼠皮下注射105-106个细胞建立肿瘤。注射的细胞是用包含控制EGFP基因表达的人工低氧应答启动子的构建体(HRP-EGFP;见图1)稳定转导的4T1细胞。使肿瘤生长至直径约为5-8mm。在即将切下肿瘤并处死小鼠前,给小鼠腹膜内注射哌莫硝唑(pimonidazole)。哌莫硝唑染色是鉴别肿瘤内低氧区域的标准方法(Raleigh et al.,1998)。然后用抗哌莫硝唑抗体染色肿瘤的冷冻切片并在荧光显微镜下观察。还观察了相同切片的EGFP表达模式。在每一切片中均观察到EGFP表达模式与哌莫硝唑染色一致,证实了HRP-EGFP报道基因适合报道低氧肿瘤区域。
实施例3条件复制型腺病毒载体的体外复制构建一种包含在HRP启动子控制下的腺病毒E1A基因的腺病毒载体(AdHRP-E1A-dsRed2;见图2)。将编码红色荧光蛋白的报道基因(dsRed2)工程化入所述载体以利于跟踪病毒感染和复制。然后这一载体在HCT116人结肠癌细胞系中进行测试。低氧导致这一病毒载体的活性复制。荧光显微镜证实在暴露于低氧条件的细胞中有明显更多的病毒复制和感染。当用流式细胞仪进行测量时,dsRed2表达的差异至少为100倍,这由噬斑形成分析证实。E1A蛋白的Western印迹分析表明E1A仅在被置于低氧条件下的细胞中以显著水平表达。
实施例4条件复制型载体的体内复制用HRP-EGFP构建体转导的HCT116细胞(见图1)用于在裸鼠中建立肿瘤。携带这些肿瘤的小鼠然后用携带红色荧光蛋白的腺病毒载体(AdHRP-E1A-dsRed2;见图2)感染。肿瘤细胞表达在HRP控制下的EGFP蛋白,而病毒载体编码红色荧光标记,从而使得可以比较病毒复制和肿瘤低氧的相对表达模式。
报道基因转导的HCT116细胞皮下注射进裸鼠中。肿瘤生长3-4周,长至直径8-10mm。以1×108噬斑形成单位(pfu)的剂量肿瘤内注射AdHRP-E1A-dsRed2。3-10天后处死动物,切下肿瘤进行切片分析。低氧应答载体在低氧区域复制效率极高,导致dsRed2高水平表达。dsRed2的表达与EGFP的表达一致,说明肿瘤低氧区域的选择性。另外,低氧应答启动子显示出比在CMV启动子控制下的非复制型腺病毒载体Ad-CMV-dsRed2基因有极大的优势。用复制缺陷型dsRed2病毒感染的细胞显示出在感染的肿瘤区域和荧光强度方面均效率较低。这些结果证实低氧选择性复制型腺病毒的明显优势。
实施例5体内肿瘤生长抑制HCT116(人结肠癌)细胞以3.0×106细胞/小鼠皮下注射进裸鼠。当肿瘤达到直径5-10mm时,肿瘤内注射病毒载体。对照组(图6B,实心方块)用AdCMV-dsRed2(图5)注射,而治疗组(图6B,实心三角)用AdHRP-E1A-TNF-α(图6A)注射,其是包含与HRP可操纵连接的E1A基因和包含组成型表达的TNF-α基因的条件复制型腺病毒载体。每个肿瘤用2.0×109pfu的合适病毒进行肿瘤内注射。每2-3天确定肿瘤体积。通过将第0天(即在即将注射载体前的时间点)每个肿瘤的体积设为1.0而计算相对体积。如图6B所示,用条件复制型腺病毒载体注射的肿瘤比对照生长显著慢。
实施例6E1-缺陷的AdCMV-EGFP在存在条件复制型腺病毒载体时的复制测试了条件复制型腺病毒载体支持复制缺陷型腺病毒载体的复制的能力。构建了一种复制缺陷型腺病毒载体,AdCMV-EGFP(见图5),其编码一种组成型活性的EGFP基因。在这一载体中,E1和E3基因被缺失,EGFP基因(在组成型活性CMV启动子控制下)被插入病毒的E1区。使用上述编码组成型活性dsRed蛋白的条件复制型腺病毒载体AdHRP-E1A-dsRed2(见图2)。
90%铺满的HCT116结肠癌细胞用两种载体的每一种以每个病毒感染复数(MOI)为0.5感染。感染后5小时,将细胞置于Bactron室中的低氧条件(1%O2浓度)下24小时。在低氧保温后,将细胞进一步在含氧量正常条件下保温24小时。然后用荧光显微术观察细胞中EGFP和dsRed表达。绝大多数细胞对两种荧光标记均为阳性,或者对于两种荧光标记均为阴性。极少数细胞仅一种标记或另一种标记呈阳性。存在两种荧光标记均呈阳性的细胞表明用条件复制型载体共感染细胞使得复制缺陷型腺病毒能复制并有效表达编码的基因。
参考文献下列参考文献和说明书中所引用的参考文献在此并入参考以补充、解释、提供背景知识或教导本文所用的方法学、技术和/或组合物。
Adelman JP,Hayflick JS,Vasser M & Seeburg PH(1983)In VitroDeletional Mutagenesis for Bacterial Production of the 20,000-Dalton Formof Human Pituitary Growth Hormone.DNA 2183-193。
Altschul SF,Gish W,Miller W,Myers EW & Lipman DJ(1990)BasicLocal Alignment Search Tool.J Mol Biol 215403-410。
Ausubel FM,Brent R,Kingston RE,Moore DD,Seidman JG,Smith JA& Struhl K,eds.(1992)Current Protocols in Molecular Biology.Wiley,NewYork。
Barton GJ(1998)Protein Sequence Alignment Techniques.ActaCrystallogr D Biol Crystallogr 541139-1146。
Batzer MA,Carlton JE & Deininger PL(1991)Enhanced EvolutionaryPcr Using Oligonucleotides with Inosine at the 3′-Terminus.Nucleic AcidsRes 195081。
Beroud C & Soussi T(1998)p53 Gene MutationSoftware andDatabase.Nucleic Acids Res 26200-204。
Bischoff JR,Kim DH,Williams A,Heise C,Horn S,Muna M,Ng L,Nye JA,Sampson-Johannes A,Fattaey A & McCormick F(1996)AnAdenovirus Mutant That Replicates Selectively in p53-Deficient HumanTumor Cells.Science 274373-376。
Brickell PM(1992)The P60c-Src Family of Protein-Tyrosine KinasesStructure,Regulation,and Function.Crit Rev Oncog 3401-446。
Cipolla DC,Gonda I,Shak S,Koyesdi I,Crystal R & Sweeney TD(2000)Coarse Spray Delivery to a Localized Region of the PulmonaryAirways for Gene Therapy.Hum Gene Ther 11361-371。
Clifford SC & Maher ER(2001)Von Hippel-Lindau DiseaseClinicaland Molecular Perspectives.Adv Cancer Res 8285-105。
Colman MS,Afshari CA & Barrett JC(2000)Regulation of p53Stability and Activity in Response to Genotoxic Stress.Mutat Res462179-188。
Cubitt AB,Heim R,Adams SR,Boyd AE,Gross LA & Tsien RY(1995)Understanding,Improving and Using Green Fluorescent Proteins.TrendsBiochem Sci 20448-455。
Dachs GU & Tozer GM(2000)Hypoxia Modulated Gene ExpressionAngiogenesis,Metastasis and Therapeutic Exploitation.Eur J Cancer361649-1660。
D′Andrea A,Rengaraju M,Valiante NM,Chehimi J,Kubin M,Aste M,Chan SH,Kobayashi M,Young D,Nickbarg E et al.(1992)Production ofNatural Killer Cell Stimulatory Factor(Interleukin 12)by Peripheral BloodMononuclear Cells.J Exp Med 1761387-1398。
Deshmukh P,Glick RP,Lichtor T,Moser R & Cohen EP(2001)Immunogene Therapy with Interleukin-2-Secreting Fibroblasts forIntracerebrally Metastasizing Breast Cancer in Mice.J Neurosurg94287-292。
Dias S,Thomas H & Balkwill F(1998)Multiple Molecular andCellular Changes Associated with Tumour Stasis and Regression DuringI1-12 Therapy of a Murine Breast Cancer Model.Int J Cancer 75151-157。
Dix BR,Edwards SJ & Braithwaite AW(2001)Does the AntitumorAdenovirus Onyx-015/Dl1520 Selectively Target Cells Defective in the p53Pathway?J Virol 755443-5447。
European Patent No.0 439 095Firth J,Ebert B,Pugh C & Ratcliffe P(1994)Oxygen-RegulatedControl Elements in the Phosphoglycerate Kinase 1 and LactateDehydrogenase A GenesSimilarities with the Erythropoietin 3′Enhancer.PNAS 916496-6500。
Fisher KJ,Choi H,Burda J,Chen SJ & Wilson JM(1996)RecombinantAdenovirus Deleted of All Viral Genes for Gene Therapy of Cystic Fibrosis.Virology 21711-22。
Forsythe J,Jiang B,Iyer N,Agani F,Leung SK,RD & Semenza G(1996)Activation of Vascular Endothelial Growth FactorGene Transcriptionby Hopoxic Inducible Factor 1.Mol Cell Biol 164604-4613。
Frankel AE,Powell BL,Vallera DA & Neville DM,Jr.(2001)ChimericFusion Proteins—Diphtheria Toxin-Based.Curr Opin Investig Drugs21294-1301。
Freeman SM,Whartenby KA,Freeman JL,Abboud CN & Marrogi AJ(1996)In Situ Use of Suicide Genes for Cancer Therapy.Semin Oncol2331-45。
Galanis E,Vile R & Russell SJ(2001)Delivery Systems Intended for inVivo Gene Therapy of CancerTargeting and Replication Competent ViralVectors.Crit Rev Oncol Hematol 38177-192。
Gately MK,Warrier RR,Honasoge S,Carvajal DM,Faherty DA,Connaughton SE,Anderson TD,Sarmiento U,Hubbard BR & Murphy M(1994)Administration of Recombinant I1-12 to Normal Mice EnhancesCytolytic Lymphocyte Activity and Induces Production of Ifn-Gamma inVivo.Int Immunol 6157-167。
Glover DM & Hames BD(1995)DNA C1oningA Practical Approach,2nd ed.IRL Press at Oxford University Press,Oxford;New York。
Goodrum FD & Ornelles DA(1998)p53 Status Does Not DetermineOutcome of E1B 55-Kilodalton Mutant Adenovirus Lytic Infection.J Virol729479-9490。
Gore M(1996)The Role of Interleukin-2 in Cancer Therapy.CancerBiother Radiopharm 11281-283。
Greenberg NM,DeMayo FJ,Sheppard PC,Barrios R,Lebovitz R,Finegold M,Angelopoulou R,Dodd JG,Duckworth ML,Rosen JM et al.(1994)The Rat Probasin Gene Promoter Directs Hormonally andDevelopmentally Regulated Expression of a Heterologous Gene Specificallyto the Prostate in Transgenic Mice.Mol Endocrinol 8230-239。
Habib NA,Hodgson HJ,Lemoine N & Pignatelli M(1999)A Phase I/IiStudy of Hepatic Artery Infusion with wtp53-CMV-Ad in MetastaticMalignant Liver Tumours.Hum Gene Ther 102019-2034。
Hardy S,Kitamura M,Harris-Stansil T,Dai Y & Phipps ML(1997)Construction of Adenovirus Vectors through Cre-Lox Recombination.JVirol 711842-1849。
Haviv YS & Curiel DT(2001)Conditional Gene Targeting for CancerGene Therapy.Adv Drug Deliv Rev 53135-154。
Henikoff JG,Pietrokovski S,McCallum CM & Henikoff S(2000)Blocks-Based Methods for Detecting Protein Homology.Electrophoresis211700-1706。
Henikoff S & Henikoff JG(1992)Amino Acid Substitution Matricesfrom Protein Blocks.Proc Natl Acad Sci U S A 8910915-10919。
Henikoff S & Henikoff JG(2000)Amino Acid Substitution Matrices.Adv Protein Chem 5473-97。
Hickman ES,Moroni MC & Helin K(2002)The Role of p53 and pRBin Apoptosis and Cancer.Curr Opin Genet Dev 1260-66。
Horiguchi Y,Larchian WA,Kaplinsky R,Fair WR & Heston WD(2000)Intravesical Liposome-Mediated Interleukin-2 Gene Therapy in OrthotopicMurine Bladder Cancer Model.Gene Ther 7844-851。
Hsieh CS,Macatonia SE,Tripp CS,Wolf SF,O′Garra A & Murphy KM(1993)Development of Th1 Cd4+T Cells through I1-12 Produced byListeria-Induced Macrophages.Science 260547-549。
Huang CC,Novak WR,Babbitt PC,Jewett AI,Ferrin TE & Klein TE(2000)Integrated Tools for Structural and Sequence Alignment and Analysis.Pac Symp Biocomput230-241。
Idriss HT & Naismith JH(2000)TNF and the TNF ReceptorSuperfamilyStructure-Function Relationship(S).Microsc Res Tech50184-195。
Ivan M & Kaelin WG,Jr.(2001)The Von HiPPel-Lindau TumorSuppressor Protein.Curr Opin Genet Dev 1127-34。
Karlin S & Altschul SF(1993)Applications and Statistics for MultipleHigh-Scoring Segments in Molecular Sequences.Proc Natl Acad Sci U S A905873-5877。
Karni R,Dor Y,Keshet E,Meyuhas O & Levitzki A(2002)ActivatedPp60c-Src Leads to Elevated Hif-1 Alpha Expression under Normoxia.JBiol ChemM206141200。
Kirk CJ & Mule JJ(2000)Gene-Modified Dendritic Cells for Use inTumor Vaccines.Hum Gene Ther 11797-806。
Klohs WD,Fry DW & Kraker AJ(1997)Inhibitors of Tyrosine Kinase.Curr Opin Oncol 9562-568。
Kobayashi M,Fitz L,Ryan M,Hewick RM,Clark SC,Chan S,LoudonR,Sherman F,Perussia B & Trinchieri G(1989)Identification andPurification of Natural Killer Cell Stimulatory Factor(Nksf),a Cytokinewith Multiple Biologic Effects on Human Lymphocytes.J Exp Med170827-845。
Kochanek S,Clemens PR,Mitani K,Chen HH,Chan S & Caskey CT(1996)A New Adenoviral VectorReplacement of All Viral CodingSequences with 28 Kb of DNA Independently Expressing Both Full-LengthDystrophin and Beta-Galactosidase.Proc Natl Acad Sci U S A 935731-5736。
Kumar-Singh R & Chamberlain JS(1996)Encapsidated AdenovirusMinichromosomes Allow Delivery and Expression of a 14 Kb DystrophinCdna to Muscle Cells.Hum Mol Genet 5913-921。
Kurihara T,Brough DE,Kovesdi I & Kufe DW(2000)Selectivity of aReplication competent Adenovirus for Human Breast Carcinoma CellsExpressing the MUC1 Antigen.J Clin Invest 106763-771。
Kyte J & Doolittle RF(1982)A Simple Method for Displaying theHydropathic Character of a Protein.J Mol Biol 157105-132。
Larchian WA,Horiguchi Y,Nair SK,Fair WR,Heston WD & Gilboa E(2000)Effectiveness of Combined Interleukin 2 and B7.1 VaccinationStrategy Is Dependent on the Sequence and OrderA Liposome-MediatedGene Therapy Treatment for Bladder Cancer.Clin Cancer Res 62913-2920。
Lee SE,Jin RJ,Lee SG,Yoon SJ,Park MS,Heo DS & Choi H(2000)Development of a New Plasmid Vector with PSA-Promoter and EnhancerExpressing Tissue-Specificity in Prostate Carcinoma Cell Lines.AnticancerRes 20417-422。
Lin P,Sankar S,Shan S,Dewhirst MW,Polverini PJ,Quinn TQ &Peters KG(1998)Inhibition of Tumor Growth by Targeting TumorEndothelium Using a Soluble Vascular Endothelial Growth FactorReceptor.Cell Growth Differ 949-58。
Lindegaard JC,Overgaard J,Bentzen SM & Pedersen D(1996)IsThere a Radiobiologic Basis for Improving the Treatment of Advanced StageCervical Cancer?J Natl Cancer Inst Monogr 21105-112。
Liu Y,Cox S,Morita T & Kourembanas S(1995)Hypoxia RegulatesVascular Endothelial Growth FactorGene Expression in Endothelial Cells.Identification of a 5′Enhancer.Circ Res 77。
Luna MC,Ferrario A,Wong S,Fisher AM & Gomer CJ(2000)Photodynamic Therapy-Mediated Oxidative Stress as a Molecular Switch forthe Temporal Expression of Genes Ligated to the Human Heat ShockPromoter.Cancer Res 601637-1644。
Mackensen A,Lindemann A & Mertelsmann R(1997)Immunostimulatory Cytokines in Somatic Cells and Gene Therapy of Cancer.Cytokine Growth Factor Rev 8119-128。
Majewski S,Marczak M,Szmurlo A,Jablonska S & Bollag W(1996)Interleukin-12 Inhibits Angiogenesis Induced by Human Tumor Cell Linesin Vivo.J Invest Dermatol 1061114-1118。
Manetti R,Parronchi P,Giudizi MG,Piccinni MP,Maggi E,TrinchieriG & Romagnani S(1993)Natural Killer Cell Stimulatory Factor(Interleukin12[I1-12])Induces T Helper Type 1(Th1)-Specific Immune Responses andInhibits the Development of Il-4-Producing Th Cells.J Exp Med1771199-1204。
Margolin KA(2000)Interleukin-2 in the Treatment of Renal Cancer.Semin Oncol 27194-203。
Maxwell PH,Pugh CW & Ratcliffe PJ(2001)Activation of the HifPathway in Cancer.Curr Opin Genet Dev 11293-299。
Mitani K,Graham FL,Caskey CT & Kochanek S(1995)Rescue,Propagation,and Partial Purification of a Helper Virus-DependentAdenovirus Vector.Proc Natl Acad Sci U S A 923854-3858。
Morsy MA,Gu M,Motzel S,Zhao J,Lin J,Su Q,Allen H,Franlin L,Parks RJ,Graham FL,Kochanek S,Bett AJ & Caskey CT(1998)AnAdenoviral Vector Deleted for All Viral Coding Sequences Results inEnhanced Safety and Extended Expression of a Leptin Transgene.Proc NatlAcad Sci U S A 957866-7871。
Narvaiza I,Mazzolini G,Barajas M,Duarte M,Zaratiegui M,Qian C,Melero I & Prieto J(2000)Intratumoral Coinjection of Two Adenoviruses,One Encoding the Chemokine Ifn-Gamma-Inducible Protein-10 and AnotherEncoding I1-12,Results in Marked Antitumoral Synergy.J Immunol1643112-3122。
Needleman SB & Wunsch CD(1970)A General Method Applicable tothe Search for Similarities in the Amino Acid Sequence of Two Proteins.JMol Biol 48443-453。
Nomura T & Hasegawa H(2000)Chemokines and Anti-CancerImmunotherapyAnti-Tumor Effect of Ebil-Ligand Chemokine(Elc)andSecondary Lymphoid Tissue Chemokine(Slc).Anticancer Res204073-4080。
O′Byrne KJ,Dalgleish AG,Browning MJ,Steward WP & Harris AL(2000)The Relationship between Angiogenesis and the Immune Response inCarcinogenesis and the Progression of Malignant Disease.Eur J Cancer36151-169。
Ohtsuka E,Matsuki S,Ikehara M,Takahashi Y & Matsubara K(1985)An Alternative APProach to Deoxyoligonucleotides as Hybridization Probesby Insertion of Deoxyinosine at Ambiguous Codon Positions.J Biol Chem2602605-2608。
Overwijk WW,Theoret MR & Restifo NP(2000)The Future ofInterleukin-2Enhancing Therapeutic Anticancer Vaccines.Cancer J Sci Am6S76-80。
Parks RJ & Graham FL(1997)A Helper-Dependent System forAdenovirus Vector Production Helps Define a Lower Limit for EfficientDNA Packaging.J Virol 713293-3298。
Patterson LH(2002)Bioreductively Activated Antitumor N-OxidesThe Case of AQ4N,a Unique APProach to Hypoxia-Activated CancerChemotherapy.Drug Metab Rev 34581-592。
PCT International Publication No.WO 96/33280PCT International Publication No.WO 97/45550PCT International Publication No.WO 97/47763PCT International Publication No.WO 98/54345Pearson WR & Lipman DJ(1988)Improved Tools for BiologicalSequence Comparison.Proc Natl Acad Sci U S A 852444-2448。
Porter W,Wang F,Duan R,Qin C,Castro-Rivera E,Kim K & Safe S(2001)Transcriptional Activation of Heat Shock Protein 27 Gene Expressionby 17-Estradiol and Modulation by Antiestrogens and Aryl HydrocarbonReceptor Agonists.J Mol Endocrinol 2631-42。
Pugh CW,Tan CC,Jones RW & Ratcliffe PJ(1991)FunctionalAnalysis of an Oxygen-Regulated Transcriptional Enhancer Lying 3′to theMouse Erythropoietin Gene.Proc Natl Acad Sci U S A 8810553-10557。
Putzer BM,Hitt M,Muller WJ,Emtage P,Gauldie J & Graham FL(1997)Interleukin-12 and B7-1 Costimulatory Molecule Expressed by anAdenovirus Vector Act Syneryrgistically to Facilitate Tumor Regression.ProcNatl Acad Sci U S A 9410889-10894。
Raleigh JA,Calkins-Adams DP,Rinker LH,Ballenger CA,WeisslerMC,Fowler WC,Jr.,Novotny DB & Varia MA(1998)Hypoxia andVascular Endothelia Growth Factor Expression in Human Squamous CellCarcinomas Using Pimonidazole as a Hypoxia Marker.Cancer Res583765-3768。
Ries S & Kom WM(2002)Onyx-015Mechanisms of Action andClinical Potential of a Replication-Selective Adenovirus.Br J Cancer865-11。
Robertson MJ,Soiffer RJ,Wolf SF,Manley TJ,Donahue C,Young D,Herrmann SH & Ritz J(1992)Response of Human Natural Killer(Nk)Cellsto Nk Cell Stimulatory Factor(Nksf)Cytolytic Activity and Proliferation ofNk Cells Are Differentially Regulated by Nksf.J Exp Med 175779-788。
Rossolini GM,Cresti S,Ingianni A,Cattani P,Riccio ML & Satta G(1994)Use of Deoxyinosine-Containing Primers Vs Degenerate Primers forPolymerase Chain Reaction Based on Ambiguous Sequence Information.Mol Cell Probes 891-98。
Rothmann T,Hengstermann A,Whitaker NJ,Scheffner M & zurHausen H(1998)Replication of Onyx-015,a Potential AnticancerAdenovirus,Is Independent of p53 Status in Tumor Cells.J Virol729470-9478。
Sadekova S,Lehnert S & Chow TY(1997)Induction ofPbp74/Mortalin/Grp75,a Member of the hsp70 Family,by Low Doses ofIonizing RadiationA Possible Role in Induced Radioresistance.Int J RadiatBiol 72653-660。
Sambrook J & Russell DW(2001)Molecular CloningA LaboratoryManual,3rd ed.Cold Spring Harbor Laboratory Press,Cold Spring Harbor,N.Y。
Saqi MA,Wild DL & Hartshorn MJ(1999)Protein Analyst-aDistributed Object Environment for Protein Sequence and Structure Analysis.Bioinformatics 15521-522。
Scharfmann R,Axelrod JH & Verma IM(1991)Long-Term in VivoExpression of Retrovirus-Mediated Gene Transfer in Mouse FibroblastImplants.Proc Natl Acad Sci U S A 884626-4630。
Semenza GL,Nejfelt MK,Chi SM & Antonarakis SE(1991)Hypoxiainducible Nuclear Factors Bind to an Enhancer Element Located 3′to theHuman Erythropoietin Gene.Proc Natl Acad Sci U S A 885680-5684。
Semenza GL,Roth PH,Fang HM & Wang GL(1994)TranscriptionalRegulation of Genes Encoding Glycolytic Enzymes by Hypoxia InducibleFactor 1.J Biol Chem 26923757-23763。
Shen Y & White E(2001)p53-Dependent Apoptosis Pathways.AdvCancer Res 8255-84。
Shibuya M(2001)Structure and Dual Function of Vascular EndothelialGrowth FactorReceptor-1(Flt-1).Int J Biochem Cell Biol 33409-420。
Silhavy TJ,Berman ML,Enquist LW & Cold Spring Harbor Laboratory.(1984)Experiments with Gene Fusions.Cold Spring Harbor Laboratory,Cold Spring Harbor,N.Y.。
Sinkovics JG & Horvath JC(2000)Vaccination against Human Cancers(Review).Int J Oncol 1681-96。
Smith TF & Waterman M(1981)Comparison of Biosequences.AdvAppl Math 2482-489。
Srivastava RK(2001)Trail/Apo-21Mechanisms and ClinicalApplications in Cancer.Neoplasia 3535-546。
Suit H(1996)Assessment of the Impact of Local Control on ClinicalOutcome.Front Radiat Ther Oncol 2917-23。
U.S.Patent No.4,554,101U.S.Patent No.5,858,784U.S.Patent No.5,871,982U.S.Patent No.6,013,638U.S.Patent No.6,022,737U.S.Patent No.6,136,295Valter MM,Hugel A,Huang HJ,Cavenee WK,Wiestler OD,Pietsch T& Wemert N(1999)Expression of the Ets-1 Transcription Factor in HumanAstrocytomas Is Associated with Fms-Like TyrosineKinase-1(Flt-1)/Vascular Endothelial Growth FactorReceptor-1 Synthesis andNeoangiogenesis.Cancer Res 595608-5614。
Voest EE,Kenyon BM,O′Reilly MS,Truitt G,D′Amato RJ & FolkmanJ(1995)Inhibition of Angiogenesis in vivo by Interleukin 12.J Natl CancerInst 87581-586。
Vose JM & Armitage JO(1995)Clinical Applications of HematopoieticGrowth Factors.J Clin Oncol 131023-1035。
Walther W & Stein U(1999)Therapeutic Genes for Cancer GeneTherapy.Mol Biotechnol 1321-28。
Williams RS,Thomas JA,Fina M,German Z & Benjamin IJ(1993)Human Heat Shock Protein 70(Hsp70)Protects Murine Cells from InjuryDuring Metabolic Stress.J Clin Invest 92503-508。
Wolf SF,Temple PA,Kobayashi M,Young D,Dicig M,Lowe L,DzialoR,Fitz L,Ferenz C,Hewick RM & et al.(1991)Cloning of Cdna for NaturalKiller Cell Stimulatory Factor,a Heterodimeric Cytokine with MultipleBiologic Effects on T and Natural Killer Cells.J Immunol 1463074-3081。
Yao L,Sgadari C,Furuke K,Bloom ET,Teruya-Feldstein J & Tosato G(1999)Contribution of Natural Killer Cells to Inhibition of Angiogenesis byInterleukin-12.Blood 931612-162l。
Yazawa K,Fisher WE & Brunicardi FC(2002)Current Progress inSuicide Gene Therapy for Cancer.World J Surg 26783-789。
Yu DC,Chen Y,Seng M,Dilley J & Henderson DR(1999)TheAddition of Adenovirus Type 5 Region E3 Enables Calydon Virus 787 toEliminate Distant Prostate Tumor Xenografts.Cancer Res 594200-4203。
应理解在不偏离本发明的范围的前提下可对本发明加以各种改变。另外,前文的描述只是例证了本发明而无限制之意。
序 列 表序列表<110>杜克大学<120>应用在肿瘤低氧区域中选择性复制的重组腺病毒载体的靶向肿瘤治疗<130>180/156<160>2<170>PatentIn version 3.2<210>1<211>60<212>DNA<213>Cytomegalovirus<400>1gatctgacgg ttcactaaac gagctctgct tatatagacc tcccaccgta cacgcctacc60<210>2<211>35<212>DNA<213>Homo sapiens<400>2ccacagtgca tacgtgggct ccaacaggtc ctctt3权利要求
1.一种腺病毒载体,其包含在转录调节元件(TRE)的转录控制下的腺病毒基因,所述TRE包含一个最小启动子和一个低氧应答元件(HRE)。
2.权利要求1的腺病毒载体,其中腺病毒基因选自E1A基因、E1B基因、E2A基因、E2B基因和E4基因。
3.权利要求1的腺病毒载体,其进一步包含在TRE的转录控制下的第二种腺病毒基因。
4.权利要求1的腺病毒载体,其中所述最小启动子选自巨细胞病毒(CMV)最小启动子、人肌动蛋白最小启动子、人EF2最小启动子及腺病毒E1B最小启动子。
5.权利要求4的腺病毒载体,其中CMV最小启动子包含SEQ IDNO1。
6.权利要求1的腺病毒载体,其中HRE衍生自人血管内皮生长因子(VEGF)启动子。
7.权利要求6的腺病毒载体,其中HRE包含SEQ ID NO2。
8.权利要求7的腺病毒载体,其中HRE包含SEQ ID NO2的5个串联拷贝。
9.权利要求1的腺病毒载体,其进一步包含一个转基因。
10.权利要求9的腺病毒载体,其中所述转基因是第二种腺病毒基因。
11.权利要求9的腺病毒载体,其中所述转基因编码一种免疫刺激分子。
12.权利要求11的腺病毒载体,其中所述免疫刺激分子选自IL-2和IL-12。
13.权利要求9的腺病毒载体,其中所述转基因是一种自杀基因。
14.权利要求13的腺病毒载体,其中所述自杀基因选自TNF-α基因、Trai1基因、Bax基因、HSV-tk基因、胞嘧啶脱氨酶基因、p450基因、白喉毒素基因、s-Flt1基因和ex-Flk1基因。
15.一种包含权利要求1的腺病毒载体的组合物。
16.权利要求15的组合物,其进一步包含一种药物可接受的载体。
17.一种抑制肿瘤生长的方法,所述方法包括将肿瘤内低氧细胞与权利要求1的腺病毒载体接触,从而载体进入细胞并抑制肿瘤生长。
18.权利要求17的方法,其中所述接触是通过肿瘤内注射给予腺病毒载体而达到的。
19.权利要求17的方法,其中所述接触是通过静脉内注射给予腺病毒载体而达到的。
20.权利要求17的方法,其进一步包括将肿瘤暴露于治疗有效量的第二种处理,所述第二种处理选自电离辐射、化疗、及光动力治疗。
21.一种包含权利要求1的腺病毒载体的宿主细胞。
22.一种赋予靶细胞选择性胞毒性的方法,所述方法包括将允许HRE发挥功能的细胞与权利要求1的腺病毒载体接触,从而腺病毒载体进入细胞中。
23.一种在表达HIF-1的靶组织中选择性增殖腺病毒的方法,所述方法包括将靶组织与权利要求1的腺病毒接触,从而腺病毒被增殖达到效价为至少1.0×107pfu/ml。
24.一种抑制靶组织生长的方法,所述方法包括(a)将靶组织中低氧细胞与第一种腺病毒载体接触,从而第一种腺病毒载体进入细胞;及(b)将低氧细胞与一种复制缺陷型腺病毒载体接触,从而所述复制缺陷型腺病毒载体进入细胞。
25.权利要求24的方法,其中所述靶组织是肿瘤。
26.权利要求24的方法,其中第一种腺病毒载体包含在含HRE的TRE的转录控制下的一种腺病毒基因。
27.权利要求24的方法,其中所述复制缺陷型腺病毒载体包含第二种基因。
28.权利要求27的方法,其中所述复制缺陷型腺病毒载体包含在一个组成型启动子的转录控制下的第二种基因。
29.权利要求27的方法,其中所述复制缺陷型腺病毒载体包含在含HRE的TRE的转录控制下的第二种基因。
30.权利要求24的方法,其中(a)第一种腺病毒载体包含在含HRE的TRE转录控制下的至少两个腺病毒必需基因;及(b)第一种腺病毒载体中的在含HRE的TRE的转录控制下的所述腺病毒必需基因中的至少两个在所述复制缺陷型腺病毒载体中是缺陷型的。
31.权利要求30的方法,其中所述两个腺病毒必需基因每一个均选自E1A基因、E1B基因、E2A基因、E2B基因和E4基因。
32.权利要求27的方法,其中第二种基因是自杀基因。
33.权利要求32的方法,其中自杀基因选自TNF-α基因、Trail基因、Bax基因、HSV-tk基因、胞嘧啶脱氨酶基因、p450基因、和白喉毒素基因、s-Flt1基因及ex-Flk1基因。
34.权利要求27的方法,其中第二种基因编码一种免疫刺激分子。
35.权利要求32的方法,其中所述免疫刺激分子选自IL-2和IL-12。
36.权利要求24的方法,其进一步包括将靶组织暴露于治疗有效量的第二种治疗,所述第二种治疗选自电离辐射、化疗和光动力治疗。
全文摘要
本发明提供了条件复制型腺病毒载体,其赋予表达HIF-1的细胞选择性胞毒性,通过感染细胞以允许载体内存在的HIF-1可诱导的启动子发挥功能而进行。本发明还提供了基于所述载体的组合物和宿主细胞,以及增殖和使用所述载体的方法。本发明进一步提供了一种抑制肿瘤生长的方法,通过用条件复制型腺病毒载体联合复制缺陷型腺病毒载体一起感染肿瘤内细胞而进行。
文档编号C12N15/861GK1720066SQ200380104707
公开日2006年1月11日 申请日期2003年10月1日 优先权日2002年10月1日
发明者李川源, 黄倩, 马克·W.·德沃斯特 申请人:杜克大学